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Abstract
The possibility that stem cells might be used to regenerate tissue is now being investigated for a variety of organs,
but these investigations are still essentially exploratory and have few predictive tools available to guide experi-
mentation. We propose, in this study, that the field of lung tissue regeneration might be better served by predic-
tive tools that treat stem cells as agents that obey certain rules of behavior governed by both their phenotype and
their environment. Sufficient knowledge of these rules of behavior would then, in principle, allow lung tissue de-
velopment to be simulated computationally. Toward this end, we developed a simple agent-based computational
model to simulate geographic patterns of cells seeded onto a lung scaffold. Comparison of the simulated patterns
to those observed experimentally supports the hypothesis that mesenchymal stem cells proliferate preferentially
toward the scaffold boundary, whereas alveolar epithelial cells do not. This demonstrates that a computational
model of this type has the potential to assist in the discovery of rules of cellular behavior.
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Introduction
One of the hopes of stem cell research is being able to
grow entire organs ex vivo for use in clinical transplan-
tation and as model systems for study. An approach
that may hold promise for the engineering of complex
organs is the use of decellularized scaffolds devoid of
cells and antigenic material that are then seeded with
autologous stem cells in the hope that a fully functional
organ will eventually develop.1,2 In the case of the lung,
as with many organs, this promise remains far from re-
alized.3,4 Indeed, stem cell research has thus far been es-
sentially empirical, leading some to refer to these
investigations as ‘‘modern alchemy.’’1 One possible rea-
son for the current state of affairs is an almost complete
lack of predictive modeling tools with which to guide
the direction of investigation.

The ability to predict the course of tissue regenera-
tion must rely on a knowledge of the rules governing
how relevant cell types behave in the various situations
they will encounter during the regeneration process.
These rules indicate how each cell influences, and is
influenced by, its neighboring cells and the surround-
ing microenvironment in which it finds itself.5,6

Armed with such rules, one could, in principle, simu-
late the process of tissue regeneration to identify prom-
ising scenarios before trying them experimentally,
thereby greatly increasing the efficiency of the search
for effective regeneration strategies. The computational
approach known as agent-based modeling7–10 seems
perfectly suited to this endeavor. However, such mod-
eling relies on knowledge of the rules of cell behavior,
about which we currently know little. On the other
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hand, agent-based modeling might also be of assistance
in determining these rules through comparison of
model predictions to experimental data.

Sophisticated agent-based models have been applied
to a variety of cellular systems, including the growth
and maintenance of skin11 and the use of mesenchymal
stem cells (MSCs) to generate bone.12 In the case of
bone, models have been applied specifically to the
problem of understanding how cells attach to and mi-
grate through porous scaffolds.13 However, computa-
tional models have yet to be developed for the study
of stem cell behavior in scaffolds created by decellula-
rizing lung tissue. Accordingly, we investigated the en-
graftment patterns of two different cell types relevant to
the regeneration of lung tissue following their seeding
onto decellularized lung scaffolds. Simultaneously, we
employed an agent-based computational model to sim-
ulate engraftment patterns based on simple sets of be-
havioral rules governing how cells move, when they
divide, and when they die. By determining which
rules more closely recapitulated experimental observa-
tions, we are able to infer those that plausibly might dif-
ferentially regulate the behavior of the two cell types.

Methods
Computational model
We created a computational model to study two com-
putational Hypotheses, termed Hypotheses 1 and 2, re-
spectively, regarding the behavior of stem cells on these
decellularized scaffolds. Both hypotheses are motivated
by experimental observations regarding two represen-
tative cell types investigated for seeding decellularized
lung scaffolds: C10 epithelial cells, an immortalized
mouse type 2 alveolar epithelial cell line, and bone
marrow-derived MSCs.14,15 From previous experi-
ments, we know that C10 cells tend to mostly be pres-
ent at the tissue periphery at later time points.14 Given
the nature of cells to move through chemotaxis, this
suggests that there is some substrate incorporated
into the scaffold with a concentration that is highest
at the borders of the tissue slice and decreases progres-
sively toward the center. The identity of this substrate is
currently unknown, but possibilities include oxygen or
extracellular matrix components such as fibronectin
and laminin, which may be distributed preferentially
toward the periphery of the alveolar tissue.16

We used NetLogo 4.1.3 freeware9,10 to design a
three-dimensional (3D) agent-based model of a decel-
lularized scaffold environment seeded with cells that
can attach to and proliferate over it. The environment

of the model represents an initially decellularized lung
scaffold and is composed of a set of contiguous cuboi-
dal patches, each characterized by local variables that
define its properties. The cells applied to the model
scaffold are represented by discrete agents capable of
moving around from patch to patch according to sto-
chastic rules that define the likelihood of their rates
and directions of movement.

