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Abstract 
Hepatocellular carcinoma (HCC) is one of the leading 
causes of cancer-related deaths worldwide. Although 
recent advances in therapeutic approaches for treating 
HCC have improved the prognoses of patients with HCC, 
this cancer is still associated with a poor survival rate 
mainly due to late diagnosis. Therefore, a diagnosis 
must be made sufficiently early to perform curative 
and effective treatments. There is a need for a deeper 
understanding of the molecular mechanisms underlying 
the initiation and progression of HCC because these 
mechanisms are critical for making early diagnoses and 
developing novel therapeutic strategies. Over the past 
decade, much progress has been made in elucidating the 
molecular mechanisms underlying hepatocarcinogenesis. 
In particular, recent advances in next-generation 
sequencing technologies have revealed numerous 
genetic alterations, including recurrently mutated genes 
and dysregulated signaling pathways in HCC. A better 
understanding of the genetic alterations in HCC could 
contribute to identifying potential driver mutations and 
discovering novel therapeutic targets in the future. In this 
article, we summarize the current advances in research 
on the genetic alterations, including genomic instability, 
single-nucleotide polymorphisms, somatic mutations 
and deregulated signaling pathways, implicated in the 
initiation and progression of HCC. We also attempt to 
elucidate some of the genetic mechanisms that con
tribute to making early diagnoses of and developing 
molecularly targeted therapies for HCC.
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Core tip: Hepatocellular carcinoma (HCC) is one of the 
leading causes of cancer-related deaths worldwide. 
The poor survival rate is mainly due to late diagnosis of 
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HCC. Elucidating the molecular mechanisms underlying 
hepatocarcinogenesis is critical for making early 
diagnoses of and developing targeted therapies for HCC. 
Recent studies on HCC using deep sequencing have 
provided increasing lines of evidence indicating that 
genetic alterations play important roles in the initiation 
and progression of HCC, which are summarized in this 
article. We also attempt to elucidate some of the genetic 
mechanisms underlying HCC, which may help in making 
early diagnoses of and developing molecularly targeted 
therapies for this disease.
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carcinoma: An update. World J Gastroenterol 2016; 22(41): 
9069-9095  Available from: URL: http://www.wjgnet.
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INTRODUCTION
Hepatocellular carcinoma (HCC) is the sixth most 
common cancer worldwide and the third leading cause 
of cancer-related deaths[1]. HCC has a high incidence 
rate, and patients with this disease have a poor pro
gnosis. Rising incidence and mortality rates for HCC 
have been observed in most countries, particularly in 
eastern/south-eastern Asia and in Africa[2]. Currently, 
it is generally accepted that persistent hepatitis B 
virus (HBV) and hepatitis C virus (HCV) infections are 
the primary causes of chronic liver disease leading to 
liver cirrhosis and HCC. Aflatoxin B1 (AFB1) exposure 
and chronic alcohol abuse are also important risk 
factors for developing HCC[2]. Despite improved 
overall survival (OS) rates among patients with HCC 
due to advancements in surgical techniques, 5-year 
OS remains low at 18%[3]. The survival rate of HCC 
patients is poor because most patients cannot be 
treated by surgical resections or liver transplantation 
(LT), mainly due to late diagnosis. In addition, HCC 
is associated with a high recurrence rate, which 
exceeds 50% at 5 years after surgery[4]. Therefore, 
the early detection of HCC is urgently needed to 
perform curative and effective treatments and to 
improve long-term survival rates. There is a need for 
a deeper understanding of the molecular mechanisms 
underlying the initiation and progression of HCC 
because this understanding is critical to making early 
diagnoses and developing novel therapeutic strategies. 

It is widely accepted that carcinogenesis is a 
multistep process triggered by the accumulation 
of genetic alterations that activate different signal 
transduction pathways and drive the progressive 
transformation of normal cells into malignant cells[5,6]. 
The precise molecular mechanisms underlying the 
initiation and progression of HCC remain obscure. 
The phenotypic (morphological and microscopic) 
and genetic heterogeneity of HCCs also adds a 

new level of complexity to our understanding of 
hepatocarcinogenesis. However, despite many re
maining challenges, substantial progress has been 
made in this field. As in other solid cancers, numerous 
genetic alterations accumulate during the process of 
hepatocarcinogenesis. Genetic alterations accumulate 
slowly in a limited number of genes and chromosomal 
loci during the early preneoplastic stage and accelerate 
throughout dysplasia and into the development of 
HCC[7]. Previous studies have shown that the incidence 
of genetic alterations in HCC is relatively rare and 
limited to a subset of a few cancer-specific genes[8]. 
Encouragingly, functional genomic approaches that 
have been applied in recent years, such as array-
based comparative genomic hybridization, genome-
wide association studies (GWAS) and next-generation 
sequencing (NGS), have advanced our understanding of 
the genetic basis of HCC. Specifically, recent advances 
in NGS technologies have identified major cancer-
driving genes and associated oncogenic signaling 
pathways that play important roles in the initiation and 
progression of HCC.

It is known that HCC cells are extremely resistant 
to almost all conventional chemotherapeutic drugs, 
and until now, there have been only a limited number 
of chemotherapeutic agents available for the treat
ment of patients with HCC, especially those with 
advanced, unresectable cancer. Currently, oncologists 
are testing novel, molecularly targeted agents for 
treating HCC. Therefore, in an era of precision cancer 
medicine, monitoring clinically relevant genetic altera
tions is important for stratifying patients for targeted 
therapies[9].

The molecular mechanisms leading to the deve
lopment of HCC are extremely complicated and consist of 
prominent genetic and epigenetic alterations[10]. Although 
it has been widely accepted that epigenetic alterations 
also play a significant role in hepatocarcinogenesis, 
this topic is beyond the scope of this article. Instead, 
in this article, we focus on the current advances 
in understanding the genetic alterations, including 
genomic instability, single-nucleotide polymorphisms 
(SNPs), somatic mutations, and the deregulated 
signaling pathways implicated in the initiation and 
progression of HCC. We also attempt to elucidate some 
of the underlying genetic mechanisms, which could 
contribute to making early diagnoses of and developing 
molecularly targeted therapies for HCC. The impact of 
genetic alterations on hepatocarcinogenesis is presented 
in Figure 1.

GENOMIC INSTABILITY
Genomic instability (also known as “genetic instability” 
or “genome instability”) is defined as a high frequency 
of mutations within the genome, including changes in 
nucleic acid sequences, chromosomal rearrangements, 
or aneuploidy[11]. However, it remains unclear whether 
genomic instability is a cause or a consequence of 
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Figure 1  The impact of genetic alterations on hepatocarcinogenesis. Genetic alterations in hepatocarcinogenesis are connected to underlying etiologies, such as 
HBV, HCV, dietary AFB1 exposure and alcohol intake. Genomic instability accumulates slowly in a limited number of genes during the early preneoplastic stage, such 
as the development of cirrhosis, and the accumulation of genetic and epigenetic alterations accelerates throughout the formation of preneoplastic lesions, such as 
LGDNs and HGDNs, and into the development HCC; HBV: Hepatitis B virus; HCV: Hepatitis C virus; AFB1: Aflatoxin B1; LGDN: Low grade dysplastic nodule; HGDN: 
High grade dysplastic nodule; HCC: Hepatocellular carcinoma; CIN: Chromosomal instability; MSI: Microsatellite instability; TERT: Telomerase reverse-transcriptase; 
ARID1A: AT-rich interactive domain-containing protein 1A; ARID2: AT-rich interactive domain-containing protein 2; NFE2L2 or NRF2: Nuclear factor erythroid-derived 
2-like 2; KEAP1: Kelch-like ECH-associated protein 1; JAK1: Janus kinase 1; RPS6KA3: Ribosomal protein S6 kinase polypeptide 3.

Chronic HBV/HCV infection
aflatoxin

Metabolic disease

Alcohol intake

Chronic hepatitis

Cirrhosis

Dysplastic foci

LGDNs

HGDNs

HGDNs with microscopic
foci of HCC

Small HCC

Advanced HCC

Genomic instability

CIN MSI

Accumulation of genetic
and epigenetic alterations

Somatic mutations

TERT promoter

TP53

CTNNB1/AXIN1

ARID1A/ARID2

NFE2C2/KEAP

JAK1

Epigenetic
alterations

Signaling pathway 

alterations

Telomere maintenance

TP53/cell cycle regulation

Wnt/b-catenin

Chromatin remodeling

PI3K/AKT/mTOR

Oxidative stress

Niu ZS et al . Genetic alterations in HCC



9072 November 7, 2016|Volume 22|Issue 41|WJG|www.wjgnet.com

leading to an altered DNA copy number (aneuploidy)[21]. 
Structural CIN might involve only fractions of chro
mosomes, resulting in the gain or loss of chromosome 
fragments, translocations, inversions, amplifications, 
deletions and allelic loss [loss of heterozygosity 
(LOH)][22]. CIN is a hallmark of human cancer and 
is believed to contribute to tumorigenesis, tumor 
progression, and the development of therapy resis
tance[20]. In addition, it has been widely accepted 
that CIN is associated with clinical and pathological 
parameters in solid tumors, and CIN is one of the most 
frequent abnormalities in HCC. The characteristics 
of CIN and its possible correlations with clinical 
and pathological parameters in HCC patients are 
summarized in Table 1. In addition, we also review 
the role of micronuclei, which are indicators of CIN, 
and chromothripsis, which is a new class of complex 
catastrophic chromosomal rearrangement.

DNA copy number alterations (CNAs) are impor
tant subclasses of somatic mutations, with aberrant 
chromosomal regions of amplifications or deletions 
commonly associated with overexpressed oncogenes 
or the loss of tumor suppressor genes (TSGs)[23]. 

tumorigenesis. In recent years, accumulating evidence 
has strongly indicated that genomic instability could 
be a major driving force in tumorigenesis and the 
development of cancer[12-18]. In neoplasms, genomic 
instability can be broadly classified based on its origin 
as chromosomal instability (CIN) or, less commonly, 
microsatellite instability (MSI)[19]. Currently, there 
are many technologies that can be used to detect 
genomic instability, including karyotyping, flow 
cytometry, fluorescent in situ hybridization (FISH), 
array comparative genome hybridization (aCGH), 
high-density single-nucleotide polymorphism (SNP) 
arrays, the random amplified polymorphic DNA (RAPD) 
technique, and NGS technology. 

