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Abstract

Post-weaning social isolation (PSI) has been shown to increase aggressive behavior and alter 

medial prefrontal cortex (mPFC) function in social species such as rats. Here we developed a 

novel escapable social interaction test (ESIT) allowing for the quantification of escape and social 

behaviors in addition to mPFC activation in response to an aggressive or nonaggressive stimulus 

rat. Male rats were exposed to 3 weeks of PSI (ISO) or group (GRP) housing, and exposed to 3 

trials, with either no trial, all trials, or the last trial only with a stimulus rat. Analysis of social 

behaviors indicated that ISO rats spent less time in the escape chamber and more time engaged in 

social interaction, aggressive grooming, and boxing than did GRP rats. Interestingly, during the 

third trial all rats engaged in more of the quantified social behaviors and spent less time escaping 

in response to aggressive but not nonaggressive stimulus rats. Rats exposed to nonaggressive 

stimulus rats on the third trial had greater c-fos and ARC immunoreactivity in the mPFC than 

those exposed to an aggressive stimulus rat. Conversely, a social encounter produced an increase in 

large PSD-95 punctae in the mPFC independently of trial number, but only in ISO rats exposed to 

an aggressive stimulus rat. The results presented here demonstrate that PSI increases interaction 

time and aggressive behaviors during escapable social interaction, and that the aggressiveness of 

the stimulus rat in a social encounter is an important component of behavioral and neural 

outcomes for both isolation and group-reared rats.
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1. Introduction

Social interaction during adolescence is critical for the development of competent and 

developmentally appropriate social behavior during adulthood. Social behavior is dependent 

upon a number of factors including the social history of the individual [1,2], the testing 

environment [3], and characteristics of social partners [4–6]. Post-weaning social isolation 

(PSI, also known as isolation rearing) in rats has been shown to produce altered social 

behavior that includes both increased social interaction as well as increased aggression [7,8]. 

This suggests that even though the motivation for social interaction is increased after PSI, 

the social interactions themselves may be unpleasant for individuals that have been deprived 

of normal social interaction during the adolescent period. Conversely, social conflict may be 

less aversive, or even reinforcing, for individuals that have been subjected to PSI and this 

social conflict may drive the PSI-induced increase in social interaction. One potential 

consequence of this is that isolates may be more likely to remain in abusive or maladaptive 

social situations.

PSI consists of depriving adolescent rats of social experience by housing them individually 

(ISO), as compared to housing in same-sex groups [GRP] for a period of 4 to 8 weeks after 

weaning. PSI of male rats produced increases in aggression [9], especially when testing 

occurred in an unfamiliar environment [3]. We have observed increases in social interaction 

after 4 weeks of PSI, and this increase was almost completely accounted for by increases in 

time spent engaging in aggressive grooming [7]. In spite of the finding that ISO rats spend 

more time in social interaction with a novel conspecific than GRP rats, we have not observed 

an increase in the reinforcing property of social interaction after PSI [10]. Conditioned place 

preference (CPP) studies in our laboratory have indicated that males, but not females, 

rapidly develop CPP to a context associated with a novel, same-sex, conspecific regardless 

of the experimental rat's rearing condition. Thus, even though isolation rearing dramatically 

increased the time spent interacting with a novel conspecific, it did not increase preference 

for a conspecific-associated context [10], consistent with the results of Douglas et al. [11].

The medial prefrontal cortex (mPFC) undergoes significant developmental fine-tuning 

during adolescence [12] and is crucial for the regulation of emotion [13] as well as for 

executive function [14]. In young men, executive function is negatively correlated with high 

frequency of physical aggression [15] thus changes in mPFC function produced by PSI may 

be directly related to the aggression observed in rats exposed to PSI. PSI leads to 

abnormalities in mPFC structure and function including alterations in dendritic spine 

morphology [16] as well as decreased expression of immediate early genes [7,17,18] and 

synaptic-associated proteins including PSD-95 [19]. PSD-95 expression was decreased in 

the mPFC after social isolation when assessed by Western blot [19]. However, 

reorganization of PSD-95 into large clusters (punctae) is associated with plasticity [20] 
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independently of protein expression per se, and PSD-95 can be quantified by assessing the 

numbers of small, medium, and large punctae using immunohistochemistry [21].

Here we developed a novel procedure, the escapable social interaction test (ESIT), to 

quantify social preference and escape behavior in PSI-exposed rats in response to a novel 

stimulus rat. The ESIT provides the first method to assess social interaction in rats that 

allows for social preference to be examined with experimental rat-induced social interactions 

similar to the social approach task (SA) [22,23] while simultaneously monitoring social 

behaviors as can be done with standard social interaction tasks or CPP. The SA is limited in 

this regard as the stimulus animal is confined to a cage, and while CPP allows for behavioral 

monitoring during training, the later testing phase prohibits harvesting tissue within relevant 

time frames to examine immediate early gene expression in response to the social behavior, 

which occurs within a timeframe between 1 and 2 hours [24]. Additionally, the use of 

“escapable” social interaction may provide a direct measure of social interaction-seeking 

behavior reflective of motivational drive in the absence of a learned association with a 

specific environment as in CPP, which may be confounding in ISO rats as PSI induces 

learning deficits [25]. Furthermore, the ESIT allows for the manipulation of the behavioral 

phenotype of the stimulus rat. Here, we manipulated the aggressiveness of the stimulus rat 

by exposure to either group or PSI rearing. We hypothesized that because of their social 

incompetence and increased motivation for social interaction, PSI rats would be more likely 

to spend time interacting with an aggressive stimulus rat than GRP rats would. We assessed 

escape behavior as well as social and aggressive behavior after either 1 or 3 trials with either 

a nonaggressive or an aggressive stimulus rat. Finally, we assessed the immediate early 

genes c-Fos and Arc, as well as PSD-95 in the anterior cingulate (AC), prelimbic (PL), and 

infralimbic (IL) subdivisions of the mPFC.