At every time point, only one cell can exist on each
patch, meaning a motile cell cannot move into the
same location as an already engrafted cell. However,
additional rules allow the cells to interact with neigh-
boring agents and the patches that they come into con-
tact with. Each cell has up to 26 neighbors as illustrated
in Figure 1. These interactions may involve any puta-
tive biological effect such as the alteration of the envi-
ronment by the secretion of chemical signals or a direct
effect of one cell on another. In particular, we assume
that engrafted cells increase the substrate concentration
of the patch they are on by an arbitrary value of 1. If the
cell dies, then the patch substrate concentration is de-
creased by 1.

We represent the environment of the lung scaffold as
32 · 32 · 32 individual cubic patches, with the environ-
mental border representing the edges of the scaffold.
(The environment size and the spacing between the

FIG. 1. Diagram illustrating the location of a
cell’s neighbors. The cell (black ball) is at the
center of the cube, and the 26 white balls
illustrate the location of its neighbors in 3D space.
Each cell has up to 26 neighbors. 3D, three
dimensional.
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patches are constraints set by the NetLogo software.)
Each patch has a local variable whose value represents
the numerical concentration of a bioactive substrate
that influences cell behavior (see Rule 1 below) such

that the substrate concentration has a value c = 20
ffiffiffiffiffiffiffiffiffi

x2 + y2
p

21:2

for any set of (x, y, z) coordinates, as the x, y, and z
axes range from �16 to 16 (in arbitrary distance
units). While this formula is arbitrary, it creates an en-
vironment where in any x-y plane, the lowest substrate
concentration (c = 0) is at the center (x = 0, y = 0), while
the highest concentration is at the borders, thereby cre-
ating a substrate gradient and thus an impetus for cell
movement and exploration of the environment.

The scaffold was seeded at t = 0 with 30,000 ran-
domly placed identical agents (cells) because this gave
a seeding density that was visually reminiscent of the
experimental situation. Experimentally, we observe
that most cells seem to engraft following initial seeding,
at least for a while, so the cells in the model were each
given a 95% chance of engrafting with the remaining
cells being eliminated. The model was then run for
80 time steps using two different behavioral rules sets
corresponding to computational Hypotheses 1 and 2.
Each cell executes its set of commands once within
each time step, allowing it to potentially move to a
neighboring patch, engraft to a patch, and/or undergo
one round of proliferation. We ran the model for a total
of 80 time steps because most of the cells in the model
under both hypotheses had died by this time point,
which matches what we observed experimentally (see
Fig. 6).

We show a schematic for the general behavior of the
models in Figure 2. The specifics of the model using the
rule set for Hypothesis 1 are as follows:

(1) First, the motile cells determine where to move
across all three axes. While each cell has 26 neigh-
bors surrounding it (Fig. 1) and there are numer-
ous ways of modeling how it could move and
the number of neighboring patches it could con-
sider moving to, cell movement in NetLogo is
modeled as a forward vector oriented randomly
in some direction relative to the x, y, and z axes,
thus enabling the cells to explore their 3D envi-
ronment by moving and considering neighbors
in a two-dimensional (2D) manner along the di-
rection of the forward vector. The angle of the
vector is randomly changed at each time step,
changing the cell’s orientation to the x, y, and z
axes, unless the cell senses a high substrate signal

in one of the three patches ahead of its current
direction (directly ahead, ahead to the left, and
ahead to the right), in which case the cell has a
higher chance of moving toward the patch with
the strongest signal. (Because of the angle ori-
entation, these three patches may be above or
below the cell’s current location.) To simulate
this in our model, the numerical variables rep-
resenting concentrations of substrate, c, on
these three patches are each multiplied by a
random number, xi, uniformly distributed
on the interval [0, 1], which represents the like-
lihoods of moving in each of the directions.
If S = (x1cahead� and� straight + x2cahead� and� left +
x3cahead� and� right)>1, the cell moves toward
the patch with the strongest signal, meaning
that all cell movements in the model are prob-
abilistic. If S < 1, the cell moves randomly to an
adjacent patch. (The concentration of substrate
on the current patch is cpatch.) The rules govern-
ing cell movement are based on previous mod-
els regarding cellular movement throughout the
lung in the presence and absence of chemical
stimuli.9,10