Chromosomal instability 
In cancer, aneuploidy is a consequence of an increased 
rate of whole-chromosome missegregation during 
mitosis, a process known as chromosomal instability 
(CIN)[20]. CIN usually involves both numerical and 
structural chromosomal changes. Numerical CIN is 
characterized by gross chromosomal abnormalities, 
such as the gain or loss of whole chromosomes, 

Table 1  The characteristics of chromosomal instability and possible correlations with clinical and pathological parameters in 
hepatocellular carcinoma discussed in this review

Chromosome Type of aberration Targeted genes Correlations with clinical and 
pathological parameters

Ref.

1q21 Gain CHD1L, CKS1B, JTB, SHC1 Progression of HCC Hyeon et al[43]

1q21-23 Gain - Early development Yim et al[40]

1q21-q22 Gain - Metastasis Wang et al[41]

1q21.1-q23.2 Gain BCL9, ARNT, TPM3, MUC1, NTRK1 Poorly differentiated HCV-associated 
HCC

Liu et al[42]

1q22-23.1 Gain CD1d Diagnosis and prognosis Zhang et al[44]

1q24.1-24.2 Gain MPZL1 Intrahepatic metastasis Jia et al[45]

8q24.21-24.22 Gain MYC, DDEF1, MLZE Prognosis (DFS and OS) Pedica et al[47]

8q21.13 Gain HEY1 Proliferation Jia et al[37]

8q22.3 Gain CTHRC1 Aggressive HCC Tameda et al[48]

8q24.3 Gain BOP1 Advanced-stage HCC, microvascular 
invasion and shorter DFS

Chung et al[50]

7q21.3 Gain SGCE, DYNC1I1, PEG10 Hepatocarcinogenesis Tsuji et al[51]

4q34.3-35 LOH ING2 Progression Zhang et al[56]

4q13.3-q35.2 LOH ADH4, ADH1C, ADH1A, ADH6 HBV- and AFB1-related HCC 
carcinogenesis

Qi et al[58]

8p LOH DLC1, CCDC25, ELP3, PROSC, 
SH2D4A, SORBS3

Early stage of hepatocarcinogenesis, 
poor outcomes

Tornillo et al[59]; Roessler et al[30]

8p22-p23 LOH MCPH1, KIAA1456, TUSC3, 
ZDHHC2

Metastasis and prognosis Peng et al[62]

D4S2964 LOH ARD1B, SEPT11 Prognosis (OS) Huang et al[63]

6q26-q27 LOH M6P/IGF2R Poor outcomes Jang et al[64]

HCC: Hepatocellular carcinoma; HBV: Hepatitis B virus; HCV: Hepatitis C virus; AFB1: Aflatoxin B1; DFS: Disease-free survival; OS: Overall survival; 
CHD1L: Chromodomain helicase/ATPase DNA binding protein 1-like; CKS1B: Cyclin-dependent kinases regulatory subunit 1; JTB: Jumping translocation 
breakpoint; SHC1: SHC-transforming protein 1; BCL9: B-cell CLL/lymphoma 9 protein; ARNT: Aryl hydrocarbon receptor nuclear translocator; TPM3: 
Tropomyosin alpha-3 chain; MUC1: Mucin 1; NTRK1: Neurotrophic tyrosine kinase receptor type 1; CD1d: Antigen-presenting glycoprotein; MPZL1: 
Myelin protein zero-like protein 1; MYC: Myelocytomatosis viral oncogene; DDEF1: Arf-GAP with SH3 domain, ANK repeat and PH domain-containing 
protein 1; MLZE: Human melanomaderived leucine zipper extra-nuclear factor; HEY1: YRPW motif protein 1; CTHRC1: Collagen triple helix repeat 
containing 1; BOP1: Block of proliferation 1; SGCE: Epsilon-sarcoglycan; DYNC1I1: Cytoplasmic dynein 1 intermediate chain 1; PEG10: Parternal express 
gene 10; ING2: Interferon regulatory factor 2; ADH4: Alcohol dehydrogenase 4; ADH1C: Alcohol dehydrogenase 1C; ADH1A: Alcohol dehydrogenase 1A; 
ADH6: Alcohol dehydrogenase 6; DLC1: Deleted in liver cancer 1; CCDC25: Coiled-coil domain-containing protein 25; ELP3: Longator complex protein 3P; 
ROSC: Proline synthetase co-transcribed bacterial homolog; SH2D4A: SH2 domain-containing protein 4A; SORBS3: Sorbin and SH3 domain containing 3; 
MCPH1: Microcephalin 1; KIAA1456: tRNA methyltransferase 9-like; TUSC3: Tumor suppressor candidate 3; ZDHHC2: DHHC-type containing 2; ARD1B: 
ARD1 homolog B (S. cerevisiae); SEPT11: Mus musculus septin 11; M6P/IGF2R: Mannose 6-phosphate/insulin-like growth factor 2 receptor.
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Thus, CNAs can be used as an effective method 
for identifying driver genes with causal roles in 
carcinogenesis[24]. Such alterations are related to 
certain types of cancer, including HCC, and it is possible 
that the identification of driver genes by means of 
cancer-specific CNAs could provide new insights for 
understanding the molecular mechanisms underlying 
the initiation and progression of HCC. In particular, 
the elucidation of the molecular roles of CNAs could 
contribute to developing clinically relevant prognostic 
and predictive markers and novel therapeutic targets 
for treating HCC, which might ultimately be used in 
personalized therapeutics. Currently, CNAs in HCC cells 
are usually detected via conventional methods, such 
as FISH, comparative genomic hybridization, aCGH 
and SNP arrays. Lately, NGS technology has been 
used to detect CNAs in several types of tumors[25-27]. 
These studies have suggested that NGS has obvious 
advantages in sensitivity, reliability and accuracy in 
detecting CNAs relative to the use of aCGH and SNP 
arrays. However, there is currently only one study that 
has reported NGS-based CNAs detected in HCC[28].

Although the distribution of aberrant chromosomal 
arms differs among HCCs, numerous studies have 
shown, using aCGH data and SNP arrays, that certain 
regions are frequently affected in HCC, including 
gains in chromosomes 1q, 5p, 6p, 7q, 8q, 17q, and 
20q and losses in 1p, 4q, 6q, 8p, 9p, 13q, 14q, 
16p-q, 17p, 21p-q, and 22q[28-33]. These findings 
reflect a high degree of CIN in HCC[34], contributing 
to hepatocarcinogenesis. In addition, some of these 
regions contain CNA-associated oncogenes or TSGs, 
such asc-myelocytomatosis viral oncogene (c-myc) 
(8q), cyclin A2 (4q), cyclin D1 (11q), retinoblastoma 
1 (Rb1) (13q), axis inhibition protein 1 (AXIN1) (16p), 
p53 (17p), mannose-6-phosphate receptor (IGFRII/
M6PR) (6q), p16 (9p), epithelial cadherin (E-cadherin) 
(16q), suppressor of cytokine signaling (SOCS) 
(16p), and phosphatase and tensin homolog (PTEN) 
(10q), which have been identified to be associated 
with HCC[35,36]. These findings could provide us with 
information critical for understanding the genetic 
events involved in the pathogenesis and progression of 
HCC. However, studies employing unbiased genome-
wide searches for HCC driver genes have been limited, 
particularly for genes related to cancer prognosis[30]. 
Hence, an integrated approach, such as a combined 
analysis of CNAs and gene expression, might be 
necessary to identify driver mutations.

A copy number gain at 1q is one of the most 
frequently detected alterations in HCC (58%-86%), 
and it has been suggested to be an early genomic 
event in the development of HCC[37]. Notably, the 
region 1q21 is the most frequent minimal amplifying 
region (MAR)[38]. A research group showed that 
1q21 was the most frequently amplified region in 
chromosome 1q; its amplification was detected in 
36 of 60 (60%) HCC specimens[39]. In addition, a 
gain in 1q21-23 was identified as a genomic event 

associated with the early development of HCC[40], 
and regional 1q21-q22 gains were found in 40% of 
advanced metastatic HCC cases[41]. In particular, a 
gain of 1q21.1-q23.2 was significantly associated 
with grades Ⅱ-Ⅳ HCC and moderately or poorly 
differentiated HCV-associated HCCs. 1q21.1-q23.2 
target genes encode five cancer genes: B-cell CLL/
lymphoma 9 protein (BCL9), aryl hydrocarbon receptor 
nuclear translocator (ARNT), tropomyosin alpha-3 
chain (TPM3), mucin 1 (MUC1), and neurotrophic 
tyrosine kinase receptor type 1 (NTRK1)[42]. These 
findings indicate that 1q21 might harbor many 
potential oncogenes, and the overexpression of these 
genes via amplification plays an important role in 
the pathogenesis of HCC[38]. In recent years, several 
research groups have focused on the identification 
and characterization of 1q21 target genes, such as 
chromodomain helicase/ATPase DNA binding protein 
1-like (CHD1L), cyclin-dependent kinase regulatory 
subunit 1 (CKS1B), jumping translocation breakpoint 
(JTB) and SHC-transforming protein 1 (SHC1), in the 
progression of HCC. Of these, CHD1L was shown to be 
amplified and overexpressed in HCC cases[39]. A recent 
study found no nuclear immunoreactivity for CHD1L in 
normal livers or dysplastic nodules (DNs). In contrast, 
CHD1L expression in cases of HCC was significantly 
associated with microvascular invasion, major portal 
vein invasion, and higher American Joint Committee 
on Cancer (AJCC) T stage values[43], suggesting that 
CHD1L expression might not be an early event in 
hepatocarcinogenesis, whereas it is an independent 
predictor of lower disease-free survival (DFS) rates 
in HCC patients after surgical resection. Given these 
findings, it is vital to elucidate the roles of candidate 
target genes within 1q21 amplicons in the initiation 
and progression of HCC, which could contribute to our 
understanding of HCC carcinogenesis.

In addition to chromosome 1q21, a novel potential 
oncogene antigen-presenting glycoprotein (CD1d) 
amplicon at 1q22-23.1 could be a potential target 
for this amplicon in HCC[44]. In addition, using an 
integrated analysis of copy number and expression 
profiling data, one recent study found that the 
recurrent region of the 1q24.1-24.2 amplicon spe
cifically targets the myelin protein zero-like protein 
1 (MPZL1) gene in HCC; the expression levels of 
MPZL1 were positively correlated with the intrahepatic 
metastasis of the HCC specimens[45].

