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Abstract
AIM
To investigate the role of regulatory T cell (Treg) 
subsets in the balance between Treg and T helper 17 
(Th17) cells in various tissues from mice with dextran 
sulfate sodium-induced colitis.

METHODS
Treg cel ls, Treg cel l subsets, Th17 cel ls, and 
CD4+CD25+FoxP3+IL-17+ cells from the lamina propria 
of colon (LPC) and other ulcerative colitis (UC) mouse 
tissues were evaluated by flow cytometry. Forkhead box 
protein 3 (FoxP3), interleukin 17A (IL-17A), and RORC 
mRNA levels were assessed by real-time PCR, while 
interleukin-10 (IL-10) and IL-17A levels were detected 
with a Cytometric Beads Array.

RESULTS
In peripheral blood monocytes (PBMC), mesenteric lymph 
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node (MLN), lamina propria of jejunum (LPJ) and LPC 
from UC mice, Treg cell numbers were increased (P  < 
0.05), and FoxP3 and IL-10 mRNA levels were decreased. 
Th17 cell numbers were also increased in PBMC and 
LPC, as were IL-17A levels in PBMC, LPJ, and serum. The 
number of FrI subset cells (CD4+CD45RA+FoxP3low) was 
increased in the spleen, MLN, LPJ, and LPC. FrII subset 
cells (CD4+CD45RA-FoxP3high) were decreased among 
PBMC, MLN, LPJ, and LPC, but the number of FrIII 
cells (CD4+CD45RA-FoxP3low) and CD4+CD25+FoxP3+IL-
17A+ cells was increased. FoxP3 mRNA levels in 
CD4+CD45RA-FoxP3low cells decreased in PBMC, MLN, 
LPJ, and LPC in UC mice, while IL-17A and RORC mRNA 
increased. In UC mice the distribution of Treg, Th17 
cells, CD4+CD45RA-FoxP3high, and CD4+CD45RA-FoxP3low 
cells was higher in LPC relative to other tissues.

CONCLUSION
Increased numbers of CD4+CD45RA-FoxP3low cells may 
cause an imbalance between Treg and Th17 cells that 
is mainly localized to the LPC rather than secondary 
lymphoid tissues.

Key words: Ulcerative colitis; Regulatory T cells; Treg 
cells subsets; T helper 17 cells
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Core tip: The exact etiology and pathology of ulcerative 
colitis (UC) remains unknown. Here we investigated 
the role of regulatory T cell (Treg) subsets in the 
balance between Treg and T helper 17 (Th17) cells in 
various tissues from mice with dextran sulfate sodium-
induced colitis. In this study we found that increased 
numbers of CD4+CD45RA-FoxP3low cells may cause an 
imbalance between Treg and Th17 cells, which was 
mainly localized to the lamina propria of colon rather 
than secondary lymphoid tissues. Based on our findings, 
lamina propria-resident Treg cells appear to play 
important roles in shaping local peripheral tolerance and 
maintaining intestinal homeostasis, and an imbalance of 
Treg and Th17 cells in the lamina propria of the colon is 
critical for UC pathogenesis.

Ma YH, Zhang J, Chen X, Xie YF, Pang YH, Liu XJ. Increased 
CD4+CD45RA-FoxP3low cells alter the balance between Treg 
and Th17 cells in colitis mice. World J Gastroenterol 2016; 
22(42): 9356-9367  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v22/i42/9356.htm  DOI: http://dx.doi.
org/10.3748/wjg.v22.i42.9356

INTRODUCTION
Ulcerative colitis (UC) is a type of inflammatory bowel 
disease (IBD) that affects the colon and is confined to 
the mucosa and superficial submucosa[1]. UC symptoms 
include diarrhea, abdominal pain, and rectal bleeding, 

which can all seriously affect quality of life, and the 
disease is often marked alternating phases of clinical 
relapse and remission. Although the exact etiology and 
pathology of UC remains unknown[2], there is increasing 
evidence that an aberrant immune response is involved 
in this disease[3].

Acquired immunity plays a vital role in UC path­
ogenesis, where in T helper cell-type (Th) 1 and Th2 
immune responses, as well as alternate subsets of T 
cells, such as regulatory T cells (Treg) and T helper 17 
(Th17) cells, contribute to IBD[4,5].

