Computational and Structural Biotechnology Journal 14 (2016) 404-410

e gemgooo0n - COMPUTAT IONAL
soiollc ANDSTRUCTURAL
woffi BIOTECHNOLOGY ©
oo, J O URNAL

journal homepage: www.elsevier.com/locate/csbj

CrossMark 11

Engineering Translation in Mammalian Cell Factories to Increase Protein
Yield: The Unexpected Use of Long Non-Coding SINEUP RNAs

Silvia Zucchelli *>*, Laura Patrucco ?, Francesca Persichetti ?, Stefano Gustincich ™, Diego Cotella ®**

2 Department of Health Sciences, Universita del Piemonte Orientale, Novara, Italy
b Area of Neuroscience, SISSA, Trieste, Italy
€ Department of Neuroscience and Brain Technologies, Italian Institute of Technology (IIT), Genova, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 25 July 2016

Received in revised form 21 October 2016
Accepted 24 October 2016

Available online 27 October 2016

Mammalian cells are an indispensable tool for the production of recombinant proteins in contexts where
function depends on post-translational modifications. Among them, Chinese Hamster Ovary (CHO) cells
are the primary factories for the production of therapeutic proteins, including monoclonal antibodies
(MADbs). To improve expression and stability, several methodologies have been adopted, including methods
based on media formulation, selective pressure and cell- or vector engineering. This review presents
current approaches aimed at improving mammalian cell factories that are based on the enhancement of
translation. Among well-established techniques (codon optimization and improvement of mRNA
secondary structure), we describe SINEUPs, a family of antisense long non-coding RNAs that are able to
increase translation of partially overlapping protein-coding mRNAs. By exploiting their modular structure,
SINEUP molecules can be designed to target virtually any mRNA of interest, and thus to increase the
production of secreted proteins. Thus, synthetic SINEUPs represent a new versatile tool to improve the
production of secreted proteins in biomanufacturing processes.

© 2016 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction
1.1. Overview on Mammalian Cell Factories

Recombinant proteins are invaluable resources for basic research
and for biotechnological applications. They can be produced in
several different expression systems, but mammalian cells are the
best choice when post-translational processing (e.g. glycosylation)
is required for their function. This is crucial for proteins of therapeu-
tic interest. In the past 20 years, over two hundreds of recombinant
proteins have been approved by the European Medicine Agency
(EMA) [1]. Among these proteins, monoclonal antibodies (MAbs)
represent the biotech industry's fastest growing sector [2-6].

Abbreviations: CHO, Chinese hamster ovary; ER, Endoplasmic reticulum; IncRNA, long
non-coding RNA; MAb, monoclonal antibody; SINE, short interspersed nuclear element;
SME, small and medium-sized enterprise; SP, Signal peptide.
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Chinese Hamster Ovary (CHO) cells are the leading factories for
the production of recombinant MAbs, as they have superseded “clas-
sical” MAbs produced in mice [7,8]. CHO cells are safe and robust
hosts in which high productivity can be achieved via insertion of
multiple copies of the transgenes [9]. In addition, CHO cells can be
easily adapted to grow in suspension, in serum-free conditions and
at high cell densities [10]. However, CHO cells possess also some
unwanted traits, such as a relevant genome instability; they are
also inclined to epigenetic silencing [11,12]. Since undesired traits
affect clone productivity (in terms of both quantity and quality),
different strategies have been adopted to attenuate these disadvan-
tages. Some of them regard the design of the expression vector and,
for example, make use of inducible promoters and/or epigenetic
regulators to increase and prolong transgene expression while
decreasing toxicity of the expressed recombinant protein [13-16].
Others approaches aim at manipulating pathways through cell
engineering, in order to improve stress resistance, cell viability or
to achieve better glycosylation profiles [7,17]. Despite much prog-
ress has been made in this field, clonal variability and instability
are still important issues that need to be addressed, particularly
when production on large scales (1000's liters) is required. Though
it is certain that CHO cells will continue to be used and developed for
the production of biologics, the pressure for generating more complex
proteins has led to the further development of novel cell lines. Of
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particular interest are cell lines of human origin (e.g. HEK cells) that are
expected to become the platforms of the future [4,8,18].