2. Materials and Methods

2.1. Animals

Male (n = 88) Sprague-Dawley rats (Harlan; Indianapolis, IN) were purchased at postnatal 

day (P) 28 and were housed in standard Plexiglas cages either individually or in groups of 4 

with food and water freely available in a 12:12 light:dark cycle. Isolated rats were exposed 

to the sight, sound, and smell of other rats in the colony room but were deprived of physical 

contact. Rats were weighed weekly but were not otherwise handled. Experimentation took 

place after 3 weeks of either isolation (ISO) or group (GRP) rearing, between days P49 and 

P52, a period corresponding to late adolescence [26]). Rats were run in squads of 16 per 

day; all groups were run in a counterbalanced design. Experiments occurred at the same time 

each day between 10:00 a.m. and 1:00 p.m. All experiments were carried out in accordance 

with the NIH best practices for animal use and approved by the University of Colorado 

Denver Institutional Animal Care and Use Committee and by the Association for 

Assessment and Accreditation of Laboratory Animal Care, International.

2.2. Apparatus

The apparatus was in a testing room separate from the animal colony, under dim lighting, 

and maintained at 23°C. It consisted of two rooms, the interaction room and the escape 
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room. The interaction room was 30 cm × 30 cm square with 35 cm high silver Plexiglas 

walls, standard black bar type flooring, (5 mm diameter spaced 1.5 cm apart) with an 8 cm × 

8 cm doorway in the lower rear corner leading into the escape room. The escape room was 

12 cm × 30 cm × 35 cm high with a black Plexiglas floor and black walls. A tether was 

mounted via swivels to the top corner of the experimental room opposite to the escape door 

via an Irwin Quick grip 4” clamp (Irwin). Cable ties (Jansco Products) were placed directly 

posterior to the front limbs of the stimulus rat, but caudal to the top of the rib cage, at the 

narrowest point roughly above the shoulder blades. The tie was loose enough to allow for 

normal breathing and full range of motion as well as allowing normal movement of the 

stimulus rat throughout the experimental room of the apparatus, but not the escape room. 

The experimental rat had freedom to roam throughout both rooms. The tether prevented 

access to the escape room by the stimulus rat, and thus the experimental rat had the option to 

escape social interaction by entering the escape room.

2.3. Stimulus rats

Stimulus rats were either isolation or group housed for 4 to 5 weeks; stimulus rats that were 

slightly older and larger than the experimental rats were used to simulate bullying. Because 

not all isolation-reared stimulus rats appeared to be more aggressive than group-reared rats, 

the behavior of the stimulus rats during the social encounters was assessed for aggressive 

grooming (aggressive grooming by the stimulus rat of the experimental rat) by a blinded 

experimenter; stimulus rats were then designated as Aggressive or Nonaggressive using a 

median split of their aggressive grooming values. The median value was 1.25 sec per trial; 

the mean of the Nonaggressive stimulus rats was 0.12 (± 0.038 SEM) sec per trial (most 

showed no aggressive grooming) and the mean of the Aggressive stimulus rats was 11.53 

(± 1.36 SEM) sec per trial. Thus while it is clear that many aspects of the social behavior of 

the stimulus rats exposed to PSI were abnormal, stimulus rats were specifically assigned to 

groups based on aggressive grooming behavior. Thus while it is clear that many aspects of 

the social behavior of the stimulus rats exposed to PSI were abnormal, stimulus rats were 

specifically assigned to groups based on aggressive grooming behavior. Aggressive 

grooming was first identified by Grant and Mackintosh [27], and is distinguished from 

normal social grooming by an increased use of the teeth, pulling of fur, and its vigorousness. 

Hurst et al. [28] has defined it as “vigorous grooming by the experimental rat of the novel 

conspecific when it is standing, crouching, supine, or trying to escape”. Although aggressive 

grooming does not typically include biting or lateral displays, it has been called an agonistic 

behavior [29]. Stimulus rats were subject to a maximum of 8 trials over two experimental 

cohorts totaling 10 days. Whenever possible exposure of the experimental rat to the same 

stimulus rat was avoided.

2.4. Escapable social interaction test (ESIT)

On P49 experimental rats were handled for 2 min each. Experimental rats that were group 

housed were additionally briefly acclimated to a transfer cage after handling. The following 

day experimental rats were acclimated to the experimental apparatus for ten minutes. 

Stimulus rats were acclimated to the apparatus and tether for ten minutes on the two 

consecutive days prior to experimentation.

Goodell et al. Page 4

Behav Brain Res. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The ESIT began on P51 for the experimental rats. Testing sessions lasted 10 min, and there 

was one trial per day conducted 24 hours apart. All experimental rats were subject to 3 trials. 

All rats were exposed to the apparatus for each trial, with a tethered stimulus rat (either 

Aggressive or Nonaggressive) for either none of the trials (no-social control), the last trial 

only, or for all 3 trials. Rats were returned to their home cages immediately after each trial 

and were sacrificed 90–100 min after the final trial. This time point was chosen as an 

optimal time point to measure the protein products of activity-dependent genes based on the 

time of peak protein expression of the prototypical immediate-early gene, c-Fos [24]. The 

apparatus was washed with 70% alcohol between rats. The experimental design and 

apparatus are illustrated in Figure 1.

Time spent in the escape chamber and number of entries into the escape chamber were 

recorded with AnyMaze software. Trials were video recorded and social behaviors were 

scored by experimenters blinded to the treatment conditions. The following behaviors were 

assessed: action: Overall time the experimental rat spends actively interacting (e.g. sniffing, 

following, grooming) with the novel conspecific [30]. Aggressive Grooming: Vigorous 

grooming by the experimental rat of the novel conspecific when it is standing, crouching, 

supine, or trying to escape [28]. Boxing: the experimental rat assumes an upright stereotyped 

boxing posture with orientation toward the introduced animal [31]. Pinning: Standing over/

holding down the novel conspecific while it is in a supine posture [28].

2.5. Tissue harvest

Rats were deeply anesthetized with sodium pentobarbital and transcardially perfused with 

cold 0.9% saline followed by 4% paraformaldehyde in 0.01M PBS. Brains were postfixed 

for 4 hours in the same paraformaldehyde solution, cryoprotected in 30% sucrose for three 

days, then rapidly frozen in −30°C isopentane just prior to cryosectioning. Sections were 

taken (40 μm) through the mPFC using the atlas of Paxinos and Watson [32]. Sections were 

stored at 4°C in cryoprotectant until immunohistochemistry was performed.