Regulatory T cells belong to a functionally specialized 
subset of CD4+ T cells that maintains immune tolerance 
and homeostasis via cell-cell interactions and secretion 
of interleukin-10 (IL-10) or other anti-inflammatory 
cytokines that inhibit activation of effector T cells[6,7]. 
Notably, Treg cells may play a crucial role in inhibiting 
intestinal inflammation, maintaining immune tolerance, 
and providing protection from colitis[8]. A study by 
Sakaguchi et al[9] demonstrated that Treg cells can be 
divided into three different functional subsets: Resting 
Tregs, FrI (rTreg or CD45RA+Foxp3low); activated Tregs, 
FrII (aTreg or CD45RA-Foxp3high); and non-suppressive 
Tregs, FrIII (CD45RA-Foxp3low). CD4+CD45RA+Foxp3low 
cells are resting Treg cells that upon activation become 
CD4+CD45RA-Foxp3high cells, which are the major 
suppressive cells that can affect immunologic function 
when levels of this subtype decrease. Meanwhile, 
CD4+CD45RA-Foxp3low cells secrete interleukin-17 
(IL-17) and have the potential to become Th17 cells, 
a newly discovered CD4+ T cell subset that lacks 
immunosuppressive function and is characterized by 
interleukin 17A (IL-17A), IL-17F, IL-22, IL-21 secre­
tion[10].

Th17 cells show pleiotropic activities and functions 
that promote immune responses via the adaptive and 
innate immune systems. Like sentinel cells, Th17 cells 
help maintain epithelial barrier function in healthy 
intestines. However, in the presence of chronic intestinal 
inflammation, Th17 cells present IL-23 and show full 
pathogenic and antibacterial functions[11]. Aberrant 
numbers of Th17 cells have been reported to occur 
in colonic LP of the ileum and colon in conventionally 
raised mice, and these cells are highly infiltrated in 
inflamed areas in colitic mice[12].

Furthermore, other studies reported that CD4+ T 
cells can demonstrate enhanced “plasticity” between 
T-cell subsets, such as the IL-17 and Foxp3 double-
expressing (DE) CD4+ T cell population, which is a 
crossover transition between Treg and Th17 cells[13]. 
In IBD patients, the population of circulating IL-17 
and Foxp3 DE CD4+ T cells is increased. Furthermore, 
the finding that IL-17 and Foxp3 DE CD4+ T-cell 
populations co-express related orphan receptor-γt 
(RORγt) and Foxp3 suggests that Treg cells can convert 
to Th17 cells that have decreased suppressive function 
that is characteristic of CD4+Foxp3+ T lymphocytes[14]. 
Indeed, in our earlier study of scleroderma patients, 
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we identified a CD4+CD45RA-Foxp3low cell subset that 
had no suppressive function and co-expressed RORγt 
and Foxp3[15].

Here we examined Treg, Treg subsets, and Th17 
cells in tissues from UC mice. We found abnormal 
proportions of these cells and a cell population that 
co-expressed FoxP3 and RORC mRNA, which may 
represent a crossover transition of Th17 and Treg cells 
that is related to an imbalance of Treg cells and Th17 
cells in dextran sulfate sodium (DSS)-induced colitis.

MATERIALS AND METHODS
Mice
Male C57BL/6 mice (aged 6-8 wk; 20-22 g) were 
obtained from the Center for Animal Resource and 
Development (Weitonglihua Company, Beijing, China). 
All mice were maintained on a 12 h/12 h light/dark 
cycle under specific pathogen-free conditions. All 
animal procedures and stress protocols were approved 
by the Institutional Animal Care and Committee of 
Beijing Chaoyang Hospital, Capital Medical University.

Mouse model of colitis
The healthy control (HC) mice drank distilled water for 
14 d, while the UC mice drank distilled water supple­
mented with 2.5% w/v (DSS, MW = 40000-50000, MP 
Biomedical, United States) for 7 d followed by 7 d of 
drinking water alone. The mice were sacrificed on the 
14th d. DSS-induced colitis was characterized by higher 
disease activity index that included changes in body 
weight, stool consistency, and the presence of blood in 
the stool[16].

Histopathological evaluation
Histopathological evaluation was performed as described 
previously[17]. Mouse colons were extracted immediately 
after sacrifice and examined for macroscopic damage. 
The resected colons were fixed in 10% neutral buffered 
formalin, embedded in paraffin, and stained with 
hematoxylin-eosin for evaluation.

