Skip to main content
. Author manuscript; available in PMC: 2017 Nov 1.
Published in final edited form as: J Pain Symptom Manage. 2016 Sep 21;52(5):695–708.e4. doi: 10.1016/j.jpainsymman.2016.04.014

Table 2.

Parameter Estimates for the Lee Fatigue Scale and Lee Energy Scale GMM Latent Classes

Fatigue Lower Fatigue Class
(na = 153)
Higher Fatigue Class
(na = 244)
Parameter Estimates Means (SE)
Intercept 1.60*** (0.36) 3.90*** (0.22)
Linear slope −0.09 (0.12) 0.13 (0.141
Quadratic slope 0.00 (0.02) −0.02 (0.02)
Variances
Intercept 0.26 (0.20) 2.53*** (0.36)
Linear slope 0b 0.09*** (0.02)
Quadratic slope 0b 0b
Energy Higher Energy Class
(na = 127)
Lower Energy Class
(na = 270)
Parameter Estimates Means (SE)
Intercept 5.82*** (0.76) 4.35*** (0.16)
Linear slope 0.10 (0.37) −0.11 (0.14)
Quadratic slope 0.03 (0.06) 0.01 (0.04)
Variances
Intercept 1.72 (1.60) 1.07*** (0.21)
Linear slope 0b 0b
Quadratic slope 0b 0b
***

p < .001

a

Predicted class sizes based on their most likely class membership

b

Random intercepts model only. Random slopes were fixed at zero to assist in estimation

Abbreviations: GMM = growth mixture model, SE = standard error