1.2. The Need for Further Advancements

The past few years have witnessed a countless development of
strategies to improve the productivity of mammalian cell factories
(summarized in Fig. 1). Indeed, protein yields are currently higher
than ever, and it is now the norm to achieve multiple grams of recombi-
nant protein per liter of culture media [19,20]. Moreover, stable produc-
er clones can now be generated within few weeks. However, therapies
based on bio-therapeutics are still dozen of times more expensive
than therapies based on small-molecule therapeutics [21-23]. As man-
ufacturers attempt to reduce the size of production batches still main-
taining them economically profitable, mammalian cells factories are
propelled to their limits [24]. Such endeavors are necessary to sustain
the development of personalized approaches to medicine, as a result
of the progressive shift toward novel classes of MAb-based therapeutics
[25]. Despite new technologies have contributed a considerable ad-
vance, expression levels are often too low to be economically rewarding.

Engineered CHO cells have been generated to enhance protein pro-
duction at industrial scale. This has been made possible, recently, by
the blast of omics data, which have improved our understanding of
CHO biology [26-30]. In addition to this, CRISPR/Cas9 technology has
been adopted to further dissect CHO biological determinants to produc-
tivity and to genome-engineer cells toward the development of next
generation factories [31]. Nevertheless, the industry still needs a better
understanding of the implications of new omics information.

We do expect that engineering cells at the level of transcription,
translation and the secretory pathways would have an additive effect on
productivity. Moreover, with the progress of systems biology, it will be
possible to manipulate cells to introduce entire new molecular pathways
(e.g. human-like glycosylation) [17,29]. The rational engineering of such
robust and high-performing cells for specific applications can lead to a
catalog of different cell lines, each optimized to tackle specific targets.

In summary, any biotechnological improvement, even small, that
can increase either the efficiency of protein synthesis or the quality of
post-translational modifications is still very welcomed, and it is of
potential interest for a number of biotech SMEs with different finalities.
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Fig. 1. Summary of strategies adopted to optimize mammalian cell factories. The
optimization of translation has been identified as a bottleneck among the several
strategies to increase the production of recombinant proteins. It therefore represents a
key issue that needs to be addressed to optimize mammalian cell factories.

2. Focus on the Enhancement of Translation
2.1. mRNA Secondary Structure and Codon Optimization

As most endogenous eukaryotic proteins, recombinant proteins are
usually expressed through cap-dependent, linear scanning mechanism
of mRNA translation. This is a tightly regulated cellular mechanism,
which consists of four main steps: initiation, elongation, termination
and ribosome recycling (reviewed in [32]).

The initiation phase, in particular, determines the efficiency of
mRNA translation, and thus represents the main rate-limiting step
(reviewed in [33-38]). In fact, whereas a relatively small number of
dedicated factors is necessary to support the elongation and termina-
tion phases, the machinery required to initiate translation in eukaryotes
is composed by more than 25 proteins [35]. In addition to this, transla-
tion of many mRNAs can be initiated by mechanisms that divert from
the “canonical” pathway (mechanisms of CAP-independent translation
not be discussed here; for references please refer to reviews [39-41]).
However, they are generally not utilized in cells producing high
quantities of recombinant proteins.