2.6. Immunohistochemistry

Immunohistochemistry was performed for c-Fos and Arc as previously reported [7]. Free-

floating sections were first washed 3 times in 0.01 M PBS and between each subsequent step 

except as noted. Sections were incubated for in 0.3% hydrogen peroxide, followed by 5% 

normal goat serum (NGS) and 0.25% Triton X in PBS. Sections were incubated overnight at 

RT in either rabbit anti-Fos (1:10,000, Santa Cruz Biotechnology) or in rabbit anti-Arc, 

(1:3000, Synaptic Systems), in PBS with 5% NGS and 0.25% Triton X. Sections were then 

incubated in biotinylated goat anti-rabbit secondary antibody (1:200, Jackson Labs) for 2 h, 

followed by incubation in avidin biotin complex (ABC kit, Vector Laboratories) for 2 h. 

Sections were washed 3 times in 0.1 M PB, then immunoreactivity was visualized with 3,3’-

diaminobenzidine (DAB substrate kit, Vector Laboratories) and nickel ammonium sulphate 

as chromogens. Sections were mounted on slides using a 0.15% gelatin solution, dehydrated 

using a series of ethanol solutions, defatted using Histoclear (Sigma-Aldrich), and 

coverslipped with Permount (Sigma-Aldrich). Representative photomicrographs are shown 

in Figure 2.
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Fluorescent immunohistochemistry for PSD-95 was performed as follows. Sections (6-8 per 

rat) were washed in 0.01 M PBS 3 times for 10 minutes. Samples were incubated in 5% 

NGS solution with 0.25% Triton X in PBS for 1 hour at room temperature then incubated 

for 48 hours at 4°C in mouse anti-PSD-95 mAb antibody (1:1000, Calbiochem) in 5% 

blocking solution. Sections were then washed in 0.01 M PBS 3 times for 10 minutes. The 

remaining steps were performed in low light to help prevent bleaching of the fluorescent 

antibodies. Sections were incubated for 2 hours in goat anti-mouse Alexa-Flour 488 

secondary antibody (1:200, Molecular Probes) in 5% blocking solution. Samples were 

washed in 0.01 M PBS 3 times for 10 minutes then mounted on Superfrost slides and 

coverslipped with Vectashield hard-set mounting medium with DAPI (Vector Labs). 

Representative photomicrographs are shown in Figure 2.

2.7. Cell/puncta counts

2.7.1—Microscopy for Arc and c-Fos was performed using an Olympus BX51 microscope 

and VisioPharm software (VisioPharm, Hørsholm, Denmark). Immunolabeled cells were 

counted by centering a counting frame within each subregion at 10x then shifting to a 40x 

objective; cell counts were performed within the 22,406 μm2 counting frame in real-time 

throughout the z plane as previously reported [33]. Cell counts were performed in the 

anterior cingulate (AC), prelimbic (PL), and infralimbic (IL) subregions of the mPFC. For 

each rat, 6-8 individual hemisphere (both right and left) measurements were assessed.

2.7.2—Microscopy for PSD-95 was performed using a Zeiss Observer inverted confocal 

microscope with ZEN 2011 Laser Scanning Microscope software and a Plan-Apochromat 

100x/1.40 Oil DIC M27 objective set at an aperture of 0.55. For each rat, four brain 

hemispheres were selected for imaging, and three images were collected per subregion. 

Frame positioning within each subregion was accomplished through the use of the EC Plan-

Neofluar10x/0.30 M27 objective. An image was acquired within the center of each 

subregion, then the frame was shifted 70μm in the horizontal direction both laterally and 

medially to capture a total of 3 images/hemisphere/subregion; puncta counts were averaged 

across region and hemisphere. Quantification of PSD-95 punctae was performed from jpg 

image files using ImageJ 1.47v software (http://imagej.nih.gov/ij/). A plug-in was designed 

to perform both a broad pixel count that determined the numbers of PSD-95 punctae 

between 5.0-100.0 pixels and a size analysis of the punctae. Punctae were designated as 

small (less than or equal to 10 pixels), medium (between 11 and 25 pixels) or large (greater 

than 25 pixels). There were no significant differences between medium and large punctae in 

any group so they were pooled and titled “large”.

2.8. Statistics

Although all groups were run together in a counterbalanced fashion, behavioral data from 

the different groups were analyzed separately due to the different number of trials with a 

stimulus rat (the variable of interest). Escape data from No-Social controls were analyzed 

using 2 by 3 mixed ANOVA with Housing (Group or ISO) as the between groups variable 

and Trials as the within subjects variable. Escape and behavioral data from rats that were 

exposed to 1 trial of ESIT were analyzed using 2 by 2 factorial ANOVA with Housing and 

Stimulus type (Aggressive or NonAggressive) as variables; only data from the trial with the 
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stimulus rat were analyzed. Escape and behavioral data from rats that were exposed to 3 

trials of ESIT were analyzed using mixed ANOVA with Housing and Stimulus type as 

between groups variables and Trials as a within subjects variable. Immunohistochemistry 

data were analyzed separately for No-Social controls using one-way ANOVA with Housing 

(GRP or ISO) as the between groups variable. Immunohistochemistry data from rats 

exposed to 1 or 3 trials of ESIT were normalized as percent of their respectively housed No-

Social controls (GRP or ISO) to reduce variability and were analyzed using 3-way factorial 

ANOVA with Housing, Stimulus type, and number of trials as variables. When significant 

interactions were obtained, Tukey's HSD post-hoc tests were performed to determine 

differences between groups. Alpha was set at .05. Statistical analyses were performed using 

Statview (SAS Institute) or SPSS (IBM SPSS Version 22, Chicago, IL).

3. Results

3.1. Escape behavior

We assessed Time spent in the escape chamber, Time per entry into the escape chamber, and 

Number of entries into the escape chamber separately for rats that were exposed to a 

stimulus rat for 0 (No Social controls), 1, or 3 trials.

3.1.1. No-Social controls—We first assessed time spent in the escape chamber, number 

of entries, and time per entry in rats that were exposed to the apparatus with no stimulus rat 

(No Social controls). This was done to determine if any differences between experimental 

groups were present in baseline preference for the two chambers of our apparatus. Although 

there was a trend for a main effect of Housing on time per entry (F [1, 28] = 4.29, p = 0.06; 

ISO rats spent somewhat less time per entry than GRP rats), we found no significant 

differences between Housing groups in either time spent in in the escape chamber, or in 

number of entries. Additionally, there were also no main effects or interactions for Trials. 

