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Abstract
AIM
To investigate the potential of implanting pseudoislets 
formed from human insulin-releasing β-cell lines as an 
alternative to islet transplantation. 

METHODS
In this study, the anti-diabetic potential of novel human 
insulin releasing 1.1B4 β-cells was evaluated by im-
planting the cells, either as free cell suspensions, or as 
three-dimensional pseudoislets, into the subscapular 
region of severe combined immune deficient mice 
rendered diabetic by single high-dose administration 
of streptozotocin. Metabolic parameters including food 
and fluid intake, bodyweight and blood glucose were 
monitored throughout the study. At the end of the 
study animals were given an intraperitoneal glucose 
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tolerance test. Animals were then culled and blood and 
tissues were collected for analysis. Insulin and glucagon 
contents of plasma and tissues were measured by insulin 
radioimmunoassay and chemiluminescent enzyme-linked 
immunosorbance assay respectively. Histological analyses 
of pancreatic islets were carried out by quantitative 
fluorescence immunohistochemistry staining. 

RESULTS
Both pseudoislet and cell suspension implants yielded 
well vascularised β-cell masses of similar insulin content. 
This was associated with progressive amelioration of 
hyperphagia (P  < 0.05), polydipsia (P  < 0.05), body 
weight loss (P  < 0.05), hypoinsulinaemia (P  < 0.05), 
hyperglycaemia (P  < 0.05 - P  < 0.001) and glucose 
tolerance (P  < 0.01). Islet morphology was also 
significantly improved in both groups of transplanted 
mice, with increased β-cell (P  < 0.05 - P < 0.001) and 
decreased alpha cell (P  < 0.05 - P  < 0.001) areas. 
Whereas mice receiving 1.1B4 cell suspensions eventually 
exhibited hypoglycaemic complications, pseudoislet 
recipients displayed a more gradual amelioration of 
diabetes, and achieved stable blood glucose control 
similar to non-diabetic mice at the end of the study. 

CONCLUSION
Although further work is needed to address safety 
issues, these results provide proof of concept for possible 
therapeutic applicability of human β-cell line pseudoislets 
in diabetes. 

Key words: Human β-cell line; 1.1B4; Cell therapy; Insulin; 
Pseudoislets
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Core tip: Human insulin-releasing 1.1B4 β-cell suspensions 
and psuedoislets were implanted in streptozotocin-
diabetic severe combined immune deficient mice to 
assess their antidiabetic potential. Both cell configurations 
yielded vascularised, insulin positive β-cell masses. 
These were associated with beneficial effects on 
hyperphagia, polydipsia, body weight, hypoinsulinaemia, 
hyperglycaemia and glucose tolerance. Both treatments 
were also associated with significant improvements in 
islet morphology and increased β:a-cell ratio. Pseudoislet 
recipients displayed gradual glucose normalization, while 
cell suspension recipients ultimately presented with 
hypoglycaemic complications. These results provide proof 
of concept for possible clinical artificial human β-cell 
psuedoislets, although further work is needed to address 
the tumourigenicity of clonal cell-lines. 
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INTRODUCTION
Type 1 diabetes mellitus (T1DM) is caused by autoi
mmune mediated destruction of insulin producing βcells 
in the pancreatic islets[1]. Uncontrolled hyperglycaemia 
leads to debilitating and in some cases lifelimiting 
complications including retinopathy, nephropathy, 
neuropathy and metabolic ketoacidosis[25]. Protection 
against these ailments by insulin injections requires 
frequent monitoring of blood glucose to prevent over 
 or underdosage. Hypoglycaemic episodes are not 
uncommon especially in brittle diabetes where patients 
often exhibit hypoglycaemia unawareness resulting in 
dangerous iatrogenic hypoglycaemia[6]. Cellular delivery 
of insulin achieved by replacement of pancreatic βcells 
can help manage diabetes and in some cases eliminate 
the need for exogenous insulin therapy[7]. 