(2) All motile cells then determine whether they will
attach to the patch they are currently on. A ran-
dom real number, N, uniformly distributed
on the arbitrary interval [0, 100] is computed.
If N > Ncrit, where Ncrit = 5, the cell is replaced

FIG. 2. Schematic of the algorithm used with
specific rule sets at each time point to implement
Hypotheses 1 and 2 in the model.
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by an immobile engrafted cell. Each engrafted
cell has two parameters: Tlife, the lifespan of
the cell, and Tprol, the amount of time that
must pass before the cell can proliferate into
neighboring patches. Upon initially engrafting,
Tlife is chosen randomly on the uniformly dis-
tributed interval of [0, 36] time steps, and Tprol

is set on the uniform interval [33, 87]. (This en-
ables some cells to undergo apoptosis before
having the opportunity to proliferate, and to
have an increased likelihood of proliferating if
the patch environment enables them to prolifer-
ate in a shorter amount of time.)

(3) The lifetime counter, Nlife, for the cell is incre-
mented by 1. If Nlife = Tlife, the cell is eliminated
from the model, representing cellular apoptosis.

(4) The proliferation time counter, Nprol, for the cell
is incremented by 1. If Nprol = Tprol, the cell pla-
ces a copy of itself onto a single randomly se-
lected neighbor that has at most six neighbors
itself. (The number of neighbors is arbitrarily
chosen, but is based on observations from our
experimental images that cells that survive
over time are surrounded by a small number
of cellular neighbors. This suggests that cells re-
quire some moderate degree of cell–cell interac-
tion to thrive.) For each new cell, Tlife is chosen
randomly on the interval [0, 18] time steps, and
Tprol is set to (33� cpatch/cenvfactor) + n, where
cenvfactor = 1.9 and n is a random number uni-
formly distributed on the interval [0, 54].

(5) As long as an engrafted cell remains alive, cpatch

is increased by camount. This implies that the
engrafted cell through its actions, either directly
or indirectly, permanently increases the concen-
tration of substrate on the patch by camount. If the
cell dies, then it is no longer able to maintain the
substrate concentration at this level; we assume
that it decays somewhat, so cpatch is decreased
by camount. In our model, camount is set to 1.

Under the rule set for Hypothesis 1, engrafted cells
have an equal probability of surviving anywhere in
the environment, but a higher likelihood of proliferat-
ing on patches with higher concentrations of substrate.
The rule set for Hypothesis 2 is identical to Hypothesis
1, with the exceptions that Tlife is distributed uniformly
on the interval [0, 45] and Tprol is set on the uniform
interval [41, 103], and for each new cell created, Tlife

is set to (cpatch/cenvfactor) + n, where cenvfactor = 1.9, n is

a random number uniformly distributed on the interval
[0, 45], and Tprol is chosen randomly on the uniformly
distributed interval [41, 103] time steps. Under this hy-
pothesis, cells live longer relative to the cells in Hypoth-
esis 1, and engrafted cells have a higher likelihood of
surviving on patches with higher concentrations of
substrate.

Experimental data
Cells were seeded onto lung scaffolds from mice as de-
scribed in Bonenfant et al.14 and Wallis et al.15 Briefly,
the study utilized adult C57BL/6J mice that were main-
tained at UVM in accordance with institutional and
American Association for Accreditation of Laboratory
Animal Care standards and review. Following heart–
lung bloc harvest, lungs were decellularized under ster-
ile conditions by tracheal and vascular infusion, and
immersion in 0.1% Triton-X solution (Sigma-Aldrich,
St. Louis, MO) for 24 h and 2% sodium deoxycholate
(Sigma-Aldrich) for a further 24 h. Between each incu-
bation step, lungs were rinsed with 5· penicillin/strep-
tomycin (P/S; Cellgro) in deionized water. On day 3,
lungs were incubated for 1 h each in 1 M NaCl and
porcine pancreatic DNase solution (Sigma-Aldrich).