Together, these results demonstrate that GRP and ISO rats showed similar “escape behavior” 

in the absence of a social cue, and indicate that the experimental design is non-biased in 

regards to baseline preference. Escape behavior data for no-social controls, collapsed across 

trials, are shown in Table 1.

3.1.2. One trial of escapable social interaction—In the second condition, rats were 

exposed to the apparatus for two trials with no social cue, followed by one trial with an 

Aggressive or Non-aggressive stimulus rat (One-trial groups). Not surprisingly, ISO rats 

spent less time escaping the social situation than did their GRP counterparts, as revealed by 

a significant main effect of Housing, F(1, 32) = 44.51, p < 0.001 (Figure 3A); this was 

independent of the stimulus rat condition (no main effect of Stimulus). This difference was 

due to differences in total time per entry, as revealed by a significant main effect of housing, 

F(1, 32) = 14.94, p < 0.001 (Figure 3C), and not the number of entries to the escape chamber 

(no main effects or interactions for number of entries; data not shown). Thus, while the 

number of escapes did not differ between ISO and GRP rats in the one-trial condition, the 

time spent in the escape chamber (time between interactions) was greatly decreased for ISO 

rats.
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3.1.3. Three trials of escapable social interaction—In the third condition, rats were 

exposed to a social cue on all three trials (either Aggressive or Non-aggressive for all trials). 

Similar to the results from the one trial condition, overall, ISO rats spent less time in the 

escape chamber, as revealed by a significant main effect of Housing, F (1, 64) = 13.55, p < 

0.01 (Figure 3B). All rats also spent less time in the escape chamber when the stimulus rat 

was Aggressive across trials, as revealed by a significant main effect of Stimulus, F (1, 64) = 

5.91, p < 0.05. However, ISO rats with Aggressive stimulus rats spent less time escaping 

than all other groups in trial 3, as revealed by a significant Housing by Stimulus by Trial 

interaction, F (2, 64) = 5.18, p < 0.05 post-hoc test p < 0.05, suggesting a greater adaptation 

to the Aggressive stimulus condition across trials.

Similarly to what was noted in the one-trial condition, the differences in escape behavior 

between GRP and ISO rats in the three trial condition were due in part to differences in time 

per entry, with ISO rats spending less time per entry in the escape chamber than their GRP 

counterparts, as revealed by a significant main effect of Housing, F (1, 64) = 60.32, p < 

0.001 (Figure 3D). Similarly, all rats spent less time per entry in the escape chamber when 

the stimulus rat was Aggressive, as revealed by a significant main effect of Stimulus, F (1, 

64) = 8.53, p < 0.01. However, although ISO rats spent less total time escaping Aggressive 

stimulus rats in the third trial when compared to all other groups, all rats spent less time per 

entry in the escape chamber during trial 3 when the stimulus rat was Aggressive, as revealed 

by a Trials by Stimulus interaction, F (2, 64) = 5.15, p < 0.01, post-hoc test p < 0.05.

3.2. Social behavior

In all trials with a stimulus rat, we assessed total social interaction, aggressive grooming, 

boxing, and pinning. Time (sec) was used as the dependent measure for social interaction 

and aggressive grooming as they are typically ongoing behaviors, and frequency was used as 

the dependent measure for boxing and pinning as they are discrete behaviors that are brief in 

duration.

3.2.1. One trial of escapable social interaction—Overall, in the one-trial condition, 

housing had a profound effect on the assessed social behaviors. ISO rats engaged in more 

total social interaction, as revealed by a significant main effect of Housing, F (1, 32) = 

79.33, p < 0.001 (Figure 4A), more aggressive grooming, as revealed by a significant main 

effect of Housing, F (1, 32) = 41.79, p < 0.001 (Figure 4B), and more boxing than GRP rats, 

as revealed by a significant main effect of Housing, F (1, 32) = 21.68, p < 0.001 (Figure 4C). 

However, while pinning did not differ between ISO and GRP rats (no main effect of 

housing), there was a tendency for all rats to pin Aggressive stimulus rats more, as revealed 

by a trend for a main effect of Stimulus, F (1, 32) = 2.25, p = 0.09 (Figure 4D).

3.2.2. Three trials of escapable social interaction—For the three-trials condition, 

both Housing and Stimulus type affected social behaviors, and in some cases these behaviors 

changed across the 3 trials. As in the one-trial condition, ISO rats spent more time 

interacting with a stimulus rat across trials, as revealed by a significant main effect of 

Housing, F (1, 64) = 124.54, p < 0.0001 (Figure 5A). All rats also spent more time 

interacting with an Aggressive stimulus rat across trials, as revealed by a significant main 
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effect of Stimulus, F (1, 64) = 7.43, p = 0.01. Moreover, the propensity to engage more with 

an Aggressive stimulus rat was further perpetuated in the third trial, as revealed by a 

significant Trials by Stimulus interaction, F (2, 64) = 5.41, p < 0.05, post-hoc test p < 0.05. 

However, despite the overall increase in social interaction seen in the third trial for all rats, 

ISO rats still spent more time interacting with a stimulus rat during the third trial than GRP 

rats, as revealed by a significant Trials by Housing interaction, F (2, 64) = 7.82, p < 0.05, 

post-hoc test p < 0.05.

In accordance with what we have noted previously [7,34], in addition to an increase in total 

interaction, ISO rats also spent more time engaged in aggressive grooming behavior than did 

GRP rats, as revealed by a significant main effect of Housing, F (1, 64) = 16.23, p < 0.001 

(Figure 5B). ISO rats also engaged more than GRP rats in the other aggressive behaviors, as 

revealed by significant main effects of Housing on boxing F (1, 64) = 15.47, p < 0.001 

(Figure 5C), and pinning F (1, 64) = 3.88, p < 0.05 (Figure 5D). Thus, the increase in total 

interaction noted in ISO rats also included an increase in aggressive behaviors.