Chromosome 8q is the second most frequen
tly amplified region in HCC. More specifically, 
8q24.21-24.22 is the most frequently amplified region 
in chromosome 8q, with amplification occurring in 
53.4% of samples and targeting the known oncogenes 
myelocytomatosis viral oncogene (MYC), Arf-GAP with 
SH3 domain, ANK repeat and PH domain-containing 
protein 1 (DDEF1), and human melanoma-derived 
leucine zipper extra-nuclear factor (MLZE)[45]. MYC has 
been identified as a central regulator of malignant 
transformations in early hepatocarcinogenesis[46], and 
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c-myc gene amplification has also been found to be 
significantly correlated with DFS and OS in patients 
with HCC after surgical resection[47]. These findings 
suggest that c-myc gene amplification plays an 
important role in the pathogenesis and progression 
of HCC. Additionally, three other recurrent amplified 
regions at chromosome 8q have been found: 8q21.13, 
8q22.3, and 8q24.3. The 8q21.13 region targets the 
hairy/enhancer-of-split related with YRPW motif protein 
1 (HEY1), and functional experiments have shown 
that the enhanced expression of HEY1 significantly 
promotes the in vitro and in vivo proliferation of 
HCC cells[37]. The 8q22.3 region targets two genes: 
collagen triple helix repeat containing 1 (CTHRC1) 
and grainy head-like transcription factor 2 (GRHL2). 
CTHRC1 has the potential to be a new biomarker of 
aggressive HCC[48], while a gain in GRHL2 was found 
to be associated with an early recurrence of HCC[49]. 
The 8q24.3 region contains several genes that could 
be functionally related to HCC, including scribble 
(SCRIB) and block of proliferation 1 (BOP1). It has 
been reported that increased expression of BOP1 is 
associated with advanced-stage HCC, microvascular 
invasion and lower DFS[50]. 

Other amplifications include the 7q21.3 locus, 
which might contribute to the development or 
progression of HCC. Epsilon-sarcoglycan (SGCE), 
cytoplasmic dynein 1 intermediate chain 1 (DYNC1I1) 
and paternal express gene 10 (PEG10) have been 
identified as putative oncogenes located within the 
amplified 7q21.3 locus in HCC[51,52]. These results 
indicate that the amplification of 7q21.3 might be 
implicated in hepatocarcinogenesis.

The LOH is a marker of CIN that involves the 
loss of one of the two alleles at one or more loci 
in a heterozygote[53]. The LOH is one of the main 
mechanisms for the inactivation of TSGs, and the 
identification and characterization of LOHs could 
provide potential means for finding HCC-related TSGs. 
The LOH is frequently observed on chromosomes 1p, 
4q, 6q, 8p, 9p, 10q, 11p, 13q, 14q, 16q, and 17p 
and is commonly observed in HCC patients[54,55]. Of 
these, losses on 4q and 8p are the most frequent 
chromosomal alterations in HCC.

The LOH at 4q has been reported to be strongly 
correlated with increased in alpha-fetoprotein 
(AFP) levels in HCC[56], and it has been found to be 
significantly more frequently in poorly differentiated 
HCCs[57]. These results suggest that the inactivation of 
TSGs on chromosome 4q might be a late progression 
event that occurs after malignant transformation. Using 
a high-throughput SNP array, 4q24-26 and 4q34.3-35 
were found to be hot regions of chromosome 4q in 
HCC[56]. Three TSGs, including nei endonuclease VIII-
like 3 (NEIL3), interferon regulatory factor 2 (IRF2) 
and inhibitor of growth family member 2 (ING2), are 
located on chromosome 4q34.3-35, but only ING2 is a 
potential TSG associated with HCC[48]. In addition, the 
loss of 4q13.3-q35.2 is related to both HBV- and AFB1-

related HCC[58], suggesting that genetic abnormalities 
in 4q13.3-q35.2 might play a role in both HBV- 
and AFB1-related HCC carcinogenesis. Four TSGs, 
including alcohol dehydrogenase 4 (ADH4), alcohol 
dehydrogenase 1C (ADH1C), alcohol dehydrogenase 
1A (ADH1A), and alcohol dehydrogenase 6 (ADH6), 
are located in this region[58].

The LOH on chromosome 8p is one of the most 
common alterations in HCC. A group of researchers 
found that allelic losses on 8p were observed in high-
grade dysplastic nodules (HGDNs)[59], indicating 
that these losses might occur in the early stage of 
hepatocarcinogenesis. Chromosome 8p is rich in 
candidate and validated TSGs, with a cluster of six 
genes, including deleted in liver cancer 1 (DLC1), 
coiled-coil domain-containing protein 25 (CCDC25), 
elongator complex protein 3 (ELP3), proline synthetase 
co-transcribed bacterial homolog (PROSC), SH2 
domain-containing protein 4A (SH2D4A), and sorbin 
and SH3 domain containing 3 (SORBS3), located 
on chromosome 8p that have been deleted in HCC 
samples from patients with poor outcomes[30]. Notably, 
numerous studies have revealed a high frequency for 
LOH on 8p22-p23 in HCC[60,61], and deletions of alleles 
on 8p22-p23 have been found to be associated with 
metastasis and poor prognoses for HCC patients[56]. 
Four specific genes - microcephalin 1 (MCPH1), 
tRNA methyltransferase 9-like (KIAA1456), tumor 
suppressor candidate 3 (TUSC3), and zinc finger, 
DHHC-type containing 2 (ZDHHC2) - are located in 
this region. Of these genes, a LOH for ZDHHC2 might 
contribute to the early metastatic recurrence of HCC 
after LT[62]. These findings suggest that 8p22-p23 
harbors numerous TSGs that play important roles 
in the progression of HCC, which could contribute to 
assessing the risk of metastasis and recurrence in HCC 
patients.

In addition, a few recent studies have investigated 
the associations between LOH for new TSGs and the 
clinicopathological features of HCC. For example, LOH 
in the genes ARD1 homolog B (S. cerevisiae) (ARD1B) 
and Mus musculus septin 11 (SEPT11) were found to 
be significant prognostic factors for poor OS[63], and 
LOH in mannose 6-phosphate/insulin-like growth factor 
2 receptor (M6P/IGF2R) was found to be predictive of 
poor clinical outcomes in surgically resected primary 
HCC patients[64]. 

In summary, the aforementioned findings provide 
valuable information that could contribute to our 
understanding of HCC carcinogenesis. However, there 
are still many important LOH regions that must be 
explored with regard to the genes that are involved 
in carcinogenesis and their biological and clinical 
implications[63].

MN are extra-nuclear bodies that contain damaged 
chromosome fragments and/or whole chromosomes 
that are not incorporated into the nucleus after cell 
division[65]. The frequency of MN is higher in tumor cells 
and cells with defective DNA damage repair systems or 
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disrupted cell cycle checkpoint machinery; hence, MN 
could serve as indicators of CIN[66,67]. In one study, the 
micronucleus index was found to gradually increase 
along with the progression of hepatocarcinogenesis. 
HCCs showed the highest micronucleus index values, 
which were significantly greater than those of 
HGDNs and DNs with HCC foci[68]. In another study, 
a progressively increasing number of MN were also 
documented in the transition from cirrhotic nodules 
(CNs) to large regenerative nodules (LRNs), DNs and 
HCC; MN were significantly more frequent in DNs than 
in CNs or LRNs[69]. These results suggest that CIN 
might occur in the early stage of hepatocarcinogenesis, 
and HCC cells generally have acquired chromosomal 
abnormalities; therefore, the degree of CIN could 
increase during the progression of HCC.

Recently, chromothripsis has been identified using 
whole-genome sequencing(WGS) as a new class of 
complex catastrophic chromosomal rearrangement. 
Chromothripsis is a single cellular crisis in which a 
chromosome is broken and reassembled by a DNA 
repair mechanism, resulting in a large number of 
rearrangements clustered in a chromosomal region[70]. 
Although chromothripsis appears to be relatively 
rare, it can be an extreme outcome of a mutagenic 
mechanism that could be widespread in human 
cancers[71]. Furthermore, chromothripsis could affect 
cancer gene function and thereby have a major 
impact on the progression, prognosis, and therapeutic 
response of cancer[72]. To date, we are aware of only 
one study that investigated the role of chromothripsis 
in the incidence of HCC. In this study, chromothripsis 
and CIN were found to recurrently affect chromosomal 
arms 1q and 8q to create gene amplifications, 
suggesting that chromothripsis might contribute to 
hepatocarcinogenesis[33]. It seems that more attention 
should be paid to this concept.

MSI
MSI is the result of defects in mismatch repair 
genes that leads to the expansion and contraction 
of short nucleotide repeats called microsatellites[18]. 
Microsatellites are simple tandem repeats that are 
present at millions of loci in the human genome. MSI 
can result in the inactivation of TSGs or can disrupt 
other noncoding regulatory sequences, thereby playing 
a role in carcinogenesis[73]. MSI has been described 
in cirrhosis, mainly when cirrhosis is associated 
with an HBV infection[74,75]. Recent limited data are 
available on the incidence of MSI in HCCs. Several 
studies have suggested that MSI might play a minor 
role in hepatocarcinogenesis[76,77]. Furthermore, MSI 
is not implicated in the pathogenesis of a subset of 
HCCs affecting elderly patients without chronic liver 
disease[78]. Nevertheless, two studies have shown 
that high levels of MSI (MSI-H > 30%) were signifi
cantly associated with more aggressive histological 
tumor features and shorter median delays before 

recurrence[79], and the degree of MSI was significantly 
correlated with the poor differentiation and portal vein 
involvement of HCC[80]. These findings suggest that 
MSI could play a minor role in hepatocarcinogenesis 
and might be associated with the progression of HCC 
in patients with a background of chronic hepatitis and/
or cirrhosis.

SNPS
SNPs are the most common form of human genetic 
polymorphisms that can contribute to an individual’s 
susceptibility and progression to cancer. Accumulating 
evidence suggests an association between SNPs in 
certain genes and HCC susceptibility[81]. GWAS have 
emerged as a new approach for identifying less 
penetrant cancer susceptibility alleles that might be 
associated with the initiation and progression of cancer. 