Lungs were then rinsed with 1· phosphate-buffered
saline in 1· P/S. The left lobe of decellularized scaffolds
was then inoculated through the airway with either 1·
106 MSCs isolated from mouse bone marrow (Sca-1+,
CD106+, CD29+ and CD11b�, CD11c�, CD34�, and
CD45�, from Dr. Darwin Prockop, NCRR/NIH
Center for Preparation and Distribution of Adult
Stem Cells at Texas A and M University),17 or
1 · 106 C10 mouse lung epithelial cells (gift from
Dr. Matthew Poynter, University of Vermont). Cells
were suspended in 3% low melting point agarose
(SeaPrep Agarose; Cambrex, East Rutherford, NJ) for
inoculation. The inoculated lungs were then allowed
to gel at +4�C for 30 min and manually sliced to sec-
tions of *1 mm thickness.

Slices were then incubated at 37�C in respective
growth media to remove the agarose. Murine bone
marrow-derived mesenchymal stromal cells (mMSCs)
(P6-P8) and slices inoculated with mMSCs were cul-
tured in Iscove’s Modified Dulbecco’s Medium (Sigma-
Aldrich) supplemented with 2 mM L-glutamine,
100 U/mL penicillin and 100 mg/mL streptomycin
(Fisher Scientific, Waltham, MA), 10% fetal bovine
serum (FBS; Atlanta Biologicals, Flowery Branch,
GA), and 10% horse serum (Invitrogen, Carlsbad,
CA). C10 cells and slices inoculated with C10 cells
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were cultured in Dulbecco’s modified Eagle’s medium
(Sigma-Aldrich) supplemented with 2 mM glutamine
(Invitrogen), P/S, and 10% FBS.

Media were changed every other day and individual
slices were incubated at 37�C at 5% CO2 in low adher-
ence 12-well tissue culture plates. Scaffolds were har-
vested at days 1, 3, 7, 14, 21, and 28 after inoculation
and fixed in 4% paraformaldehyde (Sigma-Aldrich).
Slices were then embedded in paraffin and sliced to
5-lm-thick slices, deparaffinized, and stained with he-
matoxylin and eosin (Electron Microscopy Sciences,
Hatfield, PA).

Image analysis
Images were taken from the top, middle, and bottom of
each experimental lung slice using an Olympus fluores-
cent microscope at 10· magnification. At each time
point, we imaged three slices, for a total of nine exper-
imental images per time point. In our computational
analysis, we took 30 screenshots of 2D slices from the
3D computational model scaffold every 10 time steps.

We defined our model as having a total time dura-
tion evenly divided into 80 time steps. The time scale
in this model is arbitrarily defined, but we can never-
theless map the speed of movement of a model cell
from patch to patch onto the actual speed of movement
of real cells, as follows: a model tissue slice consists of
32 · 32 patches corresponding to an area of lung scaf-
fold roughly 1,000 · 1,000 lm; so each model patch
has dimensions roughly 30 · 30 lm. As 80 time steps
in the model correspond to 28 days of real time, a
cell moving from patch to patch at each time step has
a velocity of 0.002 time step/min, corresponding to
an actual velocity of about 0.06 lm/min. This is of
the same order of magnitude as we estimate the velocity
of movement of cells engrafted to lung scaffolds (un-
published observations).

We quantified the patterns of cellular adherence in the
images from both the experimental lung scaffolds, and the
agent-based model using a custom-designed image anal-
ysis tool written in Matlab (Mathworks, Natick, MA)
identifies cell nuclei and divides the image into tiles cen-
tered on them by implementing the following algorithm.
(The Matlab code is available upon request from the au-
thors.) A schematic of this algorithm is shown in Figure 3,
and the details are as follows:

(1) Convert the color image to grayscale.
(2) Create a black and white version of the grayscale

image using a pixel intensity threshold of 125 on

an 8-bit scale from 0 (black) to 255 (white).
Identify contiguous components of at least 300
pixels (considered to be a mixture of cellular
clumps and debris) from the black and white im-
age, which become the image’s ‘‘mask’’ regions.