Antibodies and reagents
Anti-mouse rat antibodies (conjugated with FITC, PE, 
PE-Cyanine7, PE-CF594, PerCP, APC, Alexa Fluor® 488, 
and BV510 as indicated) used in this study were: CD4-
PerCP (L3T4, BD Pharmingen™, United States), CD25-
APC (IL-2 Receptor α chain, BD Pharmingen™, United 
States), FoxP3-PE-Cyanine7 (JM2, eBioscience, United 
States), CD45RA-PE (BD Pharmingen™, United States), 
IL-17-Alexa Fluor® 488 (BD Pharmingen™, United 
States), CD3e-PE-CF594 (CD3ε chain, BD Horizon™, 
United States), CD8a-BV510 (Ly-B, BD Horizon™, 

United States). In all experiments, a control antibody 
of the respective IgG isotype was included. Leukocyte 
Activation Cocktail (BD Pharmingen™, United States), 
RNeasy Micro Kit (QIAGEN, Germany), FastQuant RT 
Kit (TIANGEN, China), SuperReal PreMix Plus (TIANGEN, 

China), and the Mouse Th1/Th2/Th17 Cytokine kit (BD 
Biosciences, United States) were used according to the 
manufacturer’s instructions.

Flow cytometry cell analysis
Peripheral blood (PBMC), spleen, mesenteric lymph 
node (MLN), lamina propria of jejunum (LPJ), and 
lamina propria of colon (LPC) from UC and HC mice 
were collected and mononuclear cells were prepared. 
The cells were then incubated with CD4, CD25, and 
CD45RA antibodies in the dark at room temperature for 
15 min. Intracellular FoxP3 staining was subsequently 
performed according to the manufacturer’s instruc­
tions. Intracellular cytokine production was detected 
after stimulation of 1 × 106 cells with 2 μL Leukocyte 
Activation Cocktail (BD Pharmingen™, United States) 
for 4.5 h. Cells were then incubated with CD4, CD25, 
and CD45RA and stained with antibodies against 
FoxP3 and IL-17 after fixation and permeabilization 
(eBioscience, United States). Images of stained cells 
were acquired using a Gallios flow cytometer (Beckman 
Coulter, United States) and analyzed with Kaluza v1.20 
software.

Cell sorting 
Mononuclear cells extracted from PBMC, spleen, MLN, 
and jejunum and colon LP were stained with CD4, 
CD25, and CD45RA antibodies before sorting with a 
FACS AriaII flow cytometer (BD Biosciences, United 
States). 

Real-time PCR 
Total RNA was extracted from 2-10 × 103 sorted Treg 
cells and CD4+CD45RA-Foxp3low cells from UC and 
HC mice using an RNeasy Micro Kit (QIAGEN). The 
RNA was then reverse-transcribed to obtain cDNA 
(FastQuant RT Kit, TIANGEN). Real-time PCR was 
performed with a SYBR green assay (SuperReal PreMix 
Plus, TIANGEN) using the ABI 7500 system (Applied 
Biosystems) with a GAPDH-Primer (PMM04) and other 
primers listed in Table 1.

Cytokine detection
IL-10 and IL-17A levels secreted by mononuclear cells 
from PBMC, spleen, MLN, LPJ, and LPC samples were 
determined using the Mouse Th1/Th2/Th17 Cytokines 
kit (BD Biosciences) according to the manufacturer’s 
instructions. Serum IL-17A levels were also assessed 
using the same method. In addition, IL-10 and IL-17A 
levels were examined using a BD FACScanto II flow 
cytometer (BD Biosciences, United States).

Statistical analysis
Data were analyzed with the SPSS v18.0 statistics 
package (IBM, United States). Variables were summa­
rized as counts and percentages or as medians and 
ranges. Independent samples t-test and nonparametric 
Mann-Whitney U tests were used to compare data 
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(P < 0.0001, respectively), and LPC and LPJ had no 
differences (P > 0.05) (Figure 2D). Meanwhile, in HC 
mice Th17 cell numbers in both LPJ were increased 
compared with LPC, MLN, spleen, and PBMC (P < 
0.0001), as were Th17 cell numbers in LPC relative to 
those for MLN, spleen, and PBMC (P < 0.0001), but 
MLN, spleen, and PBMC showed no differences among 
samples (P > 0.05) (Figure 2D).