Recent GWAS have identified numerous SNPs 
associated with the risk of HCC (Table 2); however, most 
findings have been both conflicting and inconsistent. 
For example, three researchers investigated whether 
an SNP (rs17401966) of kinesin-like factor 1 B 
(KIF1B) might be associated with the risk of HBV-
related HCC in Chinese individuals. One study found 
that it was[82], but another study found that it was 
not[83]. A third study found that KIF1B alone was not 
associated with the risk but that the gene-environment 
interaction between the KIF1B variant and alcohol 
consumption was associated with the risk of HCC[84]. 
These inconsistent findings could be attributed to a 
lack of controlling for confounding variables, such 
as epidemiological and environmental risk factors 
in the first two studies. Therefore, it is important 
to evaluate the role of KIF1B rs17401966 in the 
genetic susceptibility to HCC and gene-environment 
interactions. Interestingly, three studies found that 
KIF1B rs17401966 was not associated with the 
development of HBV-related HCC in Thai, Japanese, 
and Saudi Arabian patients[85-87], and two other studies 
identified that KIF1B rs17401966 exerted protective 
effects against the susceptibility to HBV-related 
HCC in Chinese patients[88,89]. These inconsistencies 
might partly be because different ethnicities or study 
populations have distinct genetic architectures. In 
another example, three GWAS identified that MHC 
class Ⅰ polypeptide-relatedsequence A (MICA) and DEP 
domain containing 5 (DEPDC5) SNPs were strongly 
associated with HCC in Japanese populations with 
chronic HCV infections[90-92]. However, two other studies 
found that neither DEPDC5 rs1012068 nor MICA 
rs2596542 was associated with HCC in Europeans with 
chronic HCV infections[93] or in Chinese populations 
with chronic HBV infections[94]. The discrepancies 
among these studies might be due to different study 
designs[93] or to differences in the different racial/
ethnic groups. The inconsistent findings for HBV- 
and HCV-related HCC suggest that whether SNPs in 
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the MICA and DEPDC5 loci affect the susceptibility to 
HCC is subject to race/ethnicity-specific differences. 
Undoubtedly, the same variability also applies to all 
the other HCC-related SNPs, which could be explained 
by gene-gene and gene-environment interactions 
contributing to the inconsistent findings in different 
racial or ethnic groups that have been studied[95].

Taken together, the available results show that 
most findings related to the SNPs detected in GWAS 
on HCC can be problematic to replicate due to 
differences among different racial/ethnic groups, 
different study designs, and genetic heterogeneity. 
GWAS have so far identified numerous SNPs asso
ciated with HCC susceptibility[90-100]; however, most of 
these investigations were limited by relatively small 
sample sizes or the inclusion of only one racial/ethnic 
group. The inconsistency of these findings could be 
attributed to many factors, such as a lack of control 
for confounding variables, different study designs 
or the different racial/ethnic groups in the studies. 
Given the high variability/inconsistency in findings 
related to SNPs found in GWAS, at least to date, we 
cannot recommend the continued study of SNPs in 
relation to HCC as a means for identifying reliable 
markers of the initiation and progression of HCC. 
Therefore, further well-designed investigations with 
larger sample sizes and multiple races/ethnicities 
are warranted to elucidate the impact of SNPs on 
susceptibility to HCC. 

SOMATIC MUTATIONS IN HCC
Similar to any other cancer, HCCs consist of highly 
heterogeneous tumors with multiple genetic alte
rations, particularly somatic mutations. Recent 

advances in NGS technologies, such as WGS or whole-
exome sequencing (WES), have enabled us to identify 
global driver genes related to the development of 
HCC. In addition to confirming the high frequency 
of somatic mutations in tumor protein p53 (TP53), 
catenin beta 1 (CTNNB1) and AXIN1, recent studies 
applying deep-sequencing analyses have identi
fied numerous novel mutations in genes, such as 
mutations in genes related to chromatin remodeling 
(ARID1A and ARID2), oxidative stress (NFE2L2 and 
KEAP1), RAS/MAPK signaling (RPS6KA3), and the 
janus kinase/signal transducers and activators of the 
transcription (JAK/STAT) pathway (JAK1)[28,101-103]. 
With the exception of ARID1A (10%-16%), most of 
these newly identified driver genes are mutated in 
less than 10% of HCC cases. It is encouraging that 
recurrent telomerase reverse transcriptase (TERT)-
promoter mutations have been recently identified 
as the most frequent molecular alterations in HCC 
and as the first gene that is recurrently mutated in 
cirrhotic preneoplastic lesions[104,105]. There is abundant 
evidence to support the notion that TERT, TP53, 
CTNNB1, ARID1A and AXIN1 are recurrently mutated 
genes involved in HCC[28,102,103,106-111]. Specifically, driver 
mutations in TERT, TP53, and CTNNB1 are among 
the most frequent genetic alterations that have been 
defined as additive events in the development of HCC, 
irrespective of etiological background[28,106-108,112-115].

In this section, we briefly summarize previously 
well-known driver mutations and some novel gene 
mutations discovered in NGS studies. CTNNB1 and 
AXIN1 are subsequently reviewed in relation to 
the Wnt/β-catenin signaling pathway. The role and 
characteristics of frequent recurrent somatic mutations 
in HCC and their associations with clinical pathological 

Table 2  Summary of single-nucleotide polymorphisms associated with the risk of hepatocellular carcinoma identified from genome-
wide association studies

Related gene SNP Etiology of HCC Odds ratio (95%CI) P  value Ref.

TPTE2 rs2880301 HBV/HCV, Republic of Korea 0.27 (0.19-0.39) 1.74 × 10-12 Clifford et al[96]

KIF1B rs17401966 HBV, China 0.61 (0.55-0.67) 1.70 × 10-18 Zhang et al[82]

KIF1B rs17401966 HBV interacting with alcohol 
consumption, China

2.36 (1.49-3.74) Chen et al[84]

GRIK1 rs455804 HBV, China 0.84 (0.80-0.89) 5.24 × 10-10 Li et al[94]

HLA-DQA1/DRB1 rs9272015 HBV, China 1.28 (1.22-1.35) 1.13 × 10-19 Li et al[94]

MICA rs2596542 HCV, Japan 1.39 (1.27-1.52) 4.21 × 10-13 Kumar et al[91]

HLA-DQ rs9275319 HBV, China 1.51 (1.38-1.66) 8.65 × 10-19 Jiang et al[97]

DEPDC5 rs1012068 HCV, Japan 1.75 (1.51-2.03) 1.27 × 10-13 Miki et al[90]

DDX18 rs2551677 HBV/HCV, Republic of Korea 3.38 (2.07-5.53) 1.41 × 10-10 Clifford et al[96]

FasL rs763110 HBV/HCV, Egypt  1.970 (1.250-3.105) 0.003 Khalifa et al[98]

DLC1 rs3816747 HBV, China 0.486 (0.245‑0.962)/
0.51 (0.267‑0.974)

0.037/0.039 Xie et al[99]

STAT4 rs7574865 HBV, China 1.22 (1.15-1.29) 1.66 × 10-11 Jiang et al[97]

FOXP3 rs3761549 HBV, China 1.32 (1.03-1.70) 0.030 Chen et al[100]

SNP: Single-nucleotide polymorphism; HCC: Hepatocellular carcinoma; GWAS: Genome-wide association studies; HBV: Hepatitis B virus; HCV: 
Hepatitis C virus; TPTE2: Transmembrane phosphoinositide 3-phosphatase and tensin homolog 2; KIF1B: Kinesin-like factor 1 B; GRIK1: Glutamate 
receptor, ionotropic, kainate 1; HLA-DQA1/DRB1: Major histocompatibility complex, class II, DQ alpha 1, DR beta 1; MICA: MHC class I polypeptide-
relatedsequence A; HLA-DQ: Major histocompatibility complex class II antigen; DEPDC5: DEP domain containing 5; DDX18: DEAD (Asp-Glu-Ala-Asp) 
box polypeptide 18; FasL: Fas ligand; DLC1: Deleted in liver cancer 1; STAT4: Signal transducer and activator of transcription 4; FOXP3: Forkhead box P3. 
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parameters are summarized in Table 3.

TP53
TP53 is a key molecule in the TP53/cell cycle signaling 
pathway. The mutation or deletion of the p53 gene, 
which plays an important role in cell growth, division 
and apoptosis by acting as a transcription factor or by 
forming complexes with other proteins, is one of the 
most frequent genetic changes detected in HCC[116,117]. 
Strikingly, TP53 mutation rates in HCC vary in different 
geographic areas, reflecting differences in etiological 
agents and susceptibility factors[118]. The TP53 mutation 
in HCC occurs most commonly in sub-Saharan 
Africa and Southeast Asia, where the combination 
of widespread dietary AFB1 exposure and endemic 
hepatitis B fosters a high rate of mutagenesis in the 
liver[119]. In these areas, AFB1 is a particularly common 
mutagen of TP53, causing G:C to T:A transversions at 
the third base of codon 249 in TP53 (R249S), and the 
rate of TP53 R249S mutations can be accelerated in 
the presence of a viral infection[120,121]. This mutation 
was not detected in HCC cases from non-aflatoxin-
contaminated areas[119]. 

Accumulating evidence shows that the HBV X (HBx) 
protein is a multifunctional regulator that plays a 
crucial role in HBV-associated hepatocarcinogenesis[122]. 
However, the potential synergistic effects between 
the HBx protein and TP53 mutations during hepa
tocarcinogenesis remain unclear. Several studies have 
suggested that the HBx protein affects the function of 
the P53 protein and contributes to the development 
of HCC. For example, complete HBx sequences were 
often associated with the presence of TP53 R249S 
mutations[123], and HBx was found to be associated 
with TP53 R249S mutations in HCC patients with no 
documented history of cirrhosis[124]. In addition, HBx 

mutations were found to interact with TP53 R249S 
mutations in altering cell proliferation and chromosome 
stability in hepatocytes[125]. HBx has also been shown 
to bind to p53 and to block p53-sequence-specific 
DNA-binding and p53-dependent transcription, 
ultimately blocking p53-mediated apoptosis[126]. 
HBx and TP53 mutations have been suggested to 
synergistically contribute to the formation of HCC in 
animal models[127]. These findings suggest that HBx is 
involved in the etiology of TP53 mutations during the 
molecular pathogenesis of HCC.

Persistent HCV infections could play a role in 
hepatocarcinogenesis; however, the mechanisms 
underlying this process remain unclear. A possible 
mechanism of HCV-induced oncogenesis seems 
to result from the interference of HCV proteins in 
the intracellular signal transduction processes via a 
mechanism including the dysregulation of cell cycle 
control[128]. In the presence of DNA damage, the P53 
protein can be activated, promoting the expression 
of several important genes involved in cell cycle 
arrest, DNA repair, and apoptosis[129]. Accordingly, 
whether HCV infections occur concurrently with other 
genomic alterations, such as TP53 mutations, in 
hepatocarcinogenesis is of interest. Currently, several 
studies have provided some evidence for the direct 
action of HCV-related proteins on TP53. For example, 
HCV infection impairs the function of P53 through the 
overexpression of 3β-hydroxysterol delta 24-reductase 
(DHCR24), which up-regulates the interaction between 
P53 and MDM2 (mouse double minute 2 homolog, also 
known as HDM2, a P53-specific E3 ubiquitin ligase) 
in the cytoplasm and suppresses P53 acetylation in 
the nucleus[130]. Additionally, a novel TP53 mutation, 
616ins14del1 (14-1 microindel), has been detected 
in a case of HCC associated with an HCV infection, 

Table 3  The characteristics of frequent recurrent somatic mutations and their correlations with clinical and pathological parameters 
in hepatocellular carcinoma based on deep-sequencing analyses

Gene Altered pathway Correlations with clinical and pathological parameters Ref.