At present, the two methods employed to replace 
lost βcells in T1DM are pancreatic transplantation 
(PTx) and islet transplantation (ITx)[8]. PTx involves 
an invasive procedure performed in combination with 
kidney transplantation and necessitates chronic immuno
suppression to prevent graft rejection[9,10]. In contrast, ITx 
represents a less invasive alternative to PTx where islets 
are isolated by enzymatic digestion of donor pancreata 
and then administered to the recipient by percutaneous 
infusion into the liver via the portal vein[8]. While less 
risky than whole organ transplantation, ITx is limited 
by the requirement for immunosuppression to prevent 
rejection and promote longterm islet graft functionality 
but the majority of patients still revert to insulin use 
within five years of treatment[11,12]. Nevertheless, ITx can 
provide temporary insulin independence and even partial 
graft function can prevent dangerous hypoglycaemic 
events[8,13,14]. Unfortunately, pancreatic donors are scarce 
and current practices often require use of islets from two 
or more separate donors. This practice is not practical 
on a large scale and so there is a great impetus to find 
alternative solutions especially given that implant function 
also frequently fails with time[8].

One approach to providing a sustainable supply of 
insulin releasing tissue for transplantation is to generate 
insulinproducing cells from stem cells or to engineer 
celllines which mimic the functional response of normal 
human pancreatic βcells[1518]. Over the years, many 
rodent βcell lines have been created by methods 
such as exposure of primary rodent βcells to radiation 
or transfection with oncogenic viral vectors such as 
SV40[1924]. While such celllines have proven invaluable in 
basic islet research their xenogeneic properties limit their 
therapeutic utility. Consequently, more recent endeavours 
have been focused on the creation of insulinreleasing 
celllines from human βcells[25,26]. Unfortunately, this has 
proven to be extremely difficult as human βcells tend 
to proliferate poorly and undergo rapid dedifferentiation 
when cultured in vitro. The majority of attempts to 
develop stable human βcell lines have yielded cells 
with limited glucose sensitivity or insufficient insulin 



525 November 15, 2016|Volume 7|Issue 19|WJD|www.wjgnet.com

content[2732]. 
Extensive functional studies using the novel human 

βcell line 1.1B4 created by the electrofusion of freshly 
isolated human βcells with immortal PANC1 epithelial 
partner cells have demonstrated that 1.1B4 cells possess 
intact cellular mechanisms for insulin production and 
secretion, and that they are responsive to glucose and 
other modulators of insulin secretion[25]. The cells also 
appear to possess similar cytoprotective mechanisms to 
primary βcells[3335]. 

Like many βcelllines, 1.1B4 cells spontaneously 
form three dimensional pseudoislets after 5 to 7 d when 
grown in suspension culture. These pseudoislets are 
morphologically similar to isolated primary islets and 
show increased expression of cellcell communication 
genes together with remarkable potentiation of insulin 
secretory responses to glucose and other secretagogues 
in vitro[25,36]. Moreover, 1.1B4 cells showed significantly 
enhanced resistance to cytotoxicity when configured as 
pseudoislets compared to monolayers[37]. Transplantation 
of cells configured as pseudoislets may represent an 
attractive model to improve graft survival, function and 
resistance to hyperglycaemia. In the present study 
the ability of human insulin secreting 1.1B4 cells, ad
ministered as single cell suspensions or pseudoislets, 
to rescue diabetes and restore blood glucose control 
was studied using severe combined immunodeficient 
(SCID) mice rendered diabetic by administration of 
streptozotocin (STZ). These immunodeficient mice were 
used to prevent rejection of human 1.1B4 cell implants. 

MATERIALS AND METHODS
Cell culture and pseudoislet formation
The generation and characterisation of the human 1.1B4 
βcell line has been described previously[25]. The cells 
were maintained at 37 ℃ with 5% CO2 in RPMI1640 
media (Gibco® Invitrogen, Paisley, United Kingdom) 
containing 11.1 mol/L glucose and 2.0 mol/L Lglutamine 
supplemented with 10% (v/v) foetal calf serum (Gibco
® Invitrogen, Paisley, United Kingdom) and antibiotics 
(100 U/mL penicillin and 0.1 g/L streptomycin) (Gibco® 
Invitrogen, Paisley, United Kingdom). Cells were given 
fresh media every 23 d as necessary and were routinely 
used from passage 2535. The cell line is available to 
purchase from SigmaAldrich (Dorset, United Kingdom). 
To form pseudoislets, 1.1B4 cells were seeded at a 
density of 1 × 105 cells/well into ultralowattachment, 
sixwell, flatbottomed plates (Corning Inc., NY, United 
States) with 5mL/well culture medium. Cells typically 
formed threedimensional pseudoislet clusters, each 
comprising 50006000 cells, within 57 d of seeding[37].