Interestingly, when paired with an Aggressive stimulus rat, both GRP and ISO experimental 

rats had tendencies to engage more in these aggressive behaviors, and some aggressive 

behaviors increased over trials. When paired with an Aggressive stimulus rat, there was a 

strong trend to engage in more aggressive grooming, as revealed by a marginal main effect 

of Stimulus, F (1, 64) = 4.11, p = 0.05, there were more bouts of boxing as revealed by a 

significant main effect of Stimulus, F (1, 64) = 7.63, p < 0.01, and there was more pinning, 

as revealed by a significant main effect of Stimulus, F (1, 64) = 7.33, p = 0.01. Additionally, 

there was a tendency for rats to engage in increased bouts of boxing over trials, as revealed 

by a marginal main effect of Trials on boxing, F (2, 64) = 3.08, p = 0.05, and pinning of 

Aggressive stimulus rats was greatest during the third trial, as revealed by a significant Trials 

by Stimulus interaction, F (2, 64) = 3.96, p < 0.05, post-hoc test p < 0.05. Thus, both the 

condition of the stimulus rat and the number of trials affected aggression by the 

experimental rat, with rats tending to engage in more aggressive behaviors when paired with 

an Aggressive stimulus rat, and with bouts of boxing and pinning increasing over trials.

3.3. Immediate early gene and PSD-95 expression in the mPFC

3.3.1. No-social controls—Separate ANOVAs were performed for Arc, c-Fos, and 

PSD-95 in the AC, PL, and IL of the mPFC of animals exposed to the apparatus for 3 trials. 

There were no effects of Housing on Arc, c-Fos, or PSD-95 expression in any of the 

subregions; data are shown in Table 2.

3.3.2. Escapable social interaction—Values were expressed as a percentage of No-

Social controls by the appropriate Housing condition (thus GRP rats were normalized by 

GRP controls and ISO rats were normalized by ISO controls). Two animals sustained tissue 

damage during processing and were not usable for immunohistochemistry.

3.3.3. Arc—Arc is an immediate early gene often used as a measure of neuronal activation 

[35], and here we assessed neuronal activation in the AC, PL, and IL subdivisions of the 

mPFC of experimental rats exposed to the ESIT. Interestingly, the aggressiveness of the 

stimulus rat, but not the experimental rat's housing condition, impacted Arc 
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immunoreactivity (there were no main effects or interactions for Housing). Arc positive cell 

numbers were greater overall in the AC in the one-trial condition, as revealed by significant 

main effect of Trials, F (1, 62) = 10.3, p < 0.01 (Figure 6A), and this was driven by an 

increase in rats exposed to a Nonaggressive stimulus rat, as revealed by a significant Trials 

by Stimulus interaction, F (1, 62) = 6.9, p < 0.01. There was also an increase in Arc positive 

cells in the PL of rats exposed to a Nonaggressive stimulus rat, as revealed by a significant 

main effect of Stimulus F (1, 62) = 7.1, p < 0.01; this was driven by the increase in the one-

trial condition, as revealed by a significant Trials by Stimulus interaction, F (1, 62) = 11.25, 

p < 0.01, post-hoc test p < 0.05 (Figure 6B). Similarly, Arc positive cells were increased in 

the IL of rats in the one-trial condition, as revealed by a significant Trials by Stimulus 

interaction, F (1, 62) = 6.15, p < 0.05, post-hoc test p < 0.05 (Figure 6C). Therefore, all 

mPFC sub-regions showed an increase in Arc positive cells in response to a Non-aggressive 

stimulus rat in the one-trial condition, which was no longer noted when the experimental rat 

was exposed to three trials.

3.3.4. c-Fos—The immediate early gene c-Fos is also commonly used as a measure of 

neuronal activity [36], and we next sought to further corroborate our results with Arc by 

assessing c-Fos immuno-reactivity also in the AC, PL, and IL of the mPFC of rats exposed 

to the ESIT. In contrast to Arc, in which there were no effects of Housing on the increase in 

immuno-reactive cells in the AC in response to a single trial, the number of c-Fos positive 

cells in the AC was increased in GRP but not ISO rats exposed to 1 trial with a 

Nonaggressive stimulus rat as revealed by a significant Housing by Trials by Stimulus 

interaction, F (1, 62) = 5.27, p < 0.05, post-hoc test p < 0.05 (Figure 7A). In the PL, 

however, a similar effect was seen with c-Fos as was seen with Arc. Immuno-reactivity to c-

Fos was increased in response to a Nonaggressive stimulus rat, as revealed by a significant 

main effect of Stimulus, F (1, 62) = 7.66, p < 0.01; this was also driven by a significant 

increase in the one-trial condition, as revealed by a significant Trials by Stimulus interaction, 

F (1, 62) = 19.06, p < 0.001, post-hoc test p < 0.05. However, in the PL, Housing had 

additional effects on c-Fos in the 3-trial condition not observed with Arc. Exposure to one 

trial with a Nonaggressive stimulus rat produced increased c-Fos expression in both GRP 

and ISO rats, while 3 trials with an Aggressive rat marginally increased c-Fos expression in 

GRP rats and had no effect on c-Fos expression in ISO rats, as revealed by a significant 

Housing by Trials by Stimulus interaction, F (1, 62) = 4.31, p < 0.05, post-hoc test p < 0.05 

(Figure 7B). Immunoreactivity to c-Fos did not differ in the IL (no main effects or 

interactions, Figure 7C). Thus, while the trend toward increased immediate early gene 

expression in response to one-trial with a Non-aggressive stimulus was similar for c-Fos and 

Arc, our analysis of c-Fos revealed additional effects of Housing on neuronal activation in 

the AC, in which GRP but not ISO rats showed an increase in c-Fos in response to a Non-

aggressive stimulus. Additionally, in the PL we noted additional effects of multiple trials, 

which were also housing dependent. However, in contrast to Arc expression, no differences 

in c-Fos expression reached significance in the IL.

PSD-95: While the immediate early genes Arc and c-Fos measure gross changes in neuronal 

activity and can thus be used to indicate overall network changes, here we sought to also 

evaluate synaptic changes indicative of learning and memory by examining the excitatory 
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synapse scaffolding protein PSD-95. We examined the AC, PL and IL of the mPFC of the 

rats exposed to the ESIT. We found no changes in small PSD-95 punctae in any of the 

subregions (data not shown); in addition, we found no changes in large PSD-95 Punctae in 

the AC (Figure 8A). Interestingly, however, we found an increase in the number of large 

PSD-95 punctae in both the PL (Figure 8B) and IL (Figure 8C) of ISO but not GRP rats in 

response to interaction with an Aggressive stimulus rat, as revealed by significant Housing 

by Stimulus interactions in the PL, F (1, 62) = 7.99, p < 0.01 and IL, F (1, 62) = 6.62, p < 

0.05, both post-hoc test p < 0.05. These results are in contrast to the expression of Arc and c-

Fos, in which we found no group differences in the three-trial condition and therefore 

suggests an uncoupling of gross neuronal activity from the changes that occur at excitatory 

synapses.