TERT promoter Telomere stability Hepatocarcinogenesis Nault et al[104]; Yang et al[165]

TP53 Cell cycle control Under debate: an early event in the context of aflatoxin 
exposure and chronic HBV infection, or it might not play a 

role in carcinogenesis

Qi et al[136]

Poor prognosis El-Din et al[117]

Cleary SP et al[138]

CTNNB1 Wnt/β-catenin signaling Under debate: a late event for malignant progression or 
earlier during hepatocarcinogenesis

Park et al[253]; Vilarinho et al[256]

Under debate: worse outcomes or better outcomes Tornesello et al[263]; Wang et al[269]

AXIN1 Wnt/β-catenin signaling Hepatocarcinogenesis and progression Guan et al[242]

ARID1A Chromatin remodeling Initiation and progression of HCC Schulze et al[106]

ARID2 Chromatin remodeling Initiation and progression of HCC Totoki et al[107]

NFE2L2 Oxidative stress Hepatocarcinogenesis and progression Nault JC et al[105]

KEAP1 Oxidative stress Hepatocarcinogenesis and progression Schulze et al[106]

JAK1 JAK/STAT pathway Hepatocarcinogenesis Kan et al[28]

RPS6KA3 RAS/MAPK signaling Hepatocarcinogenesis Guichard et al[102]

TERT: Telomerase reverse-transcriptase; ARID1A: AT-rich interactive domain-containing protein 1A; ARID2: AT-rich interactive domain-containing protein 
2; NFE2L2/NRF2: Nuclear factor erythroid-derived 2-like 2; KEAP1: Kelch-like ECH-associated protein 1; JAK1: Janus kinase 1; RPS6KA3: Ribosomal 
protein S6 kinase polypeptide 3.
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providing evidence that HCCs characterized by HCV 
infections are typically associated with the mutational 
inactivation of the TP53 gene[131]. In addition, genetic 
changes in TP53 have been detected in non-neoplastic 
lesions linked to chronic HCV infections[132]. Collectively, 
the aforementioned findings suggest that HCV is 
implicated in the etiology of TP53 mutations during 
hepatocarcinogenesis. However, these results were 
obtained in vitro using cell culture models or animal 
models, and the synergistic effects of TP53 mutations 
and HCV infections in human hepatocarcinogenesis 
must be further investigated.

A TP53 mutation has been identified as one of the 
most frequent molecular alterations in HCC; however, 
the role of TP53 mutations in hepatocarcinogenesis 
remains debatable. Strikingly, a missense mutation 
in exon 7 (R249S) of p53 has been found specifically 
in HCC patients from regions with high levels of AFB1 
exposure[133]. Several studies have suggested that 
TP53 R249S mutations are likely to occur as early 
events in association with aflatoxin exposure and 
chronic HBV infection[134-136]. A recent study showed 
that TP53 R249S mutations are an important factor in 
HCC carcinogenesis in Brazil, where aflatoxin exposure 
levels are high[137]. In contrast, TP53 mutations can 
occur as a late event in carcinogenesis without a 
typical mutational pattern in areas with low levels of 
AFB1 intake[135]. Furthermore, another study showed 
that TP53 R249S mutations might not play a role in the 
carcinogenesis of HCC in Egypt, where HCV infections 
are highly prevalent and are a major risk factor for the 
development of HCC[117]. Taken together, these findings 
show that TP53 mutations could play an important 
role in hepatocarcinogenesis in populations with 
chronic HBV infections, especially in those exposed 
to excessive levels of AFB1. It follows that these 
inconsistent and even conflicting results regarding the 
role of TP53 mutations in hepatocarcinogenesis might 
primarily be due to heterogeneity in the geographic 
and etiological backgrounds of the cases studied.

Recent reports have shown that TP53 mutations 
can be used to predict HCC. For example, mutations in 
TP53 were found to be associated with a significantly 
higher rate of recurrence and a lower DFS[138]. In 
addition, two systematic reviews concluded that TP53 
mutations were associated with poor OS, relapse-
free survival rates (RFS), and DFS in HCC patients, 
with similar results found between patients with HBV 
infections and HCV infections[139,140]. However, a recent 
study showed that TP53 mutations were associated 
with shorter survival time only in cases of HBV-related 
HCC, although R249S hot spot mutations were not 
associated with survival rates in patients of European 
origin with HBV-related HCC[141]. In contrast, another 
study found that TP53 mutations, particularly the 
hot spot mutations R249S and V157F, regardless of 
sample origin, were associated with poor prognoses 
in patients with HCC[142]. This finding was echoed by 

another recent study on the relationship between TP53 
mutations and the recurrence of HCC in patients with 
HCC of various etiologies[143]. Taken together, these 
inconsistent and even conflicting findings might be 
largely due to the use of different racial and regional 
groups as well as other possible contributing factors, 
including the small sample sizes of the studies. 
Therefore, these confounding factors should be con
sidered when evaluating the prognostic value of TP53 
mutations in HCC. 

Increasing evidence suggests that the stabilization 
of mutant p53 in tumors is crucial for its oncogenic 
activities, while the depletion of mutant p53 attenuates 
the malignant properties of cancer cells. Thus, mutant 
p53 is an attractive drug target for cancer therapies[144].

Telomerase reverse-transcriptase
The human telomerase reverse transcriptase (hTERT) 
gene encodes a rate-limiting catalytic subunit of 
telomerase, which maintains the length of telomeric 
DNA and chromosomal stability[145]. hTERT is the major 
determinant of telomerase activity, and it plays a key 
role in cellular immortalization and the development 
and progression of human cancers. The reactivation 
of telomerase activity is observed in approximately 
90% of human cancers, enabling cells to overcome 
replicative senescence and to escape apoptosis, which 
are fundamental steps in the initiation of malignant 
transformation[146,147]. The precise mechanism behind 
the reactivation of telomerase activity in cancer 
remains elusive, but it likely involves multiple changes 
that occur during the progression of cancer, including 
mutations and chromosomal rearrangements[148].

In two recent studies, researchers identified mu
tations that created new binding sites in the TERT 
promoter for particular transcriptional regulators, such 
as E-twenty-six (ETS)/ternary complex factors (TCFs) 
factors, and resulted in increased transcriptional 
activity at the TERT promoter, which could in turn 
lead to the increased expression of the gene and the 
endless cell division characteristic of cancer cells[149,150]. 
These findings suggest that TERT promoter mutations 
could be potential mechanisms for TERT reactivation 
in cancer cells. In more recent studies, investigators 
found that two highly recurrent point mutations (G228T 
and G250T) in the TERT promoter might be among 
the fundamental mechanisms underlying telomerase 
reactivation/expression in several types of human 
cancers[149,151-154]. 

The molecular mechanisms involved in telome
rase reactivation in HCC have been only partially 
elucidated, with the most important being TERT 
promoter mutations[104]. TERT amplification and the 
recurrent integration of HBx into the TERT gene 
promoter are alternative explanations for telomerase 
reactivation[107,155-157]. In particular, TERT promoter 
mutations were found to be associated with CTNNB1 
mutations in HCC[104,106,107,158], suggesting that 
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TERT promoter mutations and the deregulation of 
the Wnt/β-catenin pathway could interact in the 
malignant transformation of hepatocytes. Overall, 
the identification of TERT promoter mutations in 
association with HCC has provided new insights into 
telomerase reactivation and telomere maintenance in 
hepatocarcinogenesis[148]. Despite these compelling 
findings, the functional role of TERT promoter 
mutations in HCC remains unclear and must be further 
explored. 

To date, recurrent somatic mutations in the TERT 
promoter have been identified as the most frequent 
non-coding mutations in multiple cancer types, 
suggesting that TERT promoter mutations are driver 
mutations in these cancers[154,159,160]. The frequency of 
TERT promoter mutations in HCC varies substantially 
across the different geographical regions studied. For 
example, cases of HCC with TERT promoter mutations 
have been reported from the United States[161], 
Europe[104,158,162], Africa[163], and East Asia (except for 
Japan)[103,104,164-166], with mutation frequencies of 44%, 
47%-59%, 53%, and 20.7%-38.8%, respectively. 
These data indicate that TERT promoter mutations 
are less frequent among Asian patients with HBV-
related HCC than among those with HCV-related 
HCC. The lower rate of TERT promoter mutations 
in patients with HBV-related HCC might be partially 
explained by the frequent insertion of HBV DNA in the 
TERT promoter, which is known to induce telomerase 
transcription[103,155]. These findings suggest that 
various etiological factors could be involved in different 
mechanisms that preserve telomeres during the 
carcinogenesis of HCC[164]. Despite these differences, 
TERT promoter mutations are currently considered 
the most frequent somatic genetic alterations in HCC 
regardless of patients’ geographical origin[163,167]. In 
the past few years, many investigators have explored 
the role of TERT mutations in HCC. In a recent study, 
TERT promoter mutations were found in 6% of low-
grade dysplastic nodules (LGDNs), 19% of HGDNs, 
61% of early HCCs and 42% of small and progressed 
HCCs. However, mutations in other classic HCC driver 
genes (i.e., CTNNB1, TP53, ARID1A, or ARID2) were 
not identified in LGDNs, HGDNs, or early HCC[105]. In 
another recent study, TERT mutations were found to 
occur at an early stage of tumorigenesis. Specifically, 
they were observed in 57% of preneoplastic 
lesions and in 30% of stage I HCCs[165], indicating 
that TERT promoter mutations occur early during 
malignant transformation and persist throughout 
tumor progression. These findings have been further 
confirmed by two recent studies using exome or 
DNA sequencing of liver tumor samples in which 
TERT promoter mutations occurred early during 
hepatocarcinogenesis[106,164]. In addition, when hTERT 
mRNA was measured via real-time quantitative RT-
PCR, the hTERT mRNA levels were found to be 
increased in association with the progression of 

hepatocarcinogenesis, and most HGDNs strongly 
expressed hTERT mRNA at levels similar to those in 
HCC samples[168]. In a recent study, the authors found 
that the activation and expression of hTERT played 
extremely critical roles in the incidence and progression 
of HCC[169]. Previous studies also showed that telomere 
shortening and telomerase reactivation occurred in DNs 
during the early stages of hepatocarcinogenesis[163]. 
Indeed, alterations in telomerase restriction fragment 
(TRF) length, telomerase activity (TA), and hTERT 
and hTR expression were identified in both the early 
and late stages of hepatocarcinogenesis[170]. These 
findings demonstrate that telomere status is a factor in 
hepatocarcinogenesis.

hTERT mRNA has been reported to be detectable 
in the serum of patients with HCC, and it has been 
reported that the sensitivity and specificity for 
serum hTERT mRNA in detecting HCC were 77.14% 
and 100%, respectively, which are higher than the 
sensitivity and specificity for AFP in the early detection 
of HCC[171]. In another report, the sensitivity/specificity 
for serum hTERT mRNA in diagnosing HCC was found 
to be 90.2%/85.4%, which is superior to using alpha-
fetoprotein (AFP), AFP-L3, and des-gamma-carboxy 
prothrombin (DCP) in the diagnosis of HCC at an early 
stage[172]. Therefore, measuring serum hTERT mRNA 
levels might serve as a potential diagnostic tool for 
HCC.