In the cap-dependent mechanism of mRNA translation, the
cap-binding complex elF4F (composed of the initiation factors elF4E,
elF4G, and the RNA helicase elF4A) binds the 7-methylguanosine cap
(m7GpppG) at the 5’ of the mRNA, and then recruits the 40S ribosomal
subunit as a 43S pre-initiation complex. The latter is composed by the
40S subunit, the initiation factors elF3, elF1, elF1A, elF5, and the
methionyl-initiator tRNA (Met-tRNA;), in a pre-assembled ternary
complex with GTP-bound form of elF2. These factors serve to bring
the 40S subunit to the 5’ end of the mRNA and load the mRNA onto
the 40S ribosome. Then, the 40S subunit scans the mRNA in a 5’ to 3’
direction until the AUG start codon is recognized. Upon AUG recogni-
tion, GTP is hydrolysed, elF1 is released, and the 40S subunit undergoes
a conformational change that grips the mRNA and prevents further
scanning. Lastly, the 60S subunit joins facilitated by elF5B, and GTP
hydrolysis triggers release of e[F1A and elF5B to form a fully competent
80S ribosome.

The sequence encompassing the start AUG (the “Kozak” sequence) is
crucial in helping the scanning ribosomal subunit to accomplish the
proper codon-anticodon recognition. The optimal Kozak sequence is
evolutionarily conserved, and the consensus for higher vertebrates is
CC(R)CCAUGG. The purine (R) at position —3 and the G at +4 are the
most crucial nucleotides (reviewed in [42]).

Ribosomal scanning has to face some structural obstacles, since RNA
molecules naturally tend to form secondary structures, and those
located in the 5’ UTRs of mammalian mRNA transcripts may affect
translation efficiency.

The role of RNA structure in mRNA translation has been extensively
investigated for more than 40 years. Those studies have been recently
propelled with the advent of novel tools, i.e. SHAPE [43,44] and CIRS-
seq [45] that allow the systematic, whole-transcriptome analysis of
RNA secondary structures; however, most of our current knowledge
comes from Kozak's pioneering studies on the scanning model of
mRNA translation (reviewed in [46]).

In general, the presence of stable secondary structures in the mRNA
at 5’ UTR exerts a negative effect on the translation rate (summarized in
Fig. 2). In particular, a stable stem-loop near the (m7GpppG) cap will
reduce the efficiency of translation by preventing the access of elF4F
[47-49]. Similarly, a stem-loop in proximity of the start AUG will
impede translation by interfering with the formation of the pre-
initiation complex [46,50,51]. As the chances to fold into secondary
structure increases with the length of RNA, this is probably one of the
reasons why mammalian 5’ UTRs are usually short, in general between
100 and 200 nucleotides in length [52]. Although it is well documented
that mRNA secondary structures are important to regulate the
expression of endogenous genes (reviewed in [53]), from the point of
view of cell factories they represent an obstacle to fully exploit the
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Fig. 2. The mRNA secondary structure in the 5" UTR and surrounding the starting AUG is a key determinant of translation efficiency. (1) The SAUG incorporated in a hairpin structure close
to the 5’ end will result in lower levels of translation. (2) The same structure as above, but in longer 5’ UTR sequences, will not affect significantly the translation efficiency. (3) A5’ UTR
devoid of secondary structures will be translated well. (4) A stable stem-loop near the starting AUG will block the ribosome scanning, preventing translational start. GOI: Gene of Interest.

Adapted from data presented in ref. [47].

translation potential, and they should be removed. Ideally, the optimal
5’ UTR for highly efficient translation of recombinant protein should
be devoid of any secondary structure. In addition to this, it should be
also devoid of extra-AUG codons and near-cognate triplets in an
optimum sequence context, to preclude potential translation of an
upstream open reading frame (uORF) (reviewed in [38,54]).

The 3’ UTRs of mRNAs also play a role in the regulation of the
initiation phase of translation (reviewed in [55,56]). In fact, after
binding the poly(A) tail, the poly(A)-binding proteins (PABPs) interact
with the elF4G, thus increasing the affinity between elF4E and the
(m7GpppG) cap [50]. These protein-protein interactions cause the
mRNA to adopt a pseudo-circular structure, bringing the mRNA head
in close proximity to its tail, enabling the ribosome to restart translation
more promptly, thereby determining an increase in the efficiency of
translation (reviewed in [36,57]).