CD4+CD45RA-FoxP3low cell numbers increased and 
CD4+CD45RA-FoxP3high cell numbers decreased in LPC 
of DSS colitis mice
In samples from DSS colitis mice the number of 
CD4+CD45RA+FoxP3low was increased in spleen, MLN, 
LPJ, and LPC (P = 0.0020, P = 0.0050, P = 0.0010, P 
< 0.0010, respectively), but not in PBMC (P = 0.1170) 
(Figure 3A). Meanwhile, CD4+CD45RA+FoxP3low cell 
numbers in colon LP were also obviously increased 
compared to MLN, spleen, PBMC, and LPJ (P < 0.0001, 
P < 0.0001, P = 0.0013, P < 0.0001, respectively), 
which all showed similar levels (P > 0.05) (Figure 3E). 
In HC mice, CD4+CD45RA+FoxP3low cell numbers in LPC 
were obviously increased compared to MLN, spleen, 
PBMC, LPJ (P = 0.0033, P = 0.0081, P = 0.0010, P 
< 0.0001, respectively), with spleen and LPJ showing 
similar levels (P > 0.05).

In DSS colitis mice, the number of CD4+CD45RA-

FoxP3high in PBMC, MLN, LPJ, and LPC samples 
was lower than that for HC mice (P = 0.0060, P = 
0.0000, P = 0.0000, P = 0.0250, respectively), but 
spleen tissues were similar (P = 0.3980) (Figure 
3A). CD4+CD45RA-FoxP3high cell numbers in LPC from 
UC mice were also increased compared to those for 
spleen, LPJ, MLN, and PBMC (P < 0.0001, P = 0.0003, 
P < 0.0001, P < 0.0001, respectively), with the latter 
two samples showing similar values (P > 0.05) (Figure 
3E). In HC mice, CD4+CD45RA-FoxP3high cell numbers 
in LPC were increased relative to spleen, LPJ, MLN, and 
PBMC (P = 0.0026, P = 0.0322, P = 0.0002, P = 0.0002, 
respectively), with MLN and PBMC again having similar 
numbers (P > 0.05).

CD4+CD45RA-FoxP3lowcell numbers were increased 
among multiple PBMC, MLN, LPJ, and LPC samples 
from DSS colitis mice (P = 0.0010, P = 0.0330, P = 
0.0420, P < 0.0010, respectively), but not in spleen 
(P = 0.248) (Figure 3A). In both DSS colitis and HC 
mice, CD4+CD45RA-FoxP3low cell numbers in LPC were 
increased relative to those for MLN, spleen, LPJ, and 
PBMC (P < 0.0001, P = 0.0005, P < 0.0001, P < 0.0001, 
respectively in DSS colitis; P = 0.0002, P = 0.0175, P 

between groups. P values less than 0.05 were consi­
dered to be statistically significant.

RESULTS
Treg cell numbers in DSS colitis Mice increased 
concurrently with lamina propria functional defects
To investigate the roles of Treg cells in DSS colits mice, 
we compared the levels of Treg, FoxP3 mRNA, and 
IL-10 from different samples including PBMC, MLN, 
spleen, LPJ, and LPC isolated from HC and DSS colitis 
mice. Treg levels increased in PBMC, MLN, LPJ, and LPC 
samples from DSS colitis mice (P < 0.0001, P = 0.0399, 
P = 0.0151, P = 0.0001, respectively) (Figure 1A, B). 
In contrast, FoxP3 mRNA expression (P = 0.0016, P 
= 0.0062, P = 0.0291, P = 0.0325, respectively) and 
IL-10 levels (P = 0.0091, P = 0.0353, P = 0.0002, P = 
0.0012, respectively) in Treg cells from DSS colitis mice 
decreased relative to the HC (Figure 1C, D). Meanwhile, 
spleen tissue from DSS colitis and HC groups showed 
no difference in the number of Treg cells, FoxP3 mRNA 
expression, and IL-10 levels (P > 0.05) (Figure 1A-D).