Taken together, these findings suggest that TERT 
promoter mutations are among the earliest genetic 
alterations in hepatocarcinogenesis, occurring at 
preneoplastic stages and behaving as a “gatekeeper” 
during the malignant transformation sequence[173,174].

Considering that TERT promoter mutations are 
among the earliest recurrent genetic events in tumo
rigenesis and are also the most frequent somatic 
genetic alterations in HCC, telomerase inhibition shows 
potential as an ideal therapeutic target in treating HCC. 
Currently, different strategies for telomerase inhibition, 
such as the use of nucleoside analogs, oligonucleotides, 
small molecule inhibitors, G-quadruplex stabilizers, 
immunotherapy, and gene therapy in different cancers, 
are currently in development, preclinical studies or 
clinical trials[175].

ARID1A and ARID2
Increasing evidence has demonstrated that the 
misregulation of ATP-dependent chromatin remodeling 
complexes (chromatin remodelers) contributes to 
tumorigenesis[176], tumor heterogeneity[177], and the 
cellular response to anticancer drugs[178-182]. Among 
the different ATP-dependent chromatin remodelers, 
genes encoding SWitch/sucrose nonfermentable 
(SWI/SNF) complex subunits are now recognized as 
among the most commonly mutated targets affecting 
chromatin remodeling, as they are present in 20% of 
human cancers[183-185]. SWI/SNF chromatin remodeling 
has been linked to a variety of epigenetic processes, 
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including roles in maintaining nucleosome positioning 
and interacting with other chromatin modifiers[186]. 
The SWI/SNF complexes can be divided into two 
broad categories based on the presence of the AT-rich 
interactive domain containing protein 1A-B (ARID1A/B) 
subunits (BAF complex) or ARID2 and polybromo 1 
(PBMR1) subunits (PBAF complex)[187].

Recent exome and WGS studies of HCC have 
shown that recurrent inactivating mutations in SWI/
SNF subunits are involved in the molecular basis 
of hepatocarcinogenesis[101,102,188-190]. However, the 
functional role and molecular mechanisms underlying 
these mutations in the initiation and progression 
of HCC are not yet completely understood. Genes 
involved in coding for chromatin-modifying proteins 
are commonly mutated in HCC. In particular, two 
inactivating mutations in genes encoding subunits 
of the SWI/SNF complex, and ARID1A and ARID2 
have been identified in approximately 10% of HCC 
cases[101,106,107,189,191]. Therefore, it is not surprising 
that chromatin remodeling complex alterations might 
play important roles in the initiation and progression 
of HCC. Interestingly, the frequency of ARID1A and 
ARID2 mutations occurring in HCC varies considerably 
across HCC cases, depending on the different etiologies 
of the disease. For example, ARID1A mutations are 
significantly more frequent in HCC related to alcohol 
intake than in tumors of other etiologies[102], and 
ARID2 mutations commonly occur in HCV-associated 
HCC[188,192]. However, several studies did not observe 
an association between ARID1A and ARID2 mutations 
and the etiology of HCC. ARID1A was mutated in 
13% of HBV-associated cases of HCC[189], and ARID2 
mutations were not significantly associated with HCV 
infections[102]. A recent study also demonstrated that 
ARID1A alterations were not correlated with HBV 
infection, HCV infection or the heavy use of alcohol[193]. 
These findings suggest that ARID1A and ARID2 
mutations are universally present in association with 
HCC related to hepatitis virus infection and alcohol 
intake.

The mechanisms by which mutations in SWI/
SNF subunits drive tumorigenesis are unclear. Most 
ARID1A and ARID2 mutations detected in cancer 
cells to date are inactivating mutations, suggesting 
that both proteins function as tumor suppressors[194]. 
Several possible mechanisms for this effect have been 
suggested. ARID1A has been indicated in preventing 
DNA entanglements during mitosis. Hence, its 
mutational inactivation could lead to genomic instability 
and alter gene expression, which could contribute to 
tumorigenesis[195]. In addition, it has been found that 
ARID1A mutations tend to interact with the activation 
of the PI3K/AKT pathway in promoting tumorigenesis 
in many human cancers of diverse origins[196-203]. 
Furthermore, a recent study found that ARID1A 
mutations alone did not cause the development 
or progression of cancer but that a combination 

of ARID1A inactivation and a PI3K/AKT pathway 
aberration was sufficient to initiate tumorigenesis[204]. 
Theoretically, the two mechanisms mentioned above 
in other solid tumors might also apply to HCC. The 
functional significance of ARID1A and ARID2 mutations 
remains to be elucidated in relation to the initiation 
and progression of HCC.

In a recent study, HCC cases with altered ARID1A 
expression showed inverse correlations with the 
nuclear localization of P53 and beta-catenin, sug
gesting that the ARID1A pathway might represent 
an alternative pathway to the p53 and beta-catenin 
pathways in HCC. Thus, ARID1A might constitute a 
promising therapeutic target for treating a subset of 
HCCs[193].

NFE2L2/NRF2 and KEAP1
Oxidative stress involves elevated intracellular levels 
of reactive oxygen species (ROS) that cause damage 
to lipids, proteins and DNA[205]. Recent studies have 
shown that persistent oxidative stress due to elevated 
ROS levels is associated with carcinogenesis and the 
progression of cancer[206-210]. The NRF2-KEAP1 pathway 
is the major regulator of cytoprotective responses to 
endogenous and exogenous stresses caused by ROS 
and electrophiles[211,212]. The key proteins within the 
NRF2-KEAP1 pathway are the transcription factor 
NRF2, which mediates oxidative stress responses, and 
KEAP1, which is a negative regulator of NRF2 activity.

NRF2 has been traditionally considered a tumor 
suppressor because of its cytoprotective functions[213]. 
In fact, accumulating evidence from genetic analyses 
of human tumors suggests that the deregulation of 
NRF2 is a critical determinant in oncogenesis, and 
somatic mutations of either NRF2 or KEAP1 have 
frequently been detected in a variety of cancer 
types[107,214-216]. These findings indicate that mutations 
in NRF2 and KEAP1 frequently play important roles in 
carcinogenesis. 

Recent exome sequencing of HCC samples 
has revealed that the oxidative stress pathway is 
activated in 12% of HCC patients, primarily as a 
result of mutations of NRF2 or KEAP1[106]. Numerous 
genomic studies on cancer have reported somatic 
mutations of NRF2 and inactivating mutations of 
KEAP1(6%-10% and 3%-8% of HCC patients, 
respectively)[102,106,107,138,217,218]. A recent functional 
experiment found that NRF2/KEAP1 mutations 
were present in 71% of early preneoplastic lesions 
and in 78.6% and 59.3% of early and advanced 
HCCs[219], respectively, suggesting that the onset of 
NRF2/KEAP1 mutations is a very early event in rat 
hepatocarcinogenesis. In contrast, mutations of NRF2 
and KEAP1 in humans were observed only in advanced 
HCC and not in premalignant nodules or early HCC, 
suggesting that these mutations are late events 
in hepatocarcinogenesis in humans[105,106]. Despite 
some differences in the role of mutations of NRF2 
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and KEAP1 between rats and humans, it is evident 
that the dysregulation of the NRF2/KEAP1 pathway 
and mutations of these genes play important roles in 
hepatocarcinogenesis in both species. The NRF2/KEAP1 
pathway might contribute to hepatocarcinogenesis 
through the following mechanisms. First, the NRF2/
KEAP1 pathway might cause epigenetic instability, 
leading to HCC[220]. Second, either NRF2 acts by itself 
as a proto-oncogene or NRF2 or KEAP1 mutations 
support the accumulation of additional mutations 
of proto-oncogenes[215,221]. Third, the NRF2/KEAP1 
pathway could alter the chromatin status, leading to 
abnormal methylation of TSGs, which might contribute 
to hepatocarcinogenesis[222]. Interestingly, recent 
analyses of somatic mutations in HCC have revealed 
that mutations in NRF2 or KEAP1 are significantly 
correlated with the deregulation of the Wnt/β-catenin 
pathway via CTNNB1 or AXIN1 mutations[102,217]. These 
results suggest that the NRF2/KEAP1 pathway might 
interact with Wnt/β-catenin signaling to promote 
hepatocarcinogenesis. Nevertheless, the exact 
molecular mechanism underlying the role of NRF2 in 
the pathogenesis of HCC must still be investigated.

The finding of recurrent mutations in HCC revealed 
that NRF2 activation was a driver event in the 
progression of tumors[102,138]. Collectively, NRF2/KEAP1 
mutations might be involved in the pathogenesis and 
progression of HCC. The genetic or pharmacologic 
inhibition of NRF2 expression/activity in HCC cells 
increased the anticancer activity of erastin and 
sorafenib in vitro and in tumor xenograft models[223]. 
Intriguingly, the accumulation of phosphorylated P62, 
a selective autophagy substrate, was found to cause 
the persistent activation of NRF2, contributing to the 
development of HCC[223-225]. In addition, in Japanese 
HCC patients, NRF2 activation was associated with 
the phosphorylation of P62 but not with the KEAP1 
status[226].These results suggest that there might be 
crosstalk between the NRF2/KEAP1 pathway and P62-
mediated selective autophagy, and selective NRF2 
inhibitors or inhibitors of the interaction between 
phosphorylated P62 and KEAP1 should be developed 
as potential therapeutic agents against human HCC.