Animal and surgical procedures
Adult female SCID mice (1520 wk) were bred and 
maintained under specific pathogen-free conditions in the 
Biomedical and Behavioral Research Unit (BBRU) at Ulster 
University, Coleraine. Food and water were provided ad 

libitum unless specified otherwise. Diabetes was induced 
by intraperitoneal administration of streptozotocin 
(165 mg/kg) after an 8 h fast. Hyperglycaemia was 
controlled with intensive insulin therapy (15 mg/kg body 
weight intraperitoneal bovine insulin every 8 h) prior to 
and during the early engraftment period as indicated in 
the Figures. Suspensions of 1.1B4 cells (1 × 107 cells/
mL) were administered in 500 µL serumfree Roswell 
park memorial institute (RPMI) medium subscapularly 
into adipose tissue deposit at back of the neck using a 
25G needle. For pseudoislet implantation, harvested 
pseudoislets were resuspended at a density of 2000 
pseudoislets per ml and 500 µL was injected to the same 
location using an 18G needle. Control mice received 
vehicle only. Food intake, water intake and body weight 
were monitored daily while blood glucose was measured 
once every 3 d using Ascensia contour glucose strips 
(Bayar, Uxbridge, United Kingdom). At the end of the 
study, glucose tolerance was determined by measuring 
blood glucose and plasma insulin levels after glucose 
administration (18 mmol/kg bw i.p.) at 0 and 15, 30, 60, 
90 and 120 min. Finally, terminal blood samples were 
collected and implants and pancreata were collected 
for both histology and hormone content assessment. 
Timeline of the procedures is depicted in Figure 1. All 
animal procedures were performed in adherence to 
the United Kingdom home office regulations (United 
Kingdom Animal Scientific Procedures Act 1986) and 
“Principles of laboratory animal care” (NIH Publication no 
8623, revised 1985).

Biochemical assays
Lysates of excised cell masses and pancreata were 
prepared by overnight extraction at 4 ℃ with acid ethanol 
(ethanol 75% v/v, water 23.5% v/v and concentrated HCl 
1.5% v/v). Protein contents were determined by Bradford 
assay. Insulin was determined by radioimmunoassay as 
described previously[38]. Glucagon was determined using 
glucagon chemiluminescent assay (EZGLU30K, Millipore, 
MA, United States) following manufacturer’s instructions. 
Glucose in plasma samples was determined using an 
Analox GM9 glucose analyzer (Analox, London, United 
Kingdom).

Immunohistochemistry
For peroxidase immunostaining, dewaxed and rehydrated 
sections were blocked in 0.3% (v/v) H2O2 in 50% (v/v) 
methanol for 30 min to quench endogenous peroxidase 
activity, before incubation at 95 ℃ in citrate buffer (pH 
6.0) for antigen retrieval. After cooling, sections were 
incubated at 4 ℃ with mouse anti insulin antibody (1:1000, 
Abcam, United Kingdom) overnight, and then incubated 
with ImmPRESS HRP anti mouse IgG (peroxidase) 
reagent (Vector labs, United Kingdom) and developed 
with 3, 3’Diaminobenzidine substrate (Vector labs, 
United Kingdom). Lastly, sections were counterstained 
with haematoxylin at 60 ℃ for 5 min, and slides were 
cleared with Histoclear Ⅱ and mounted with Histomount 

Green AD et al . 1.1B4 cell therapy for diabetes



526 November 15, 2016|Volume 7|Issue 19|WJD|www.wjgnet.com

mounting medium. Slides were viewed using Olympus 
IX51 inverted microscope and photographed using the 
SPOT RTKe camera (Diagnostic Instruments Inc., Sterling 
Heights, MI, United States). 

For fluorescence immunostaining, following dewaxing, 
rehydration, antigen retrieval with citrate buffer and 
blocking with BSA solution, sections were incubated 
at 4 ℃ overnight with primary antibodies (mouse anti 
insulin antibody, ab6995, 1:1000, Abcam; guinea pig 
anti glucagon antibody, PCA2/4, raised in house; rabbit 
anti Ki67 antibody, ab15580, 1:100, Abcam) prior to 
incubation at 37 ℃ for 45 min with secondary antibody 
(Alexa Fluor 488/594)[35,39]. Finally, slides were mounted 
with antifade mounting medium and viewed under 
FITC filter (488 nm) or TRITC filter using a fluorescent 
microscope (Olympus, model BX51) and photographed 
using a connected DP70 camera adapter system.