4. Discussion

In the present study, a novel social interaction test, the ESIT, has been introduced. The ESIT 

is the first social test that allows for experimental rat-controlled social interaction, 

quantification of normal social behavior, and social motivation for a stimulus rat, while also 

providing a method for post-test detection of immediate early gene expression in response to 

the social interaction. A novel aspect of the ESIT is the ability to assess active avoidance of 

a social interaction, which may reflect social anxiety more accurately than the standard 

social interaction test. Rats that were exposed to either post-weaning social isolation or 

normal group housing were exposed to the ESIT apparatus for 3 trials; in either none of the 

trials, the last trial only, or all 3 trials the apparatus contained a stimulus rat that was either 

Aggressive or Non-aggressive. The results demonstrated that characteristics of both the 

experimental rat and the stimulus rat affected the motivation to escape a partner rat, and 

influenced the specific types of social behaviors that the rats engaged in. Moreover, mPFC 

function was sensitive to characteristics of the stimulus rat as well as the experimental rat.

4.1. Escape behavior

We assessed the amount of time that experimental rats spent in the escape chamber, the 

number of entries into the escape chamber, and the amount of time spent in the escape 

chamber per entry. Consistent with our prediction, ISO rats spent less time escaping from a 

social interaction than GRP rats during either 1 or 3 trials. A previous report demonstrated a 

decrease in social avoidance in ISO rats, but in that study both the experimental rat and the 

stimulus rat had free access to both sides of the two-chamber apparatus [37]. The present 

results are unique in that the ESIT paradigm is similar to those used in active avoidance; in 

line with this, male rats exposed to PSI were impaired in learning an active-avoidance task 

[38]. Interestingly, though we predicted that ISO rats would spend less time escaping an 

aggressive stimulus rat than GRP rats, we were surprised to observe that during the third 

trial, ISO rats escaped less from an aggressive stimulus rat than a nonaggressive one. ISO 

rats spent less time per entry than GRP rats, which may reflect an increase in locomotor 

behavior in ISO rats. Alternatively, this may represent hyper-reactivity to either the social 

stimulus or to the novel environment [39]. Evidence for hyper-reactivity to the novel 

environment is partially substantiated by a trend for a decrease in the amount of time per 

escape by ISO rats in the absence of a stimulus rat. However, the differences between GRP 
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and ISO rats were profound when there was a stimulus rat present, and this held true for 

either 1 or 3 trials. This hyper-reactivity may be greater when the stimulus is more arousing. 

Time per entry decreased over the 3 trials when the stimulus rat was aggressive, regardless 

of the housing condition, suggesting that hyper-reactivity may occur in all rats as a result of 

the behavior of the stimulus rat, and that this may escalate over multiple trials.

4.2. Social behavior

Both housing condition and the aggressiveness of the stimulus rat increased social and 

aggressive behaviors, in particular during three trials of escapable social interaction. ISO rats 

engaged in more social interaction, aggressive grooming, and boxing, consistent with our 

earlier reports. We [7,10] and others [3,8,40] have previously observed PSI-induced 

increases in aggression, which may result from increased autonomic activation [8]. 

Interestingly, all rats engaged in more social interaction, aggressive grooming, and boxing 

when they were paired with aggressive stimulus rats, in parallel with decreases in escape 

behavior. We observed little pinning and less aggressive grooming than we have previously 

observed after PSI [7,10]. This may be due to the escapability of the social interaction, 

though there are a number of alternative explanations. The tethering of the stimulus rats may 

have made it more difficult for them to assume a supine position for pinning, and the tethers 

covered much of the nape area which is often the target in aggressive grooming. With 

respect to both aggressive grooming and pinning, the stimulus rats were slightly older and 

larger than the experimental rats and this may have discouraged these behaviors by the 

smaller experimental rats.

It is important to note that it can be difficult to distinguish between play and aggressive 

behavior at this age in the rat. Pinning and boxing may be considered as play fighting, rather 

than aggression. However, many of the behaviors that are manifested as play during 

adolescence can be interpreted as aggressive during adulthood, as “rough and tumble” social 

play serves as practice for behaviors that are aggressive in adults [41]. Playful attacks 

typically decline throughout puberty [42,43], suggesting that ISO rats may remain in an 

immature stage of social development. Play-like social interactions that vary too far from the 

expected behaviors are no longer considered playful [44] and may instead be interpreted as 

aggressive, thus provoking aggression from the experimental rats. Regardless of whether the 

interactions are agonistic or simply age-inappropriate, rats engaging in high levels of these 

behaviors may model social ineptness in adolescence. Recent clinical studies have confirmed 

that adolescents with poor social skills are much more likely to become victimized by their 

peers; victimization can include both social exclusion and overt bullying [45]. Olweus [46] 

has described the victims of bullying as socially isolated and anxious, but importantly noted 

that some victims become aggressive and provoke their victimizers. Thus a spiraling pattern 

of aggression and social exclusion can emerge. In support of this, in the current study 

aggressive acts appeared to be provoked by aggression by the stimulus rat, even when 

experimental rats were able to avoid the aggressor by escaping into a separate room. 

Escalation of the aggressive encounters was observed during exposure to multiple trials with 

an aggressive stimulus rat. In both GRP and ISO rats that had experienced 3 trials with an 

aggressive conspecific, aggressive grooming, boxing, and pinning increased in subsequent 

trials in comparison to the first trial (and to the 1-trial groups), in parallel with a decrease in 
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escape. Consistent with this, when rats experienced only one trial with a conspecific, the 

aggressiveness of the stimulus rat did not impact the social or escape behavior of the 

experimental rat. Interestingly, aggressive interactions can be rewarding in a rodent model 

[47], and this may increase over trials as aggression escalates . Thus the level of aggression, 

and not just the amount of social interaction of the stimulus animal is an important factor 

that can modify social behaviors [4].