Janus kinase 1
The JAK/STAT signaling pathways have been identified 
as promoters of carcinogenesis in a subset of HCCs via 
cytokine-induced JAK/STAT pathway activation[28,227,228]. 
A previous study using single-strand conformational 
polymorphisms (SSCPs) and direct sequencing 
reported a low frequency (1/84, 1.2%) of Janus 
kinase 1 (JAK1) mutations in HCC[229]. Recently, a 
comprehensive whole genome analysis revealed that 
JAK1 mutations appeared in 9.1% of HCCs, and the 
JAK/STAT pathway was altered in 45.5% of HCCs[28].
These findings indicate that the JAK/STAT pathway 
might act as one of the major oncogenic drivers in HCC 
and suggest the possibility of its use as a promising 

therapeutic approach for HCC treatment.

Ribosomal protein S6 kinase polypeptide 3
Ribosomal protein S6 kinase polypeptide 3 (RPS6KA3) 
encodes a component of the RAS/MAPK signaling 
pathway, i.e., a gene located on chromosome X 
that encodes ribosomal S6 protein kinase 2 (RSK2). 
Recurrent mutations in RPS6KA3 have been found in 
2%-9% of HCCs[102,106,189], suggesting that RPS6KA3 
could act as a newly identified potential driver of the 
pathogenesis of HCC. Specifically, RPS6KA3 tended to 
be mutated in poorly differentiated HCCs[230] and was 
found in HCCs that developed without cirrhosis[102]. 
In addition, RPS6KA3 mutations were frequently 
associated with AXIN1 mutations[102], suggesting that 
RPS6KA3 inactivation might cooperate with Wnt/
β-catenin signaling to promote hepatocarcinogenesis.

SIGNALING PATHWAYS IMPLICATED IN 
HCC
The recurrent mutated genes reviewed above were 
found to be highly enriched in multiple key driver 
signaling processes, including telomere maintenance, 
TP53, cell cycle regulation, the Wnt/β-catenin pathway 
(CTNNB1 and AXIN1), chromatin remodeling (ARID1A 
and ARID2), the phosphatidylinositol-3 kinase 
(PI3K)/AKT/mammalian target of rapamycin (mTOR) 
pathway, and oxidative/endoplasmic reticulum stress 
(NFE2L2 and KEAP1). In the following section, we 
briefly summarize two of the most common molecular 
cellular pathways, Wnt/β-catenin and PI3K/AKT/ 
mTOR, in human HCC[28,35,107,231]. Other pathways are 
summarized in the section above. 

Wnt/β -catenin signaling pathway
The WNT/β-catenin pathway can be classified into 
canonical (β-catenin dependent) and noncanonical 
(β-catenin independent) pathways[232]. In the absence 
of Wnt proteins, β-catenin is phosphorylated at amino-
terminal serine and threonine residues by casein 
kinase 1 (CK1) and glycogen synthase kinase 3β 
(GSK-3β)[233]. β-catenin phosphorylation is facilitated 
by the axis inhibition protein (AXIN) and adenomatous 
polyposis coli (APC). Wnt signaling is activated upon 
Wnt-ligand binding to frizzled receptors (FZD), followed 
by the cytosolic accumulation of β-catenin through the 
prevention of GSK-3β-mediated phosphorylation of the 
β-catenin Ser/Thr domain[234]. The absence of β-catenin 
phosphorylation releases it from the degradation 
complex composed of APC, AXIN, GSK-3β and CK1, 
resulting in an accumulation of β-catenin in the 
cytoplasm[234]. Subsequently, cytosolic β-catenin can 
translocate to the nucleus to initiate the transcription 
of target genes through interactions with T-cell factor 
(TCF)/lymphoid enhancer factor (LEF) transcription 
factors[234]. Hepatocytes with the nuclear translocation 
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of β-catenin displayed abnormal cellular proliferation 
and expressed membrane proteins associated with 
HCC, metastatic behavior, and cancer stem cells[235].

The deregulation of WNT/β-catenin signaling has 
been found in 40%-70% of HCC patients[236]. Increasing 
evidence suggests that the Wnt/β-catenin signaling 
cascade plays a major role in the pathogenesis of 
HCC[234,237]. Some studies have suggested possible 
mechanisms for this role. For example, research has 
found that the occurrence of HCC may be closely related 
to allelic loss, chromosomal changes and mutations in 
Wnt/β-catenin signaling pathway genes[238]. In addition, 
the Wnt/β-catenin signaling pathway contributes 
to angiogenesis, infiltration and metastasis in HCC 
by regulating the expression of angiogenic factors, 
such as matrix metalloproteinase‑2 (MMP-2), matrix 
metalloproteinase‑9 (MMP-9), vascular endothelial 
growth factor‑A (VEGF-A), vascular endothelial growth 
factor-C (VEGF-C) and basic fibroblast growth factor 
(bFGF)[239]. However, the precise molecular mechanism 
remains uncertain.

Mutations in exon 3 of the CTNNB1 gene, which 
encodes β-catenin, constitute a crucial molecular 
mechanism leading to the aberrant activation of the 
Wnt/β-catenin pathway, which is strongly associated 
with hepatocarcinogenesis[240]. In addition to gain-
of-function mutations in positive modulators of Wnt 
signaling, such as β-catenin, the Wnt pathway can be 
activated by loss-of-function mutations in negative 
modulators, such as AXIN and APC[241]. It has been 
suggested that AXIN might play an important role in 
the pathogenesis and progression of HCC via the Wnt 
signaling pathway[242]. Moreover, the overexpression of 
the Frizzled-7 (FZD-7) receptor and glycogen synthase 
kinase-3 (GSK-3) inactivation may also lead to 
aberrant β-catenin pathway activation[243] as the FZD-7 
receptor has been found to be up-regulated in 90% of 
human HCCs[244,245], suggesting that the consequent 
activation of Wnt/Frizzled-mediated signaling plays 
a key role in hepatic carcinogenesis. Specifically, 
one study analyzed the spectrum of mutations in a 
series of 125 cases of HCC, and the authors identified 
significant associations between mutations in ARID1A, 
RPSK6KA3 or NFE2L2 and mutations in CTNNB1 or 
AXIN1, suggesting that Wnt/β-catenin signaling might 
interact with oxidative stress responses, chromatin 
remodeling or the RAS/MAPK pathway to promote 
hepatocarcinogenesis[217].

Mutations in the Wnt/β-catenin pathway have 
been described in 20%-40% of HCCs[246]. In HBV-
related HCC, β-catenin mutations have been found at 
a lower frequency[103,246,247], whereas higher incidences 
of β -catenin mutations have been shown to occur 
mainly in alcohol- and HCV-related HCCs[101,102,188,248]. 
These findings suggest that β -catenin mutations 
are associated with the etiology of the HCC, which 
might be explained in part by actions of the HCV 
core protein synergizing Wnt-induced stabilization 
and the accumulation of β-catenin, perhaps playing 

an important role in the pathogenesis of HCV[249]. 
In HCC occurring in association with HBV, patients 
display β-catenin activation, which is induced in a 
mutation-dependent manner by the expression of 
the HBx protein[250]. Furthermore, one explanation for 
why β-catenin mutations tend to occur in non-HBV-
associated casesis that AXIN mutations (and rarely 
β-catenin mutations) are mainly found in chromosome-
unstable tumors associated with HBV infections, and 
β-catenin mutations are mainly found in non-HBV, well-
differentiated, chromosome-stable tumors[251]. Thus, 
these two components of the Wnt pathway, β-catenin 
and AXIN1, could operate in distinct ways in human 
HCC[252].

The verdict on the role of β -catenin mutations 
in the initiation and progression of HCC is currently 
uncertain. A few studies have demonstrated that 
β-catenin mutations are found only in association with 
HCC and not in DNs[104,253,254].These results suggest that 
β-catenin mutations might be a late event in malignant 
progression rather than β-catenin being an early event 
gene or a gatekeeper gene in the multistep process 
of hepatocarcinogenesis. Nevertheless, another study 
concluded that β-catenin accumulates in the cytoplasm 
and the nuclei in precancerous lesions of the liver 
and might contribute, at least in part, to hepatic 
carcinogenesis[255]. Moreover, a clonality analysis 
predicted that the CTNNB1 mutation was clonal and 
occurred earlier during hepatocarcinogenesis[256]. 
To date, numerous studies have investigated the 
possible mechanisms underlying the role of β-catenin 
mutations in the initiation and progression of HCC. 
For example, CTNNB1 mutations are likely to occur as 
late events in the context of aflatoxin exposure and 
chronic HBV infection, whereas CTNNB1 mutations 
might represent early events in carcinogenesis 
without a typical mutational pattern in areas with 
low AFB1 intake[135]. Transcription complexes, formed 
by a combination of intranuclear β-catenin and 
transcription factors, activate downstream target 
genes and regulate the expression of corresponding 
genes, leading to HCC tumorigenesis[257]. Although 
a β-catenin mutation might represent an important 
event leading to tumorigenic changes in hepatocytes, 
several studies using transgenic animal models have 
shown that the overexpression of mutant or stable 
forms of β -catenin on its own is not sufficient to 
induce HCC[258,259]. A recent study found that the up-
regulated genes v-maf avian musculoaponeurotic 
fibrosarcoma oncogene homolog G (MAFG) and 
synovial sarcoma, X breakpoint 1 (SSX1) significantly 
synergized with the transcriptional activity of β-catenin, 
and the overexpression of the downregulated genes 
one cut homeobox 1 (Onecut1) and forkhead box 
protein A3 (FOXA3) potently inhibited the growth of 
a CTNNB1-mutation-positive (HepG2) cell line and 
negative (Huh-7 and Hep3B) cell lines[260]. In another 
study, the over-expression of cysteine-rich protein 61 
(Cyr61/CCN1) was positively correlated with increased 
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levels of β-catenin in human HCC samples, indicating 
that Cyr61 is a direct target of β-catenin signaling 
in HCC[261]. Therefore, the findings of these studies 
indicate that β-catenin mutations can interact with 
other oncogenic alterations or pathways to result in 
hepatocarcinogenesis more often than previously 
recognized.