The rate of elongation also influences translation efficiency.
Elongation rate is determined, at least in part, by the efficiency of
codon-anticodon recognition. In genomes, rarely used codons cause a
pause in translation due to the low concentration of the corresponding
aminoacyl-tRNA [58]. Several studies have shown that the production of
recombinant proteins in heterologous systems may improve dramati-
cally if the codon usage correlates with the codon bias, because of
increased translation rate [59-61] and mRNA stability [62]. These
findings have led to codon usage optimization strategies adjusted to
the specific organism selected as cell factories (bacteria, yeast or
mammalian cells).

However, such manipulation is not without drawbacks, as we know
that codon bias is the result of a precise natural selection, In fact,
recently, it has been demonstrated that frequently used codons acceler-
ate elongation, while non-preferred codons slow it down, and altering
the codon usage influences the local translational dynamics [63]. As a
result of the evolutionary adaptation, the changes of translation
elongation rates on mRNAs are adapted to protein structures to facilitate
co-translational folding, suggesting a codon usage “code” for protein
structure [63-65]; altering this code may negatively affect the
functionality of the encoded protein.

Altogether, these findings inspired the development of several
bioinformatics tools for the comprehensive, multiparametric optimiza-
tion of translation products (Table 1 summarize only few of them).

Progress in the development of tools for gene optimisation combined
with de novo gene synthesis allow rapid and efficient construction
of synthetic genes individually fitted to specific biotechnological
needs. Previously, gene optimization was mainly performed by
empirical site-directed mutagenesis of a DNA template [60,66,67].
With these novel tools it is now possible, following in silico
sequence-optimization, to rapidly synthesize full-length genes based
on the available DNA [68-70] or protein sequences [71,72]. It is even
possible to synthesize artificial genes with novel properties [73-75].
The classical example is insulin, the first recombinant protein approved

Table 1
Some example of tools freely available online to predict/design RNA secondary structure,
codon optimization and Signal peptide design.

RNA secondary structure prediction and optimization

Tool Web page Ref.

ViennaRNA http://rna.tbi.univie.ac.at [106]
web service

RNAsoft http://www.rnasoft.ca/ [107]

Freiburg RNA tools  http://rna.informatik.uni-freiburg.de/ [108]

mRNA optimizer http://bioinformatics.ua.pt/software/mrna-optimiser/ ~ [109]

CoFold http://www.e-rna.org/cofold/ [110]

RNA structure https://github.com/lulab/RME [111]
package

Codon optimization

Tool Web page Ref.

OptimumGene http://www.genscript.com/

Gene Designer https://www.dna20.com/ [112]

Codon Optimization Tool https://eu.idtdna.com/

Codon Adaptation Tool http://www.jcat.de [113]

Optimizer http://genomes.urv.es/OPTIMIZER/ [114]

Codon Optimization http://cool.syncti.org/ [115]
OnLine

Gene Optimizer https://www.thermofisher.com/ [68,116]

Visual Gene Developer http://visualgenedeveloper.net/ [117]

COStar http://life.sysu.edu.cn/COStar/COStar.html/ [118]

EUGene http://bioinformatics.ua.pt/eugene [119]

Signal peptide optimization

UTR-Tailortech http://www.unitargeting.com/tools.html [84]
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for therapeutic use [76]. The amino acid sequence of “first generation”
recombinant insulin is identical to native human insulin. With de novo
gene synthesis it has been possible to produce insulin analogs
displaying altered amino acid sequences aiming at improving their
performances (the “second generation” insulins). To date, several such
insulin analogs have been engineered to own either an accelerated
(fast-acting) or prolonged duration of action (slow-acting) [77].

Chemical synthesis of long polynucleotides is now affordable and
guarantees easy access to virtually any gene of interest, including
those that are difficult to clone by classical PCR-based methods or
have been inaccurately deposited in clone repositories.