In LPC from DSS colitis mice, Treg cell numbers 
were increased compared to that of MLN, spleen, LPJ, 
and PBMC (P = 0.0005, P = 0.0002, P = 0.0002, P = 
0.0001, respectively), while MLN, spleen, PBMC, and 
LPJ showed no difference in Treg numbers (P > 0.05) 
(Figure 1E). Similarly, in HC mice Treg cell numbers in 
LPC were increased compared to those in spleen, MLN, 
PBMC, and LPJ (P = 0.0105, P = 0.0006, P < 0.0001, 
P = 0.0002, respectively), with the latter two samples 
showing similar numbers with no significant differences 
(P > 0.05) (Figure 1E).

Th17 cell numbers increased in PBMC and LPC from 
DSS colitis mice
Given the contribution of Th17 cells to inflammatory 
responses, we next assessed Th17 numbers in DSS 
colitis mice. There were increased numbers of Th17 
cells in PBMC and colon compared to HC (P = 0.0338, 
P = 0.0004), although spleen, MLN, and showed no 
differences in Th17 cell numbers between HC and 
DSS colitis mice (P > 0.05) (Figure 2A, B). In culture 
supernatants of PBMC, LPJ, and serum, IL-17A levels 
were increased compared with HC (P = 0.0063, P 
= 0.0064, P = 0.0016, respectively), while those of 
spleen, MLN, and LPC were similar (P > 0.05) (Figure 
2C).

In DSS colitis mice, Th17 cell numbers in LPC were 
also increased compared to MLN, spleen, and PBMC 

Table 1  Real-time polymerase chain reaction primer sequences

Primers Forward (5'-3') Reverse (5'-3')

GAPDH mRNA GGTTGTCTCCTGCGACTTCA TGGTCCAGGGTTTCTTACTCC
FoxP3 mRNA CTGCCTTGGTACATTCGTGA CAGATGTTGTGGGTGAGTGC
IL-17 mRNA CTGTGTCAATGCGGAGGGAA CGACCCTGAAAGTGAAGGGG
RORC mRNA ACGGCCAACTTACTCTTGGA AGAAACTGGGAATGCAGTGG
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= 0.0003, P < 0.0001, respectively in HC), and MLN, 
spleen, and LPJ showed no difference between DSS 
colitis and HC mice (P > 0.05) (Figure 3E).

We also evaluated levels of FoxP3, IL-17A, and 
RORC mRNA in CD4+CD45RA-FoxP3low cells isolated 
from HC and DSS colitis mice. Compared to HC mice, 
in DSS colitis mice FoxP3 mRNA expression was 
decreased among PBMC, MLN, LPJ, and LPC samples (P 
= 0.0286, P = 0.0284, P = 0.0121, P = 0.0002) (Figure 
3B). IL-17A and RORC mRNA from DSS colitis mice 

was increased among the above samples compared 
to HC mice (IL-17 mRNA: P = 0.0150, P = 0.0278, P 
= 0.0247, P = 0.0357; RORC mRNA: P = 0.0369, P = 
0.0128, P = 0.0101, P = 0.0016, respectively), but we 
saw no difference in spleen values (P > 0.05) (Figure 
3C and D).

CD4+CD25+FoxP3+IL-17A+ cell numbers were higher in 
LPC and LPJ from DSS colitis mice
The number of CD4+FoxP3+IL-17A+ cells was higher in 

Figure 1  Treg cell features in multiple samples including peripheral blood monocytes, spleen, mesenteric lymph node, lamina propria of jejunum and 
colon. A: Representative FACS analysis of Treg cells from HC and UC mice samples gated for CD4+ T cells; B: Treg cell percentages in HC and UC samples; C: 
Expression of FoxP3 mRNA extracted from Treg cells in HC and UC samples; D: Levels of IL-10 secreted from mononuclear cells from HC and UC peripheral blood 
monocytes (PBMC), spleen, mesenteric lymph node (MLN), LPJ, and LPC samples; E: Treg cell distribution in HC and UC samples. aP < 0.05 vs control, bP < 0.01 vs 
control, cP < 0.001 vs control, dP < 0.05 vs LPC, eP < 0.01 vs LPC, fP < 0.001 vs LPC. HC: Healthy control mice; UC: Ulcerative colitis mice; LPJ: Lamina propria of 
jejunum; LPC: Lamina propria of colon.
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DSS colitis mice among multiple samples containing 
PBMC, MLN, LPJ, and LPC (P = 0.0161, P = 0.0037, P 
< 0.0001, P = 0.0001, respectively), but not in spleen (P 
> 0.05) (Figure 4A and B). In DSS colitis mice LPC, the 
levels of CD4+CD25+FoxP3+IL-17A+ cells were obviously 
increased compared with spleen, MLN, and PBMC (P = 
0.0004, P < 0.0001, P < 0.0001, respectively), while 