Similarly, there have been conflicting data in 
the literature on the question of whether β-catenin 
mutations in HCC are associated with favorable or 
unfavorable prognoses[262]. Some studies have found 
associations of β -catenin mutation or activation 
with worse outcomes, such as moderately/poorly 
differentiated HCV-related HCC, larger tumor sizes, 
multiple nodules and increased vascular invasion[263,264]. 
In contrast, other studies have reported that HCCs 
harboring β-catenin mutations had better outcomes, 
such as less invasive and less frequent portal vein 
involvement[138,260,265-268]. A recent meta-analysis 
also revealed that β‑catenin mutations could predict 
a favorable prognosis in patients with HCC[269]. In 
addition, one study reported that β-catenin mutations 
were not associated with prognoses in patients with 
advanced HCC[238]. Interestingly, the expression of 
the noncanonical Wnt5a, which is known to inhibit 
canonical Wnt signaling, was increased in poorly 
differentiated HCC cell lines[270]. Based on this result, 
the authors proposed that canonical and noncanonical 
Wnt pathways play complementary roles in HCC, 
with canonical signaling contributing to tumor 
initiation and noncanonical signaling contributing to 
tumor progression[270]. Accordingly, the noncanonical 
activation of Wnt in HCC deserves further research. 
Furthermore, a possible mechanism underlying 
β -catenin mutations with favorable outcomes 
was proposed in another study. In this study, the 
presence of cytokeratin 19 (CK19) expression or 
the absence of β -catenin mutations was found to 
be predictive of early tumor recurrence (ETR), and 
CK19 expression abolished the suppressive effects of 
β-catenin mutations on the progression of HCC. CK19 
expression and β-catenin mutations were found to play 
dramatically opposite roles in vascular invasion, ETR 
and the prognosis of HCC patients[271].

Considering these findings, future prospective 
studies to determine the initiation, progression and 
outcome of HCC as a function of the WNT/β-catenin 
pathway will be essential. Specifically, such studies 
should consider the geographical origin, etiology and 
heterogeneity of the patients as well as the modes of 
WNT/β-catenin pathway activation[272].

PI3K-AKT-mTOR pathway
The phosphoinositide 3-kinase-AKT-mammalian target 
of rapamycin (PI3K-AKT-mTOR) pathway is one of 
the most frequently deregulated pathways in human 
cancers, and it is a master regulator of processes 
that contribute to tumorigenesis and tumor main

tenance[273]. The membrane lipid phosphatidylinositol 
4, 5-bisphosphate (PIP2) is phosphorylated by PI3K 
into phosphatidylinositol 3, 4, 5-triphosphate (PIP3), 
which binds to and activates the serine/threonine 
kinase AKT[274]. The tumor suppressor gene product 
PTEN deleted on the chromosome is antagonistic to 
PI3K activity; the inactivation of PTEN through gene 
deletion increases PIP3 levels and activates AKT, 
which inhibits apoptosis, leading to the development 
of tumors[275]. Activated AKT initiates a cascade of 
downstream signaling events, including the mTOR 
pathway. Once activated by AKT, mTOR promotes 
cell growth and proliferation by stimulating protein 
synthesis through the phosphorylation of 4E-BPs and 
the S6 kinases[275].

The PI3K/AKT/mTOR pathway is frequently deregu
lated in human hepatocarcinogenesis[276]. Furthermore, 
the deregulation of key genes of the PI3K/AKT/
mTOR pathway has clinical importance in HCC[277,278]. 
As a negative regulator of the PI3K/AKT/mTOR 
pathway, PTEN is considered a tumor suppressor 
gene. PTEN mutations rarely occur in HCC, whereas 
PTEN heterozygosity, resulting in reduced PTEN 
expression, has been observed in 32%-44% of HCC 
patients[279]. Recent studies have demonstrated that 
the underexpression of PTEN is associated with poorly 
differentiated HCC, advanced TNM (tumor-node-
metastasis) stage and intrahepatic metastasis, and 
poor patient survival[278,280-282]. PI3KCA is an upstream 
regulator of AKT, although there is some controversy 
regarding the role of PI3KCA mutations in HCC. A 
recent study identified PIK3CA mutations in 14% of 
patients.These mutations were strongly correlated with 
tumor size, suggesting that PIK3CA mutations could 
be used as prognostic markers in HCC[283]. However, 
other more recent studies have shown that hot spot 
mutations in PIK3CA are completely absent or rare 
in HCC[263,284-287]; PI3K mutations were not associated 
with either hepatic carcinogenesis or the postoperative 
prognosis of HCC patients[284,285,288].

AKT, also known as protein kinase B, is a central 
effector in the PI3K pathway. Many HCCs have 
demonstrated the activation of AKT, and it has been 
reported that both hepatitis B and hepatitis C could 
activate PI3K/AKT signaling[289]. It is well established 
that AKT plays a key role in tumorigenesis by sti
mulating cell proliferation and inhibiting apoptosis. The 
phosphorylation of AKT at S473 was detected in up 
to 71% of HCC samples and was associated with the 
invasion, metastasis, and vascularization of HCC[278]. As 
an AKT effector, S6 ribosomal protein (pS6) could be 
used as a prognostic indicator of HCC[290]. In addition, 
phospho-AKT (pAKT) expression showed a significant 
correlation with decreased OS[291], suggesting a worse 
prognosis for HCC patients with activated AKT[292].

mTOR is a key component of the PI3K and AKT 
pathways that activate downstream kinases required 
for G1 to S phase transition[293]. mTOR deregulation 
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has been reported to play a significant role in the 
pathogenesis and progression of HCC. A recent 
study showed that high mTOR expression levels 
were correlated with Edmondson tumor grades and 
cirrhosis[294]. Additionally, data from preclinical studies 
have indicated that the deregulated expression of 
mTOR pathway effectors occurred in 40%-50% of 
HCCs, and the activation of the mTOR pathway was 
associated with less differentiated tumors, earlier 
tumor recurrence, and lower survival rates[290,295]. 
mTOR acts by directly activating p70S6 kinase 
(p70S6K/S6K1) and inhibiting 4E binding protein 1 
(4E-BP1)[296]. mTOR forms two multiprotein complexes, 
called mTORC1 (mTOR complexed with raptor) and 
mTORC2 (mTOR complexed with rictor)[297]. Both 
mTORC1 and mTORC2 participate in regulating the 
migration and invasion of HCC cells[298]. A recent 
study showed that a high ratio of the levels of rictor 
and raptor mRNAs in tumors was an independent 
prognostic indicator of DFS[297]. This finding suggests 
that an analysis of mTOR expression in cancer tissues 
could serve as a predictive marker of HCC recurrence 
after curative treatment. 

Currently, many inhibitors targeting the PI3K/AKT/
mTOR pathway are being evaluated for treating HCC 
in preclinical and clinical studies[299,300]. It is hoped 
that the efficacy of inhibitors of the PI3K/AKT/mTOR 
pathway, in combination with other anticancer agents, 
might represent a promising new strategy for treating 
HCC patients.

PROBLEMS AND PERSPECTIVES
Although numerous genes are altered in association 
with HCC, only a small number of them are considered 
alterations that drive clonal expansion and invasion.
Most of the somatic alterations appear to be pass
engers that are neutral for tumor cell selection[301]. 
So far, most of the genetic events that initiate HCC 
remain unknown. Therefore, the identification of key 
driver genes in HCC is crucial to elucidating the genetic 
mechanism of hepatocarcinogenesis and providing 
new molecularly targeted therapies for HCC patients. 

Recent advancements in NGS technology have 
allowed for the identification of recurrently mutated 
genes in the pathogenesis of HCC. For example, 
a recent study of NGS analyses was performed 
to identify mutations in the TERT promoter, TP53, 
and CTNNB1 genes that are major drivers of the 
development of HCC[103]. To date, however, no potential 
drivers of specific oncogenes (oncogene addiction, 
which is a term used when a cancer cell is found to be 
dependent on a single gene to survive) corresponding 
to targeted therapies have emerged, likely due to 
the genomic heterogeneity of HCC. In addition, 
the most prevalent of the critical driver mutations 
that have been identified in HCC are not yet drug-
accessible targets[302]. Although several molecularly 
targeted agents have been evaluated in clinical trials 

in advanced HCC, no novel, fully effective molecularly 
targeted agents for the treatment of patients with 
advanced HCC have been produced, except for 
sorafenib. There are two factors, i.e., the lack of a 
clearly identified driver oncogene and the presence of 
underlying cirrhosis, that are primarily responsible for 
the frequently unsuccessful results in studies on the 
use of novel drugs in treating HCC[303]. 

It is anticipated that studies including large sample 
sizes combined with the integration of multiple levels 
of data, such as data on genomic instability, SNPs, 
and somatic mutations, in conjunction with integrative 
functional genomic approaches, will contribute to 
identifying driver genes in the pathogenesis of HCC. 
The identification of these driver genes will lead to 
the development of effective molecularly targeted 
therapies and personalized medicine.

Currently, it has been widely realized that signaling 
pathways, rather than individual genes, govern 
the course of carcinogenesis[304]. In fact, HCC is 
considered a multigenic disease with a multifactorial 
etiology, and hepatocarcinogenesis is an extre
mely complex multistep process, in which multiple 
signaling pathways are altered to some extent. In 
brief, due to the high complexity and heterogeneity 
of HCC genomes, it is important to emphasize that 
identifying the altered signaling pathways implicated 
in HCC, rather than individual mutated genes, may 
be the key in elucidating the genetic mechanisms 
underlying hepatocarcinogenesis. Furthermore, 
insights into the key signaling pathways will likely 
aid in defining previously unrecognized oncogenic 
addiction loops in HCC and in developing more 
effective targeted therapies[305]. Recent extensive 
research has identified multiple signaling pathways 
implicated in the pathogenesis of HCC; however, 
unfortunately, no single dominant signaling pathway is 
specifically altered in HCC. Future investigations into 
associated signaling pathways should elucidate the 
crosstalk between different signaling pathways, i.e., 
how different signaling pathways interact and how 
they are coordinately regulated in HCC. It is hoped 
that targeting these crosstalk pathways will result in 
superior clinical efficacy in treating HCC patients.

Taken together, current evidence suggests that 
there are no major mutated genes and signaling 
pathways corresponding to the development of tumors 
in the majority of cases of HCC, which might primarily 
be due to the heterogeneity in their geographic and 
etiologic backgrounds. Due to the intertumor and 
intratumor heterogeneity of HCCs, future studies 
must evaluate in detail genetic alterations in relation 
to the geographic origin of the disease, both across 
and within individual patients, and chronologically 
during tumor progression[306]. At the same time, the 
geographic and etiologic backgrounds of cases of 
HCC should also be considered in the design of future 
clinical trials testing molecularly targeted therapies. 
Such consideration will aid in identifying personalized 
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therapies for treating HCC patients.
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