2.2. Improving the Secretory Leader Sequence

Most recombinant proteins produced in mammalian cell factories
are expressed in a secretable format [78,79]. This is achieved by adding
a signal peptide (SP), an amino acid sequence 5-30 residues in length, at
the N-terminus of the protein of interest [80]. While still being
synthesized on the ribosome, nascent poplypetides are recognized by
the signal recognition particle (SRP) and addressed to the ER [81].

The translocation of secretory proteins into the lumen of the ER
represents a bottleneck within the secretory pathway and thus depicts
a key issue that needs to be addressed to exploit the full potential of
mammalian cell factories. The appropriate selection of a SP can have im-
portant consequences on protein overexpression, with some authors
reporting levels of expression increased by several-fold [82-84]. Studies
have shown that, despite their heterogeneity, many SPs are functionally
interchangeable even between different species [85]. Indeed, most SPs
share three structurally conserved regions: an N-terminal polar region
(N-region), rich in positively charged amino acids; a central hydropho-
bic region (H-region) composed of about 7-8 hydrophobic amino acids;
and a C-terminal region (C-region) that includes the SP cleavage
site [86,87].

Different SPs can deeply impact protein secretion [82]. These obser-
vations should be taken in consideration when aiming at producing
maximal amounts of recombinant proteins in mammalian cells. Many
groups have demonstrated that protein production can be empowered
using alternative SPs [70,82,85,88-90]. Logically, the optimal choice
for signal sequence may be the proteins native SP, though testing a
small panel of commonly utilized signal sequences may be desirable.
Several efficient and well-described signal sequences have been
reported, including IL-2, IL-6 CD5, Immunoglobulins (Ig), trypsinogen,
serum albumin, prolactin and elastin [8,82,83,91,92]. While some SP
showed a broad skill in promoting protein secretion, others are more
protein specific [82]. Thus, empirical trials may be needed to find the
best SP suited for the protein of interest, in particular if the expression
levels are low. A good example is the recent work published by Zhiwei
Song and colleagues [70]. In this works, they generated a database of
SPs from a large number of human Ig heavy chain (HC) and kappa
light chain (LC), and analyzed for their impacts on the production of
5-top selling antibody therapeutics (Herceptin, Avastin, Remicade,
Rituxan, and Humira). Interesting to note, the cDNA clones of those
antibodies where chemically synthesized starting from DNA sequence
information publicly available. Following this approach, it was possible
to engineer the SP for Rituxan to achieve a 2-fold yield compared to
its native SP.

A plethora of biological data on the structure/function relationship of
SP are available, and they can now be exploited to develop bioinformat-
ics tools to determine cleavage sites and the expression localization of
various SPs (SignalP, TargetP, and PSORT [93-95]) and for the in silico
design of artificial SPs. As an example, UTR-Tailortech allows the
rational design of SP libraries randomized at chosen codon positions
[84]. This tool was developed by comparing the success of individual
SPs with their amino acid composition and has allowed to predict
with respect to which amino acid in which positions can have a decisive
influence on protein synthesis or secretion [84]. In contrast to a

traditional random approach, which would result in extremely large
libraries difficult to manage, libraries generated with UTR-Tailortech
are substantially smaller while simultaneously being enriched for
good candidates.

This increases the chances of finding “the needle in the haystack”.
When combined with high-throughput screening technologies,
a tailored SP for any specific protein (including difficult-to-express
proteins) can be quickly defined [84].

2.3. Exploiting SINEUP Non-Coding RNAs to Improve the Translation of
Recombinant Proteins

Translation improvement still needs to be further explored and
incorporated into the production pipeline. As described above, a line
of intervention is focused on the optimization of the mRNA sequence
itself, either at the level of coding sequence and codon usage or at the
5" and 3’ UTR sequences. Additional strategies are currently being
developed to modulate translation with trans-acting, gene-specific
regulatory long non-coding RNAs (IncRNAs).