(3) Convert the original grayscale image to a black
and white image using a pixel intensity thresh-
old value of 125. Outside the ‘‘mask’’ regions de-
termined in Step 2, mark the centroids of all
connected components of at most 20 pixels
(likely to be cell nuclei).

(4) Repeat Step 3, but with a pixel intensity thresh-
old value of 85, and instead mark centroids
within the ‘‘mask’’ regions.

(5) Allow user to manually edit cell identification by
including missed cells and deleting inappropri-
ately included objects.

(6) Count the total number of cells in the image by
counting the number of cell nuclei.

(7) Apply Voronoi tessellation18,19 such that each
cell nucleus lies at the centroid of a polygon-
shaped tile that defines the local neighborhood
of that cell.

(8) Calculate variance of the histogram of Voronoi
tile areas.

FIG. 3. Illustration of the image analysis
procedure used to define cell neighborhoods
using Voronoi tesselation.
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Figure 4 shows an example of the image processing
algorithm applied to an image of a slice from one of
these experimental lung scaffolds, illustrating how the
Voronoi tessellation defines the neighborhood of each
cell. In particular, note that the areas of the tiles around

isolated cells are larger than those around cells that are
clustered.

Statistical analysis
The results of the cell culture experiments (C10 cells vs.
MSCs) and the computational modeling (Hypothesis 1
vs. Hypothesis 2) were compared by two-way analysis
of variance (ANOVA). Statistical significance was
taken as p < 0.05. The sensitivity of model predictions
to variations in model parameter values was assessed
by one-way ANOVA.

Results
Sample images of the decellularized scaffolds at various
time points following seeding with C10 cells or MSCs
show evolving patterns of cellular engraftment and
proliferation across these scaffolds (Fig. 5A, B, respec-
tively). We applied our image analysis tool to the 54
images (at 6 time points taken from 9 separate scaffold
images) acquired over the 28-day time course with the
two experimental cell types. Figure 6A shows the num-
ber of cells (mean – standard error [SE]) from the nine
scaffold images versus time after inoculation, where the
results from each scaffold have been normalized to
their respective values on Day 1. Both C10 cell and
MSC numbers eventually approach zero, but at differ-
ent rates and were statistically significantly different
( p < 0.001). Specifically, the MSCs have fallen off mark-
edly by about day 7, whereas the C10 cells take about
twice as long to reach correspondingly low numbers.

It should be noted that both cell types eventually die
out completely, meaning that attempts to engraft the
scaffold with persistent cells (i.e., cells that survive
and remain engrafted throughout the time course of
the experiment) were ultimately unsuccessful. This
speaks of the inherent difficulties of tissue regeneration
in general and the fact that in the case of the lung, this
field is still in its infancy.

Cell numbers and Corrected Voronoi Histogram Var-
iance (CVHV) are expressed as percentages of their re-
spective values at the initial time point. At the first time
point, the MSC cell number was 343.33 – 60.27 and
CVHV was 2.93 – 5.26 · 105, while the C10 cell number
was 692.44 – 111.82 and CVHV was 2.07 – 8.84 · 109.

We also determined the variance of the histogram of
the Voronoi tile areas at each time point. This variance
gives a measure of the heterogeneity of cell clustering,
but images with greater numbers of cells inherently
have smaller variance values compared to images with
fewer cells because more cells means a smaller mean

FIG. 4. Experimental image (A), which is
processed to mark all cells with crosses for
counting (B) and then undergoes Voronoi
tessellation to split the region into tiles centered
around each cell (C).
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area per cell. To control for this, we multiplied the his-
togram variance by the number of cells in the image to
derive what we term the CVHV. Figure 6B shows that
the CVHV (mean – SE, with the results from each scaf-
fold normalized to their respective values on Day 1) ver-
sus time for the two cell types begins to diverge at about
day 14, and is markedly different by the end of the ex-
periment. The CVHV values for the two cell types were
statistically significantly different ( p = 0.0064).