there were no differences between MLN and PBMC 
(P > 0.05), or LPJ and LPC (P > 0.05). In HC mice, 
CD4+CD25+FoxP3+IL-17A+ cell numbers were increased 
in LPC compared to those for LPJ, MLN, and PBMC (P 
= 0.0193, P = 0.0008, P = 0.0014, respectively), but 
the numbers in spleen and LPC were similar (P > 0.05), 
and there were no differences between MLN and PBMC 
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(P > 0.05) (Figure 4D).
When we excluded CD4+CD25+FoxP3+IL-17A+ 

cells from the total number of Treg cells, our results 
showed that CD4+FoxP3+IL-17A- cell numbers were 
similar between multiple PBMC, spleen, MLN, LPJ, and 
LPC samples from HC and DSS colitis mice (P > 0.05) 
(Figure 4A and C).

DISCUSSION
Treg cells are anti-inflammatory cells that secrete the 
anti-inflammatory cytokine IL-10 and inhibit effector 
T cell proliferation through cell-cell interactions[18,19]. 

Upon Treg-specific IL-10 ablation, mice spontaneously 
develop signs of colitis, illustrating the key role of 
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Treg-derived IL-10 in maintaining intestinal health[20]. 

Meanwhile, high levels of the transcription regulation 
factor Forkhead box protein 3 (FoxP3) that is encoded 
by FoxP3 mRNA[21] enhance the immunosuppressive 
function of Treg cells[22]. In our study, we established 
the 2.5% DDS-induced colitis, among the common 
models of mice colitis: 2,4,6-trinitro benzene sulfonic 
acid, oxazolone and dextran sodium sulfate (DSS) 

colitis. Of which the DSS-induced colitis colitis was 
sample and repetitive[16]. Moreover it resembles the 
clinical course of human UC occurs frequently in the 
chronic phase of DSS-induced colitis[23]. Here we 
observed an increase in Treg cell numbers in UC mice, 
but this increase likely does not inhibit inflammatory 
responses given results from previous studies showing 
the presence of excessive inflammation in the intestines 
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of UC patients[24,25]. Instead, the decreased expression 
of IL-10 and FoxP3 mRNA in Treg cells from UC mice 
suggested that Treg cells in these animals may have 
functional defects that contribute to UC morbidity.

In response to various cytokines such as IL-6 and 
TGF-β, CD4+ cells differentiate to Treg or Th17 cells, 
which have opposite functions and thus a balance 
between these populations is essential. Similar to Treg 
cells in the UC mice, Th17 cell numbers increased in 
both PBMC and LPC samples from UC mice, and IL-17A 
cytokine levels in PBMC and serum were concurrently 
increased. These results suggest the presence of 
a hyperactive inflammatory response in the colon 
mucosa of UC animals[ 26-28], and also that impaired Treg 
cell function as well as an imbalance between Treg and 
Th17 cell populations could be involved in inappropriate 
immune responses in UC.

Aberrant immune responses that can result from 
Treg and Th17 imbalances are a feature of autoimmune 
diseases[29,30], although the underlying mechanisms 
that promote these imbalances are unclear. On the one 
hand, there is heterogeneity in among the Treg cell 
population. Thus, we explored whether Treg subsets 
contribute to immune imbalance seen in UC mice. In 
our study, the number of CD4+CD45RA-FoxP3high cells, 
which are activated Treg cells that display immunosup­
pressive capacity, was decreased in UC. CD4+CD45RA-

FoxP3high cells were previously shown to have higher 
levels of IL-10 transcription[31], and together with 
the decreased expression of FoxP3 mRNA and IL-10 
in Treg cells observed here, supports that the low 
levels of CD4+CD45RA-FoxP3high cells contribute to 
immunosuppressive function of Treg cells in UC.