Our group has recently discovered and characterized a new family of
antisense IncRNAs whose ruling effect is to promote translation of
partially overlapping sense protein-coding mRNAs without affecting
the expression levels of the target mRNA [96,97]. These molecules
have been named SINEUPs, as an embedded inverted SINE B2 element
is required to UP-regulate translation. SINEUP translation enhancement
activity has been referred to also as gene-specific “knock-up”. SINEUP
activity depends on two functional domains (Fig. 3):

* the “Binding Domain” (BD), a sequence at the 5’ of SINEUP IncRNA,
that overlaps in opposite orientation to the target coding mRNA,; it
confers target specificity.

« the “Effector Domain” (ED), a downstream-embedded inverted
SINE B2 element in the non-overlapping portion of SINEUP IncRNA;
it functions as activator of translation.

A Target Gene of Interest
| AUG
5 cDs | FUTR |3*
[T s
SINEUP

B Protein mRNA

3.0 1.0

2.0
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Fig. 3. SINEUP modular structure and principle of action. A) SINEUPs are antisense IncRNAs
that activate translation. SINEUPs contain two functional domains: the Binding Domain
(BD) provides target specificity; the Effector Domain (ED) provides activation of protein
synthesis. 5’ to 3’ orientation and direction of transcription (arrows) of sense mRNA and
antisense IncRNA molecules are indicated. B) SINEUP ruling effect is to enhance
translation of partially overlapping sense protein-coding mRNAs without affecting the
expression levels of the target mRNA.




408 S. Zucchelli et al. / Computational and Structural Biotechnology Journal 14 (2016) 404-410

SINEUP molecules act by selecting target mRNAs through their BD
and by triggering enhanced loading to heavy polysomes for more
efficient translation via their ED. Indeed, removal of the overlapping
sequence or the SINE B2 repeat completely abrogates the translational
up-regulation capabilities of SINEUPs [96]. Therefore, SINEUPs are
modular antisense IncRNAs, in which the combined activity of the two
domains (BD and ED) confers gene-specific translation enhancement
effects. As such, BD can be designed to redirect translation up-
regulation activity to potentially any target gene of interest. Gene-
specific BDs are typically designed around the initiating AUG codon
and overlapping part of the 5’ untranslated sequence and a portion of
the coding sequence [98]. Despite the exact rules governing sense
mRNA and SINEUP interaction are presently not known, increasing
number of examples suggest a certain degree of flexibility in BD design
(unpublished data). Proof-of-principle was originally provided by the
design a synthetic SINEUP to knock-up GFP. As predicted, SINEUP-GFP
increased GFP protein quantities without affecting its mRNA levels
[96]. SINEUP-mediated knock-up of overexpressed proteins is typically
in the range of 2-to-5-fold [96,97] and more evident for difficult-to-
express proteins (unpublished data). This seems to be true for endoge-
nous genes as well as for overexpressed proteins. Presently we do not
know the exact mechanism(s) regulating SINEUP activity. We can
envision that different cellular systems controlling protein homeostasis
may at the end impact the overall efficacy of SINEUP-mediated
knock-up effects. Given their modular structure and their ability to
target mRNA for more efficient translation, synthetic SINEUPs have
been recently tested as an innovative tool to treat conditions of reduced
gene dosage. In our recent work, we designed synthetic SINEUPs to
target endogenous DJ-1 mRNA, a gene involved in recessive familial
forms of Parkinson's Disease, and we could knock-up endogenous DJ-1
protein levels up to 3-fold in 3 different neuronal cell lines in vitro
[97]. Subsequently, in a collaborative effort aimed at proving that
SINEUP technology can also be applied in vivo, we could rescue the
defective gene expression in a medakafish model of Microphtalmia
with Linear Skin Lesion, a human disorder characterized by
haploinsufficient dosage of COX7b protein [99].