We performed a corresponding procedure on images
generated by the agent-based model, where 80 time
steps in the model correspond roughly to 30 days of ex-
perimental time as judged by the relative numbers of
surviving cells at these respective time points. Patterns
of cellular proliferation and spreading throughout a
simulated 2D slice of scaffold created by the agent-
based model, using the cellular rules specified by
Hypotheses 1 and 2, are shown in Figure 7A and B, re-
spectively. Similar numbers of cells initially engraft to
the scaffold in both cases, and as time progresses, our
image analysis tool enables us to quantify distinctions
between the two hypotheses.

While we observed a particularly rapid drop-off for
both models of around 20 time points, we also observed
a faster drop-off of cell numbers in the model for
Hypothesis 1 (increased proliferation on higher
agent), as seen in Figure 8A, which shows the mean –
SE cell number at each time point determined from
30 independent runs of the model, with the results
from each run normalized to its respective Day 1
value. The cell numbers were statistically signifi-
cantly different for Hypothesis 1 versus Hypothesis 2
( p < 0.001).

Figure 8B shows the corresponding trends in CVHV
at each time point. Under Hypothesis 1 (shorter lived
cells with increased proliferation on higher local sub-
strate concentration), this value initially rises until 40
time points and then trends continually downward.
Under Hypothesis 2 (longer lived cells with increased
survival on higher local substrate concentration), this
value rises until 50 time points, and its values remain
high relative to the initial CVHV values. The CVHV
values under Hypothesis 1 versus Hypothesis 2 were
statistically significantly different ( p < 0.001). For

FIG. 5. Experimental images of decellularized lung scaffolds on days 1, 3, 7, 14, 21, and 28, following seeding
with (A) C10 epithelial cells and (B) MSCs. MSCs, mesenchymal stem cells.
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both figures, as with the experimental cell numbers and
corrected Voronoi centroids, we have normalized the
values by the value observed at the first time point to
focus in the trends.

Cell numbers and CVHV are expressed as percent-
ages of their respective values at the initial time
point. At time point 10 under Hypothesis 1, there
were 568.90 – 4.24 engrafted cells with a CVHV value
of 3.62 – 14 · 103, while for Hypothesis 2, there were
596.73 – 4.76 engrafted cells with a CVHV value of
3.03 – 0.09 · 103. The sudden apparent increase in SE
at time point 40 is due to the very low cell numbers
at this point and beyond.

We show a sensitivity analysis in Figure 9 for the key
parameters of the model under each of the two hypoth-
eses, determined by increasing or decreasing each pa-
rameter, in turn, by 5% at the beginning of the
simulation and then measuring the CVHV (see figure
legend for details). We measured these values at time

point 40 for Hypothesis 1 and time point 50 for
Hypothesis 2, as these are time points at which we
judged a dramatic drop in the number of engrafted
cells in the original model, as these are time points by
which the initial cells must have engrafted and then
proliferated or else have died, and thus variation to
the model could theoretically have significant effects
on its behavior.

One-way ANOVA indicates that altering Tlife and
Tprol results in statistically significant changes to
CVHV for the model under both Hypotheses, which
is perhaps not surprising given that these are the two
key parameters differentiating cellular behavior be-
tween the two Hypotheses. Altering the other parame-
ters resulted in statistically insignificant changes to the
CVHV value for either of the two Hypotheses.

The original CVHV value is shown at the far left of
Figure 9. The hatched bars show CVHV after increas-
ing (+) and decreasing (�) the attachment probability
(Ncrit), the amount of collagen each cell adds to the en-
vironment (camount), and the factor by which the cell
lifetimes or proliferation times are influenced by the
environment (cenvfactor), the lifetime (Tlife), and the pro-
liferation time (Tprol), respectively, by 5%. NS indicates
no significant change from control. Asterisk (*) indi-
cates statistically significant change from control.

Discussion
Stem cell research in the lung has gained considerable
momentum recently with the advent of procedures
for recellularizing decellularized lung scaffolds. Never-
theless, this research remains largely empirical with few
predictive tools available to guide experimentation. As
a start to filling this void, we have developed a compu-
tational model for testing hypotheses about the rules
that might govern cellular engraftment and prolifera-
tion on decellularized lung scaffolds. However, given
the number and complexity of the cellular decisions
that can potentially be made during this process,
there is the potential for the number of plausible hy-
potheses to become so numerous that none of the hy-
potheses can be supported by model predictions to the
exclusion of all the others.