CD4+CD45RA+FoxP3low cells are resting Treg cells 
that act as as a reserve of cells that can be activated 
and differentiate into CD4+CD45RA-FoxP3high cells. 
There is a tight balance between the continuous 
development of CD4+CD45RA-FoxP3high cells from 
activated and proliferating CD4+CD45RA+FoxP3low 

cells and CD4+CD45RA-FoxP3high cell death after 
exerting suppressive effects[9,15]. Here we observed 
an increase in CD4+CD45RA+FoxP3low cells alongside 
the decrease in CD4+CD45RA-FoxP3high cells. From 
these results we inferred that UC mice have defects in 
CD4+CD45RA+FoxP3low to CD4+CD45RA-FoxP3high cell 
conversion that could affect CD4+CD45RA-FoxP3high cell 
replenishment.

On the other hand, we observed a concurrent 
increase in CD4+CD45RA-FoxP3low cells and decrease in 
CD4+CD45RA-FoxP3high cells. Earlier studies suggested 
that FoxP3 expression determines Treg lineage and is 
required for the suppressive function of these cells[32]. 
FoxP3 expression downregulates expression of the 
retinoic acid receptor-RORγt, which is the lineage-
defining transcription factor for Th17 cells, and in turn 
contributes to the inhibition of Th17 differentiation[33,34]. 
However, a more recent study by Voo et al[35] doc­
umented FOXP3/RORC double-positive cells in 
peripheral blood and in lymphoid organs from healthy 

human volunteers. Moreover, FoxP3+IL-17A+ double-
positive cells appear to be the crossover cells that 
can differentiate into Th17 cells in response to lower 
amounts of TGF-β together with the presence of IL-6 
or IL-21[36,37]. These FoxP3+IL-17A+ double-positive cells 
also exist in several autoimmune diseases, including 
allergic rhinitis, psoriasis, and IBD[38], and several 
studies demonstrated that FOXP3+IL-17+cells can 
indeed differentiate into Th17 cells in the periphery[35,39]. 
Meanwhile, FrIII cells can differentiate into Th17 cells 
that have no immunosuppressive function[9]. Our 
results also showed that, relative to HC mice, UC mice 
have increased numbers of both CD4+CD45RA-FoxP3low 

cells and FoxP3+IL-17A+ double-positive cells, especially 
in LPC and LPJ samples. Furthermore, we showed that 
these CD4+CD45RA-FoxP3low cells co-expressed FoxP3 
and RORC mRNA, which, together with the increased 
expression levels of IL-17A mRNA, confer on these cells 
the characteristics of FOXP3+IL-17+ double-positive 

cells. Thus, we inferred that CD4+CD45RA-FoxP3low cells 
acquired the ability to express RORC in the periphery, 
and have the potential to differentiate into Th17 cells 
that lack suppressive activity.

CD4+ Treg cells are composed of two major popu­
lations: Thymus-derived Treg cells, or natural Tregs 
(nTregs), and peripherally derived Treg cells, or induced 
Tregs, which are generated in the periphery[40,41]. 

To extend the study of functional Treg subsets into 
non-lymphoid tissues, unique tissue-resident Treg 
populations have been identified and characterized, 
such as Treg in visceral adipose tissu[42], in skin[43], in 
skeletal muscle[44], in lung[45], liver[46], and pancreas[47]. 
Recent evidence suggests that environmental signals 
found in peripheral non-lymphoid tissues promote 
the development of tissue-specific Treg cell subsets. 
Although the proportion of tissue-specific Treg cell 
subsets within tissues is difficult to determine due 
to differences between inflammatory and steady-
state conditions[48] accumulating evidence suggests 
that Treg cells are highly responsive to their local 
environment. The gut contains a large reservoir of 
both secondary lymphoid tissue-resident Treg cells 
and non-lymphoid tissue-resident Treg cells[49]. The 
development of lamina propria-resident Treg cells 
differs from that for secondary lymphoid tissue Treg 
cells[50,51], in that lamina propria Treg cells respond to 
unique environmental signals that are generated in 
response to products of commensal bacteria[52,53]. As 
such, we further evaluated differences in Th17, Treg, 
and Treg cells subtypes in LPC and LPJ, spleen, MLN, 
and PBMC in UC and HC mice. In this study, there were 
more Treg in the colon relative to other tissues, while 
the jejunum showed the highest number of Th17 cells, 
even in UC mice. Round et al[52] also found that in B6 
mice, distribution of Th17 cells is duodenum > jejunum 
> ileum > colon, while Treg cells were most abundant 
in the colon and scarce in the duodenum. This regional 
difference is associated with the T cell/APC ratio, 
especially CD11c(+)CD11b(+)CD103(+) dendritic 
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cells. Our results showed that all Tregs and the three 
Treg subsets were more frequent in the LPC relative to 
other secondary lymphoid tissue and PBMC in both UC 
and HC mice. In addition, the number of Treg cells in 
spleen tissue from both UC and HC mice was similar, 
suggesting that lamina propria-resident Treg cells rather 
than secondary lymphoid tissue Treg cells are involved 
in UC pathogenesis. Since UC is an organ-specific 
autoimmune disease, the Treg cells in PBMC likely 
would not reflect the characteristics of UC. Moreover, 
relative to HC, the number of CD4+CD45RA-FoxP3high 
cells in the LPC and LPJ of UC mice was decreased, 
although the numbers were similar in spleen samples. 
The increased number of CD4+CD45RA-FoxP3low and 
CD4+CD25+FoxP3+IL-17+ cells mainly occurred in the 
LPC in UC mice. As such, we inferred that the abnormal 
differentiation of active Treg cells occurred in local 
tissues and not secondary lymphoid tissues.