Image analysis
Closed polygon tool in CellF image analysis software 
(Olympus Soft Imaging Solutions, GmbH) was used 
to analyze islet parameters including islet, a cell and β 
cell areas. Number of islets was counted in a blinded 
fashion and expressed as number per mm2 of pancreas. 
For analysis of islet size distribution, islets smaller 
than 10000 µm2 were considered small, those larger 
than 10000 µm2 but smaller than 25000 µm2 were 
considered medium and those larger than 25000 µm2 
were considered large. Cells expressing both insulin and 
either Ki67 or TUNEL were counted and values were 
expressed as a percentage of the total number of insulin 
positive cells observed. Approximately 1000 βcells were 
analyzed per replicate.

Statistical analysis
Results are expressed as mean ± SEM. Groups of data 
were compared using Student’s unpaired ttest with 
twotailed P-values. Groups were considered significant 
where P < 0.05.

RESULTS
Effects on food and fluid intake, body weight and blood 
glucose
Streptozotocin diabetes caused significant increases in 
food and fluid intake when compared to nondiabetic 
controls (P < 0.05, P < 0.01, P < 0.001, Figure 2A and B). 

Implantation of 1.1B4 cell suspensions or pseudoislets 
had small inhibitory effects on daily and cumulative food 
intake (Figure 2A). 1.1B4 pseudoislet transplantation 
significantly (P < 0.05) decreased fluid intake from day 
18 postimplantation compared to the marked polydipsia 
exhibited by diabetic controls (Figure 2B). Fluid intake 
of cell suspension recipients did not significantly differ 
from control diabetic mice, indicating less effective 
amelioration of blood glucose control. 

Streptozotocin diabetes resulted in significant and 
progressive body weight loss compared to nondiabetic 
controls (P < 0.05, P < 0.01, Figure 2C). Transplantation 
of 1.1B4 cells resulted in significantly increased 
body weight compared to diabetic controls 15 d post 
transplantation (P < 0.05, Figure 2C), while pseudoislets 
evoked a more gradual increase with values differing 
significantly from diabetic controls from 24 d post 
transplantation (P < 0.05, Figure 2C). 

Streptozotocin diabetes significantly increased blood 
glucose levels within 3 d compared to nondiabetic 
controls (P < 0.001, Figure 2D). The hyperglycaemia 
was moderated during the period of insulin treatment 
but rebounded to very high levels thereafter. Blood 
glucose was significantly decreased at 12 and 15 d after 
implantation of 1.1B4 cells (P < 0.001, Figure 2D) or 
pseudoislets (P < 0.05, Figure 2D) respectively. From day 
12 onwards, a much more moderate fall of blood glucose 
was observed in the pseudoislet recipient group (P < 0.05, 
P < 0.01, Figure 2D). Indeed, whereas mice receiving 
1.1B4 cells were culled at 21 d posttransplantation 
to avoid severe hypoglycaemia, pseudoislet recipients 
exhibited normoglycaemia when the study was ter
minated at 30 d.

Effects on glucose tolerance
Following an 8 h fast and intraperitoneal glucose ad
ministration, blood glucose levels of both 1.1B4 cell 
suspension and pseudoislet recipients were significantly 
lower than diabetic control animals at all timepoints 
observed (P < 0.01, Figure 2E). Furthermore, 1.1B4 cell 
suspension implants yielded significantly (P < 0.05) lower 
blood glucose levels than pseudoislet implants or normal 
control mice (P < 0.05, P < 0.01, Figure 2E). Pseudoislet 
recipients exhibited normal glucose tolerance.