4.3. Immediate early gene and PSD-95 expression in subregions of the mPFC

Arc and Fos expression patterns within the AC, PL, and IL were similar, though not 

identical, and were dependent on both the experimental and the stimulus rat. In contrast to 

our previous report , we did not observe an attenuation of social interaction-induced Arc and 

Fos expression in the mPFC of ISO rats. It is possible that the escapability of the social 

interaction impacted the normal induction of Arc and Fos. Alternatively, multiple trials of 

habituation to the testing environment prior to the social interaction may have normalized 

the expression of immediate early gene protein products after PSI in the present study. In 

both GRP and ISO rats, a single trial with a nonaggressive stimulus rat produced elevated 

Arc levels in all subregions relative to 1 trial with an aggressive stimulus rat.

Increased Fos expression was most pronounced in the PL; after a single trial with a 

nonaggressive rat Fos was increased in the PL in both GRP and ISO rats. Although there 

was an increase in Fos in the PL of GRP rats exposed to three trials with an aggressive 

stimulus rat, this did not reach significance. In the AC a similar pattern was observed in GRP 

rats; a significant increase after 1 trial with a nonaggressive stimulus rat and a trend for an 

increase after 3 trials with an aggressive stimulus rat. Expression of Fos, as well as Arc, was 

greater after 1 trial than 3 trials, suggesting habituation of these responses; c-fos mRNA 

expression in the mPFC reflects habituation by decreasing over time in response to repeated 

stress [48]. Similarly, single-cell recording of neurons in the mPFC demonstrated that social 

approach activated a subset of these neurons during the first, but not the second session of 

social experience [49].

The mPFC may be important for regulating social interaction by facilitating interanimal 

coordination [50]; moreover, complex defensive behaviors may require an intact mPFC [51]. 

Impaired PFC function has been implicated in social dysfunction, including human violence 

and aggression. A study of blood oxygenation level dependent (BOLD) activation of the 

PFC of healthy adolescents and those with disruptive behavior disorders demonstrated that 

the modulation of PFC activation during retaliatory behavior observed in healthy adolescents 

was attenuated in adolescents with disruptive behavior disorders [52]. Greater activation of 

the dorsolateral PFC (the human analog to the rodent mPFC) was associated with less 

aggressive responding, suggesting that the PFC plays an important role in regulating social 

aggression [53]. A direct role for the mPFC in regulating aggressive behavior is provided by 

the finding that optogenetic stimulation of the mPFC inhibited escalated aggression in mice 

[54]; conversely, escalated aggression was increased by optogenetic silencing of the mPFC 

[54]. The mPFC is involved in the establishment of social dominance hierarchies [55], and 

dominant mice expressed greater amounts of c-Fos in the PL subregion of the mPFC [56]. 

This suggests that in the present study, the increased Fos in the PL after a single trial with a 
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nonaggressive rat reflects an elevation in social rank when interacting with a nonaggressive, 

compared to an aggressive, stimulus rat.

A marked dissociation was observed between the expression of large PSD-95 punctae and 

the immediate early gene protein products Arc and Fos, effectively uncoupling changes in 

neuronal activity with lasting structural changes at dendritic spines. Although no effects of a 

social experience were observed on PSD-95 in the AC, increases in large PSD-95 punctae 

were observed in the PL and IL of ISO rats after 3 trials with an aggressive stimulus rat. Our 

results contrast with those of Hermes et al. [19], who reported decreased PSD-95 protein in 

the mPFC of isolates. However, there were several differences between the current 

experimental procedures and those of Hermes et al. [19]. First, the period of isolation was 

much longer in the Hermes et. al. study, from P19 to P73, compared to P28 to P52 in the 

current study, and longer lasting isolation has been accompanied by learning deficits [25] 

and amotivation for social interaction [57]. Second, the study of Hermes et al. used female 

rats, which could indicate sex differences in the effects of isolation rearing on mPFC 

PSD-95. In support of this we have previously published differences in social reward 

between male and female rats [10]. Third, in the Hermes et al., [19] study total protein 

expression was assessed using Western blot. PSD-95 clustering at the post-synaptic density 

is regulated in response to neuronal activity changes [58], and it is possible that the 

expression levels assessed by western blot may not accurately reflect the changes in PSD-95 

occurring at individual spines that can be observed using IHC.

PSD-95 is an excitatory post-synaptic scaffolding protein that regulates synaptic strength 

through the anchoring of glutamate receptors in the post-synaptic density, and accordingly 

its expression, degradation, and localization is highly regulated in vitro by changes in 

neuronal activity as well as in vivo by experience [59,60]. As dendritic spine size is 

proportional to PSD area [61], it is likely that the increase in large PSD-95 punctae observed 

here represent an increase in dendritic spine size consistent with structural changes 

associated with learning [62]. Therefore the alterations in PSD-95 punctae in the ventral 

mPFC may reflect differences in social learning in ISO rats, consistent with the increased 

time spent in social interaction with aggressive rats by ISO rats.

Consistent with a role in the regulation of synaptic homeostasis, Arc may be important for 

synaptic stability [63], rather than increased synaptic strength, which may be more 

associated with PSD-95 expression [64]. It is worth noting that alterations in Arc and 

PSD-95 expression are not always congruent; Abad et al. [65] have observed change in Arc, 

but not PSD-95 expression after MDMA. Interestingly, Arc-activated neurons were recently 

shown by Gruene et al. [66] to have reduced spine density after fear conditioning, suggesting 

that Arc may weaken inactive synapses in activated neurons [66]. Increased Arc expression 

has been shown to increase AMPA receptor endocytosis and reduce AMPA receptor-

mediated excitability [67]. Thus, different patterns of Arc and PSD-95 expression observed 

here may reflect weakening of inactive synapses with normal social interactions, and 

synaptic strengthening during maladaptive social learning by ISO rats. The mPFC is 

emerging as a key structure regulating both memory consolidation [68] and social behavior 

[69], and in accordance with these two functional roles, mPFC dysfunction is noted a 

number of disorders that include social impairments, including schizophrenia, bi-polar 
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disorder, and autism spectrum disorder [70–72]. It is thus important to note that the increase 

in large PSD-95 punctae in the mPFC of ISO rats noted here was in response to maladaptive 

social learning; i.e. spending more time interacting with an aggressive stimulus rat.