In summary, decreased numbers of CD4+CD45RA-

FoxP3high cells together with a reserve of abnormal of 
CD4+CD45RA+FoxP3low cells and increased numbers 
of non-suppressive CD4+CD45RA-FoxP3low cells, 
could present a potential source of Th17 cells that 
lack suppressive capacity and are an important 
characteristic of UC mice. These characteristics may 
contribute to an imbalance between Treg and Th17 
cells and the increased numbers of functional Treg 
cells. Thus, lamina propria-resident Treg cells appear 
to play important roles in shaping local peripheral 
tolerance and maintaining intestinal homeostasis, and 
an imbalance of Treg and Th17 cells in the lamina 
propria of the colon is critical for UC pathogenesis.

COMMENTS
Background
Ulcerative colitis (UC) is a type of inflammatory bowel disease that affects the 
colon and is confined to the mucosa and superficial submucosa. UC symptoms 
include diarrhea, abdominal pain, and rectal bleeding, which can all seriously 
affect quality of life, and the disease is often marked alternating phases of 
clinical relapse and remission.

Research frontiers
The exact etiology and pathology of UC remains unknown, there is increasing 
evidence that an aberrant immune response is involved in this disease. 
Morbidity often involves an imbalance between T helper 17 (Th17) cells and 
regulatory T cells (Treg).

Innovations and breakthroughs
In this study, the authors investigated the role of Treg cell subsets in the 
balance between Treg and Th17 cells in various tissues from mice with dextran 
sulfate sodium (DSS)-induced colitis.

Applications 
It is believed that this study will be of great interest to scientists and critical 
pathogenesis for UC, and as well as clinicians studying UC.

Terminology
Regulatory T cells belong to a functionally specialized subset of CD4+ T cells, 
which can be divided into three different functional subsets: Resting Tregs, FrI 
(rTreg or CD45RA+Foxp3low); activated Tregs, FrII (aTreg or CD45RA-Foxp3high); 

and non-suppressive Tregs, FrIII (CD45RA-Foxp3low). FrI cells are resting Treg 
cells that upon activation become FrII cells, which are the major suppressive 
cells. Meanwhile, FrIII cells secrete interleukin-17 (IL-17) and have the potential 
to become Th17 cells, a newly discovered CD4+ T cell subset that lacks 
immunosuppressive function and is characterized by interleukin 17A, IL-17F, 
IL-22, IL-21 secretion.

Peer-review
The authors demonstrated that increased numbers of CD4+CD45RA-FoxP3low 
cells may cause an imbalance between Treg and Th17 cells that is mainly 
localized to the lamina propria of colon rather than secondary lymphoid tissues. 
The present study was well organized and well investigated. To improve the 
quality of this paper, the authors should revise it according to the following 
suggestions: (1) the authors used a DSS colitis as a model of UC. Don’t use 
the “UC” in the result session. It is more suitable to use “DSS colitis” instead of 
“UC” throughout the result session; and (2) to confirm the role of CD4+CD45RA-

FoxP3low cells in the pathogenesis in DSS colitis, the authors should show the 
time-course changes of these cells.
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