Effects on plasma and pancreatic hormone content
Insulin content of cell suspension and pseudoislet implant 

Time

Day 0: Induction 
of diabetes 

Day 9: Start 
of insulin 
therapy

Day 18: 
Implantation 
of 1.1B4 cells/
pseudoislets

Day 27: 
Cessation of 
insulin therapy

Day 39: 1.1B4 
cell suspension 
group culled 
(hypoglycaemia)

Day 48: 1.1B4 
cell pseudoislet 
group culled

Figure 1  Timeline of experiment.
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did not differ significantly (Figure 3A). Streptozotocin 
diabetes significantly decreased plasma insulin compared 
to nondiabetic mice (P < 0.001). Insulin concentrations 
were significantly raised in mice receiving 1.1B4 cell 
suspension and pseudoislet implants (10.8 and 7.9 fold 
increases respectively, P < 0.05, P < 0.01, Figure 3B). 
Streptozotocin diabetes also significantly decreased 
pancreatic insulin content (P < 0.05, Figure 3C) which 
was not altered by transplantation (Figure 3C). Plasma 
and pancreatic glucagon levels of diabetic mice were 
significantly increased compared to non-diabetic controls 
(P < 0.05, P < 0.01, Figure 3D and E) and this was partly 
normalized by cell transplantation (P < 0.05, Figure 3D 
and E). 

Effects on pancreatic islets
Representative images showing insulin and glucagon 
staining in islets of nondiabetic, diabetic and cell/
pseudoislet implanted diabetic mice are shown in Figure 
4A. Histological analysis of the islets showed that strepto
zotocin markedly diminished islet area, β cell area, β to 
a cell ratio and number of islets while increasing alpha 
cell area (P < 0.05, P < 0.01, P < 0.001, Figure 4BF). 
Islet areas of 1.1B4 cell suspension recipients were 
marginally decreased compared to diabetic controls (P < 
0.05, Figure 4B). However, acell areas were decreased 
and both βcell and β to a-cell ratios were significantly 
increased in 1.1B4 cell suspension and pseudoislet 
recipients (P < 0.05, Figure 4CE). Percentage of 
smaller islets increased in diabetic mice which was not 
normalised by cell or pseudoislet transplantation (Figure 
4G). 

Representative images showing Ki67/insulin and 
TUNEL/insulin staining in islets of nondiabetic, diabetic 
and cell/pseudoislet implanted diabetic mice are shown 
in Figure 5A. Diabetes induction was associated with 
significant decreases in βcell Ki67 to TUNEL ratio 
indicating an increase in the frequency of βapoptosis 
and a decrease in βcell proliferation (P < 0.05, Figure 

5B-D). Implants did not significantly affect βcell Ki67 or 
TUNEL expression.

DISCUSSION
The therapeutic potential of novel 1.1B4 human insulin
releasing βcells configured as cell suspensions or 
pseudoislets was assessed by implantation into diabetic 
SCID mice. 1.1B4 cells exhibit marked decreases in 
secretory function and viability following prolonged 
exposure to high levels of glucose[33,37]. As a result, mice 
with chemicallyinduced diabetes were given insulin 
therapy for 927 d after STZ to moderate blood glucose 
levels during the engraftment of implanted 1.1B4 cell 
suspensions and pseudoislets. As expected, control STZ
treated mice characteristically exhibited hyperphagia, 
polydipsia, weight loss and marked hyperglycaemia 
which were temporarily moderated during the period of 
insulin treatment.

Implantation of 1.1B4 cell suspensions or pseu
doislets yielded vascularised cell masses (data not 
included) which restored plasma insulin concentrations 
and reversed the hyperglycaemic state. We did not 
have the opportunity to measure human Cpeptide 
for confirmation but we assume that this insulin was 
derived from extrapancreatic source because analysis 
of pancreatic tissue at end of study revealed severe loss 
of islet beta cells and cellular insulin in both 1.1B4 cell 
implanted groups similar to untreated diabetic controls. 
Furthermore, human insulin and Cpeptide were readily 
detectable in 1.1B4 cells[25]. This was associated with 
significant beneficial effects on glucose tolerance, body 
weight and both, food and fluid intakes, but plasma 
glucagon remained elevated. These results have 
parallels with previous studies where primary islets were 
implanted into insulin controlled diabetic animals[4042]. 
However, recipients of 1.1B4 cell suspensions progressed 
to low blood glucose levels such that these mice 
were terminated at 21 d after transplantation. In 
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contrast, the antihyperglycaemic effects of pseudoislet 
implants manifested more slowly, achieving stable 
normoglycaemia without hypoglycaemic complications. 
Furthermore, energy and fluid balance, body weight, 
blood glucose and glucose tolerance improved gradually 
in these mice. This difference is most likely due to 
improved insulin secretory function in 1.1B4 pseudoislets 
compared to single isolated cells as described previously 
in vitro[25,36,37,43]. This better regulated insulin release is 
supported by similar insulin contents of the two types 
of resected βcell masses. Nevertheless, part of the 
difference may also reflect the slower cellular proliferation 
following pseudoislet implantation.