5. Conclusions

The ESIT allows for experimental rat-induced social encounters while additionally allowing 

normal social behaviors to be monitored. Moreover, escape behavior can be used to assess 

preference for social interaction without confounds of learning deficits that may affect other 

preference tasks including CPP. Using the ESIT, we found that immediate early gene 

expression and changes in large PSD-95 punctae in the mPFC as well as social motivation 

and social behaviors depended not only on the rearing condition of the experimental rat, but 

also on the aggressiveness of the stimulus rat. Furthermore, the results presented here have 

implications for our understanding of how social isolation may increase the likelihood of 

remaining in an abusive social situation.
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Highlights

• Male rats were exposed to post-weaning social isolation or control 

conditions.

• A novel escapable social interaction test was used to assess social 

behavior or escape.

• Stimulus rats were either aggressive or non-aggressive.

• Characteristics of both the experimental and stimulus rats determined 

social and escape behavior.

• Characteristics of both the experimental and stimulus rats determined 

expression of immediate early gene and PSD-95 expression in the 

medial prefrontal cortex.
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Figure 1. 
The escapable social interaction test experimental design and apparatus. All rats were 

exposed to the apparatus for 3 trials, with either none of the trials, the last trial, or all 3 trials 

with a tethered stimulus rat that was either aggressive or non-aggressive (A). The apparatus 

consisted of 2 chambers, a larger social interaction chamber and a smaller escape chamber, 

separated by a door (B). In social trials the social interaction chamber contained a tethered 

stimulus rat that could not enter the escape chamber; the experimental rats had free access to 

the entire chamber (C).
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Figure 2. 
Representative photomicrographs of immunohistochemistry in the PL showing light 

microscope images of Arc (A) and c-Fos (B), and a confocal image of PSD-95 (C, green 

punctae are PSD-95, blue is DAPI). A no-primary control assay was performed with goat 

anti-mouse Alexa-Flour 488 secondary antibody and DAPI (D). The scale bars are 50 μm 

(A) and 10 μm (B).
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Figure 3. 
Escape behavior of rats in the escapable social interaction test. Rats were exposed to post-

weaning group housing (GRP) or social isolation (ISO), then either 1 trial (left) or 3 trials 

(right) of escapable social interaction with a non-aggressive or an aggressive stimulus rat. 

Values are means ± SEMs. ** p < 0.01, significant difference between Group and Isolate 

rats. # p < 0.05, significant difference between Group and Isolate rats. @ p < 0.05, 

significant difference between rats with Aggressive and Non-Aggressive stimulus rats. * p < 

0.05, Isolates with an Aggressive stimulus rat spent less time escaping than all other groups 

during Trial 3.
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Figure 4. 
Social behavior during 1 trial in the escapable social interaction test. Rats were exposed to 

post-weaning group housing (GRP) or social isolation (ISO), then 1 trial of escapable social 

interaction with a non-aggressive or an aggressive stimulus rat. ** p < 0.01, significant 

difference between GRP and ISO rats. Values are means ± SEMs.
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Figure 5. 
Social behavior during 3 trials in the escapable social interaction test. Rats were exposed to 

post-weaning group housing (GRP) or social isolation (ISO), then 3 trials of escapable social 

interaction with an aggressive or a non-aggressive stimulus rat. # p < 0.05, significant 

difference between GRP and ISO rats. @ p < 0.05, significant difference between rats with 

Aggressive and Non-Aggressive stimulus rats. * p < 0.05, Significant differences between 

rats with Aggressive and Non-Aggressive stimulus rats during Trial 3.
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Figure 6. 
Arc expression in subregions of the mPFC in rats exposed to post-weaning group housing 

(GRP) or social isolation (ISO) then 1 or 3 trials of escapable social interaction with an 

aggressive or a non-aggressive stimulus rat. Values are expressed as percentage of no-social 

controls (means ± SEMs). # p < 0.05, significant difference between rats with Aggressive 

and Non-Aggressive stimulus rats after 1 trial of escapable social interaction.
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Figure 7. 
Fos expression in subregions of the mPFC in rats exposed to post-weaning group housing 

(GRP) or social isolation (ISO), then 1 or 3 trials of escapable social interaction with an 

aggressive or a non-aggressive stimulus rat. Values are expressed as percentage of no-social 

controls (means ± SEMs). # p < 0.05, significant difference between rats with Aggressive 

and Non-Aggressive stimulus rats after 1 trial of escapable social interaction. * p < 0.05, 

ISO rats with Aggressive stimulus rats significantly different than those with Non-aggressive 

stimulus rats after 3 trials of escapable social interaction.
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Figure 8. 
PSD-95 expression in subregions of the mPFC in rats exposed to post-weaning group 

housing (GRP) or social isolation (ISO), then 1 or 3 trials of escapable social interaction 

with an aggressive or a non-aggressive rat. Values are expressed as percentage of no-social 

controls (means ± SEMs). # p < 0.05, ISO rats with Aggressive stimulus rats significantly 

different than those with Non-aggressive stimulus rats.

Goodell et al. Page 28

Behav Brain Res. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Goodell et al. Page 29

Table 1

Escape behavior during exposure to 3 trials of the apparatus (no-social controls). Values are means ± SEMs. 

There were no significant differences between groups, although there was a trend for an effect of Housing on 

Time per escape (p = .06). There were no significant differences between trials, thus data are collapsed across 

trials.

Group Isolate

218.11

Time spent in escape chamber (sec) 250.65 (9.66)

(14.54)

Time per escape (sec) 20.24 (1.24) 16.09 (1.12)

Entries into escape chamber 12.88 (0.51) 14.54 (0.89)
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Table 2

Expression of ARC, c-Fos, and PSD-95 (large punctae) in mPFC subregions of Group and Isolation reared rats 

exposed to 3 trials of the apparatus (no-social controls). Values are means ± SEMs of counts/mm2. There were 

no significant differences between groups.

Protein Anterior Cingulate Prelimbic Infralimbic

Group Isolation Group Isolation Group Isolation

ARC 94.3 (20.3) 100.7 (12.2) 35.2 (5.3) 27.9 (8.0) 15.3 (7.7) 15.1 (2.9)

c-Fos 30.1 (6.2) 38.9 (7.9) 24.9 (7.3) 36.8 (23.0) 18.5 (12.2) 13.7 (8.5)

PSD-95 367.8 (91.0) 498.2 (122.7) 148.11 (76.2) 126.3 (92.9) 131.8 (128.6) 140.2 (111.5)
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