Accordingly, in this study, we apply the model to a
very simple experimental scenario about which the
rules of cell behavior appear to be limited to local envi-
ronmental factors, such as geometry and chemistry, de-
termining the probabilities of engraftment, movement,
and death. Of course, this model is far from a com-
pletely accurate representation of the underlying

FIG. 6. Experimental results (mean – SE) for (A)
number of cells, and (B) CVHV for cells following
the rules for MSCs (open circles) and C10
epithelial cells (closed circles) for all nine images
gathered on days 1, 3, 7, 14, 21, and 28.
CVHV, Corrected Voronoi Histogram Variance;
SE, standard error.
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physiology due to our current lack of knowledge about
all the biological details, about which we are forced to
make numerous assumptions. Once these assumptions
are made, we can calibrate the time scale of the model
to actual time (e.g., the time scales of Fig. 8 relative to
Fig. 6). Our intent in this study is merely to capture
what we believe to be the key aspects of real biological
behavior to create a model that has a useful predictive
value in terms of the overall behavior of stem cell en-
graftment on lung scaffolds.

Both C10 cells and MSCs experience a progressive
decline in cell numbers over the time course of the ex-
periment (Fig. 7A); so this observation alone does not
suggest anything to distinguish the rules governing
the behaviors of these two cells. Indeed, the almost
complete disappearance of both cell types by the end
of the 28th day suggests that the slice culture technique
utilized in this study may be insufficient to support ap-
propriate long-term recellularization, highlighting the
need for continued investigation of alternative recellu-
larization protocols and procedures. On the other
hand, visual inspection of the way in which experimen-

tal cell distributions change suggested that there may be
differences in the rules of behavior between the two cell
types. These distributions suggest that the periphery of
a slice of scaffold provides a different cellular environ-
ment compared to the scaffold center. We encode this
environmental factor in the model by imposing a gra-
dient in the concentration of a generic substrate that
the cells are sensitive to, and thus that has the potential
to cause the cells to make decisions that are influenced
by their locations on the scaffold.

We codified differing tendencies in Hypothesis 1
versus Hypothesis 2, and then determined if the com-
putational model would lead to qualitatively similar
predictions based on the rules embodied in these hy-
potheses. The most straightforward manner in which
to compare experiment to prediction is in terms of rel-
ative cell numbers. Although having the same overall
trends, the MSCs nevertheless decrease in number
somewhat more precipitously than the C10 cells
(Fig. 7A). By including a greater tendency of cells to
survive on regions of higher substrate concentration
(Hypothesis 1), the model predicted similar differences

FIG. 7. Screenshots of a computational model of a 3D lung scaffold at 10, 20, 30, 40, 50, 60, 70, and 80 time
steps, following seeding with cells that behave according to (A) Hypothesis 1 (shorter lived cells with
preferential proliferation on areas of higher substrate) and (B) Hypothesis 2 (longer lived cells with preferential
survival on areas of higher substrate).
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in cell numbers (Fig. 9A). These differences are difficult
to appreciate simply from visual inspection of the
model as time evolves (Fig. 8), demonstrating that
quantitative metrics are necessary to objectively test
these hypotheses.

Cell numbers alone, however, give no information
about the topographical details of the cell populations
on the scaffold, yet these details appear to be critical
to what distinguishes the two cell types. Accordingly,
we devised an algorithm for calculating metrics related
to cell topography. We wanted this algorithm to be ro-
bust, yet at the same time sensitive to the way in which
the cells might be clumped together in groups versus
being spread randomly over the scaffold. We felt that
these requirements were best met by an algorithm
that incorporates a spatially integrated measure of the
local neighborhood surrounding each cell. Accord-
ingly, we determined the centroid of the histogram of
cell neighborhood areas, the CVHV (Figs. 7B and

9B), because this uses all the information in the histo-
gram to provide a quantity that is robust to noise.