A large number of incurable diseases are caused by a haploinsufficient
dosage of a relevant gene. Classical chemical screenings are currently
employed to identify small-molecule compounds that may modulate
mRNA stability and/or translatability, by targeting control sequence
elements or accessory proteins [100,101]. Nucleic acid-based drugs
represent an alternative approach to treat such disorders. While a
number of small- and micro-RNAs are designed to promote transcription
[102,103], SINEUPs provide gene-specific up-regulation at a post-
transcriptional level.

As gene-specific enhancers of translation, SINEUPs could represent
an attractive molecular tool to implement the pipelines of recombinant
protein production. Important issues need to be taken into account for
the use of synthetic SINEUPs in biomanufacturing: 1) SINEUPs need to
be active in mammalian cell lines used for the production of recombi-
nant proteins in biomanufacturing pipelines; 2) SINEUPs need to be
scalable to target potentially any protein of interest; 3) SINEUPs need
to be effective for secreted proteins.

First, the versatility of synthetic SINEUPs was tested using SINEUP-
GFP in mammalian cells in vitro. More than 10 different cell lines of
human, monkey, mouse and hamster origin were tested and proved
effective to support SINEUP-mediated knock-up [97,104]. More
importantly, GFP up-regulation was observed in mammalian cell
factories, as in HEK293 and in suspension culture of CHO cells [92,97].
Subsequent work then demonstrated that synthetic SINEUPs could be
engineered to target amino-terminal tags used in chimeric protein for
production and purification. In addition to GFP [96,97], this was also
shown for FLAG [97] and HA [104]. A high-throughput automated
fluorescence-based detection system has been recently set-up to screen
large numbers of SINEUPs using GFP-fusion chimera (Takahashi H. et al.,
submitted; Takahashi H. and Kozhuharova A., personal communication).

Recombinant MAbs are one of the emerging classes of
biopharmaceuticals with important therapeutic applications. Most
mAbs are produced at large scale as secreted proteins in CHO cells
grown in suspension. A proof-of-principle study showed that synthetic
SINEUP, targeting a secreted version of Luciferase reporter gene, could
efficiently knock-up its quantities acting at the post-transcriptional
level [92]. Moreover, SINEUPs could be exploited with success to
increase the expression of secreted proteins targeting different
leader peptides (interleukin-6, mouse immunoglobulins, elastin) [92].
SINEUPs were also used to increase the production of a recombinant
anti-HIV antibody, further supporting the versatility of the technology
[104].

Altogether, SINEUPs represent a versatile molecular tool to increase
the synthesis of recombinant proteins at a small-, medium- and large-
scale production. Among the approaches to improve translation
mentioned in this review, SINEUP is peculiar in that it is not based on
the optimization of the target mRNA sequence.

Therefore, this tool will not compete with the other existing
methods currently used to increase protein yields, but it can be used
in addition to them.

3. Summary and Outlook

Many gene features are important to achieve high levels in the syn-
thesis of recombinant proteins. The advent of powerful bioinformatics
techniques in the past decade has generated a bunch of information
on the regulation of protein translation. We no longer see translational
regulation as an intricate mechanism rather we can look inside it and
rationally intervene on mRNA sequence and structure with the aim to
maximize its translatability.

With SINEUP IncRNAs, we added a new tool to increase translation
of proteins that, at least to our best knowledge, acts independently
from the target mRNA structure. Still we do not know the exact rules
governing SINEUP activity, therefore SINEUP molecules are currently
empirically designed and tested. However, we could reasonably expect
that, as for other RNA-based mechanisms (RNAI, for example) [105],
SINEUP comply specific rules linking RNA sequence to function and
that could be easily included in an algorithm for the in silico design of
SINEUP molecules.

With system biology tools becoming increasingly accessible, we will
finally be able to develop a clear understanding of cell regulation and
therefore discover the rational basis for cell engineering. At that point,
SINEUP technology will achieve its true potential.
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