Administration of STZ to SCID mice was associated 
with significant decreases in islet number, size and βcell 
number together with significant acell hyperplasia. 
These observations accompanied by depletion of 
pancreatic insulin and enhancement of pancreatic glu
cagon, mirror previous studies of animal models of 
diabetes induced by STZ[35,39,4449]. Implantation of 1.1B4 
cell suspensions did not affect hormone contents but was 
associated with decreases in acell and islet areas but 
an increase in βcell area and the βcell to acell ratio. 
There were no significant changes in βcell proliferation 

or apoptosis, so alterations of these processes in islet 
acells merits further study. However, both pancreatic 
insulin and glucagon were unchanged in transplanted 
mice. Given the present interest in changes of a cell 
populations in diabetes[35,47,49], this observation merits 
further investigation. The effects on pancreatic hormones 
and islets were similar in pseudoislet recipients but 
as with the metabolic effects, they were moderate 
compared with cell suspension recipients.

Both cell suspensions and, to a lesser extent, 1.1B4 
pseudoislets developed into cell masses following 
transplantation. While no obvious signs of metastasis 
were apparent in either group following postmortem 
examination, the tumorigenic nature of the cells remains 
an obstacle to therapeutic use. 1.1B4 cells configured 
as pseudoislets exhibited significantly decreased 
proliferation rates and are selflimiting in size in vitro[36]. 
This might be a consequence of cellcell contacts playing 
a role in modulation of proliferation and apoptosis 
rates. However, it seems likely that an additional factor 
limiting pseudoislet growth in vitro is hypoxia, a common 
consequence of culturing cell spheroids in static cultures. 
This view is supported by the ability of MIN6 mouse 
βcell pseudoislets cultured in bioreactor with continuous 
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stirring to grow continuously for two wk without 
exhibiting any signs of hypoxia, reduced functionality, 
or growth arrest[50]. In vivo 1.1B4 cells pseudoislets 
were able to quickly muster a blood supply which 
allowed proliferation of the cells. This contrasts with 
the limited ability of human islets to establish effective 
vascularisation which is a major hindrance to clinical islet 
outcomes[51]. 

A number of groups have investigated potential 

ways of getting around the issue of tumorigenicity of 
engineered βcells which need to be generated in large 
numbers in culture. The most popular approach is the 
use of tailored viral vectors which allows the inactivation 
or excision of oncogenes from the celllines genomes 
to reverse the immortal status of the cells once enough 
have been generated for use[17,26,32]. If such an approach 
could potentially be tailored to reverse the tumorigenic 
status of 1.1B4 cells, the therapeutic qualities observed 
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in this study could be more usefully exploited for the 
treatment of T1DM. An additional or alternative approach 
involves the use of implantation devices that are 
currently under development[7,52]. These devices, such as 
TheraCyte™ macroencapsulation system and nanofiber-
enabled encapsulation devices support cell function by 
providing good oxygen tension and protection from 
autoimmune attack, whilst providing against unwanted 
growth and spread of implanted cells[7,52,53]. 

To conclude, implantation of human 1.1B4 cells 
configured as pseudoislets rescued diabetes and signi
ficantly improved glucose tolerance, providing stable 
blood glucose control. Although the results provide proof
ofconcept for possible therapeutic use of genetically 
engineered human βcells configured as pseudoislets, 
further work to circumvent the tumorigenic properties 
of the cells, by genetic manipulation using viral vectors 
or implantation devices, will be required before such an 
approach can be realised in a clinical setting.
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Background
The clinical practicality of anti-diabetic islet transplantation therapy is hampered 
by poor long-term graft survival and the limited availability of donor pancreata. 
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Research frontiers
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genetically engineered human β-cells configured as psuedoislets as an 
alternative to the unsustainable practice of implanting primary human islets.

Peer-review
In this study, the authors investigated insulin secreting 1.1B4 cells as an option 
to rescue diabetes in severe combined immunodeficient mice. The manuscript 
is interesting, but several concerns need to be addressed before publication. 
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