The cell neighborhoods themselves were determined
using Voronoi tessellation which produces a plan-
filling set of tiles having centroid positions defined
by each of the identified cells in the image, and thus
provides an intuitively satisfactory way of defining
each cell’s territory. Nevertheless, the CVHV is still a
relatively crude overall reflection of cellular spatial dis-
tribution. There are others we could potentially con-
sider that contain more information such as mean
distance from some landmark, spatial frequency, or
the distribution of distances between pairs of cells.
Such metrics might be necessary to test hypotheses
about cellular behavior that are more detailed than
the two we consider in this study.

The CVHV reveals a key distinction between the two
experimental cell types. The CVHV values for C10 cells
at later time points remain significantly higher relative
to the initial CVHV values (Fig. 6B). This same differ-
ence in CVHV was recapitulated in the model by
Hypothesis 2 versus Hypothesis 1 (Fig. 8B), supporting

FIG. 8. Computational model results (mean –
SE) for (A) number of cells, and (B) CVHV for cells
following the rules for Hypothesis 1 (open circles)
and Hypothesis 2 (closed circles) for all 30 images
of 2D slices gathered from the 3D model at time
points 10, 20, 30, 40, 50, 60, 70, and 80. 2D, two-
dimensional.

FIG. 9. Sensitivity analysis of the model
parameters expressed in terms of CVHV following
(A) Hypothesis 1 measured at time point 40,
and (B) Hypothesis 2 measured at time point 50.
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the notion that MSCs are more likely to proliferate on
the regions of higher substrate concentration, which
are located toward the periphery of the scaffold as pre-
dicted by Hypothesis 1, while the C10 cells are more
inclined to survive on regions of higher substrate con-
centration as predicted by Hypothesis 2.

These conclusions represent only the very beginning
of an elucidation of the enormously complex set of
rules governing how cells behave in a complex environ-
ment such as the decellularized lung scaffold. Never-
theless, they can now be considered notions that have
stood up to the first level of scientific scrutiny, which
provides direction for further mechanistic investigation.
For example, we can now ask what the topographical
substrate on the scaffold might be, the mechanisms by
which C10 cells and MSCs respond to it, and potentially
what might be manipulated on a scaffold to improve the
success of recellularization.

Of course, these conclusions and the questions they
generate are contingent upon the limitations of our com-
putational model and our experiments. Such limitations
are inevitably considerable given the biological complex-
ities of an actual recellularization scenario, the current
paucity of our knowledge about underlying mechanisms
and biological parameters, and the need to make simpli-
fications and approximations in the interests of com-
putational tractability. For example, a decellularized
scaffold is composed of a large number of extracellular
and residual intracellular proteins and proteogly-
cans,14,20 rather than a single functional substrate dis-
tributed as a linear gradient.

Also, because sustained recellularization was ulti-
mately unsuccessful in the experimental system
employed in this study, we consider only the very initial
events in the process, namely cellular attachment,
movement, and proliferation. Eventually the engrafted
cells must differentiate if they are to successfully lead to
a regenerated tissue; so our model will eventually have
to incorporate these events into its rule set when suit-
able experimental data become available.

It is also worth noting that there is still some degree
of heterogeneity in the scaffold following decellulariza-
tion. Studying cellular engraftment on homogeneously
constructed artificial scaffolds might allow for more
precise delineation of the rules of cellular behavior.
On the other hand, the behavior itself might be funda-
mentally altered by an artificial environment; so deter-
mining all the details of the rule sets required for a
realistic agent-based model may eventually require a
combination of both approaches.

Our computational model thus represents a first step
in the objective evaluation of sets of rules of cell gov-
erning the dynamic behavior of cells engrafted onto
decellularized lung scaffolds. This complements other
recent studies on the use of computational modeling
to elucidate cellular behavior such as genetic expression
in individual stem cells,21,22 the role of stem cells in
tumor development and metastasis,23,24 and embryo-
genesis in the pancreas.25

In conclusion, we have developed an agent-based
computational model of cell behavior following en-
graftment onto decellularized lung scaffold environ-
ments. The model suggests that MSCs tend to
proliferate on areas of higher local concentrations of
substrate when there is an increasing concentration
gradient toward the periphery of the scaffold, but with-
out affecting the lifespan. In contrast, the model sug-
gests that C10 cells proliferate uniformly everywhere,
but are more likely to survive on areas of higher sub-
strate concentration. It remains to be seen what the ac-
tual mechanisms are behind these behavioral rules, but
they may suggest where to look.
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