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Abstract

Significance: With the growing population of baby boomers, there is a great need to determine the effects of
advanced age on the function of the immune system. Recent Advances: It is universally accepted that advanced
age is associated with a chronic low-grade inflammatory state that is referred to as inflamm-aging, which alters
the function of both immune and nonimmune cells. Mononuclear phagocytes play a central role in both the
initiation and resolution of inflammation in multiple organ systems and exhibit marked changes in phenotype
and function in response to environmental cues, including the low levels of pro-inflammatory mediators seen in
the aged. Critical Issues: Although we know a great deal about the function of immune cells in young adults
and there is a growing body of literature focusing on aging of the adaptive immune system, much less is known
about the impact of age on innate immunity and the critical role of the mononuclear phagocytes in this process.
Future Directions: In this article, there is a focus on the tissue-specific monocyte and macrophage subsets and
how they are altered in the aged milieu, with the hope that this compilation of observations will spark an
expansion of research in the field. Antioxid. Redox Signal. 25, 805–815.
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Introduction

The elderly population is the fastest-growing segment
of the U.S. population, with more than 20% of the

country projected to be age 65 or older by 2030, compared
with 13% in 2010 (70). As the population ages, research
examining specific changes in the immune system is relevant
not only by sheer number of people affected but also by
increasing expense. At age 65, the first year of Medicare
eligibility, average annual healthcare charges are less than
$5000 per person per year, a figure that more than doubles by
age 80 (8). To get an impression of the magnitude of that
expense at a national level, the United States treasury de-
partment has reported that national healthcare costs due to
aging will grow at a rate of *2% per year and that govern-
ment expenditure on healthcare will increase to more than 6%

of the potential gross domestic product (GDP) over the next
10 years (88). Government spending on Medicare and
Medicaid was 4.8% of the potential GDP in 2010. Not only
do aged individuals have worse outcomes after illness or
injury, but they also contract infectious diseases such as flu
and pneumonia at much higher rates than their younger
counterparts (21). For example, during most flu seasons in the
United States, an estimated 90% of flu-related deaths and
50% to 60% of flu-related illness occur in people aged 65 or
older.

Advanced age is associated with a chronic low-grade in-
flammatory state that is referred to as inflamm-aging (32).
This process is perceived to be responsible for the impaired
innate and adaptive immune responses seen in the elderly (34,
80). Although the factors responsible for initiating inflamm-
aging have not been fully defined, there are several theories
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that involve both intrinsic and extrinsic effects on leukocytes
and the environment in which they mature and reside. Hall-
marks of inflamm-aging include basal levels of pro-
inflammatory cytokines interleukin-1 (IL-1), interleukin-6
(IL-6), and tumor necrosis factor alpha (TNFa), which are
elevated even in healthy aged individuals (32).

Prevailing theories by which inflamm-aging is initiated are
numerous and include chronological age-dependent alterations
in the following: (i) post-translationally modified macromol-
ecules, including DNA and proteins that stimulate leukocytes
and other cells to secrete pro-inflammatory cytokines; (ii) se-
nescence of immune and nonimmune cells, leading to an in-
creased release of inflammatory mediators via a senescence-
associated secretory phenotype; and (iii) increased intestinal
permeability, allowing bacteria and bacterial products (e.g.,
endotoxin) to enter the circulation and change in the bacterial
communities or microbiome of the gastrointestinal tract (50,
85). These theories are detailed elsewhere (9, 33) and are be-
yond the scope of this article. Additionally, the association of
aging and inflammation with human diseases, such as ath-
erosclerosis, metabolic syndrome, and osteoporosis, is a well-
documented pairing that is also beyond the range of this article
but has been recently reviewed (38, 43). The focus of this
article is on monocytes and macrophages, key cells in the
inflammatory cascade and its regulation (Fig. 1).

The impact of advanced age on macrophage activation and
signaling has been examined by several groups, mainly in
rodent models of aging [reviewed in Gomez et al. (40)].
Published projects working with human macrophages are
rare. Circulating monocytes are the most accessible mono-
nuclear phagocytes, making them and monocyte-derived
macrophages the most frequently inspected in human studies,
but even those results are sparse and conflicting (90). The
bulk of the material presented here will be from animal work,
and human data will be highlighted where appropriate.

Regulating Inflammation

Mononuclear phagocytes play a central role in both the
initiation and resolution of inflammation. Secreted cytokines
are key mediators of these processes (7, 95). In the tissues,
macrophages produce various pro-inflammatory cytokines in
response to infectious stimuli, including TNFa, IL-1b, IL-6,
nitric oxide (NO), reactive oxygen species, and neutrophil
chemokines CXCL2 and CXCL8 (human homologs to mu-
rine macrophage inflammatory protein 2 (MIP-2), CXCL1,
and KC) (20, 45, 63). Prolonged pro-inflammatory activation
of macrophages leads to unregulated collateral tissue damage

(7, 15, 94). Therefore, by necessity, tissue inflammation is a
highly regulated process and mononuclear phagocytes are
integral to this process.

Resolution of inflammation is achieved by several mech-
anisms that incorporate resident tissue macrophages: (i) re-
moval of pathogens by neutrophils and macrophages; (ii)
downregulation of neutrophil chemokines; and (iii) removal
of apoptotic neutrophils (4). Efferocytosis is the phagocytosis
of dying cells, including neutrophils and bacteria, by pro-
fessional phagocytes and other cells, a process that down-
regulates IL-12, TNFa, and NO secretion and upregulates
anti-inflammatory IL-10 and transforming growth factor beta
(TGFb) (5, 35, 51, 71, 93). For example, in the lung, mac-
rophage efferocytosis helps facilitate restoration of tissue
integrity via macrophage release of epithelial growth fac-
tors, platelet-derived growth factor, vascular endothelial
growth factor, and hepatocyte growth factor (42, 64). In
addition, they release prostaglandin E2 to stimulate endo-
thelial cell migration and promote angiogenesis (17). Mi-
gration of macrophages to nearby lymph nodes and the
apoptosis of macrophages themselves also help to resolve
inflammation (49, 52). Overall, both macrophage effer-
ocytosis and apoptosis are important in the restoration and
remodeling of injured tissue; however, dysregulation of
anti-inflammatory signals also has consequences. Animal
experiments have shown an inadequate pro-inflammatory
response and insufficient pathogen clearance after excessive
efferocytosis (61). Taken together, the initiation and reso-
lution of inflammation is a narrowly orchestrated process
that is dependent on macrophages for coordinating both pro-
and anti-inflammatory responses.

Recent research into the resolution of inflammation has
uncovered an important role for monocyte- and macrophage-
produced lipid signaling molecules that are known as spe-
cialized pro-resolving mediators (SPMs). Apart from the
prostaglandins and leukotrienes classically characterized as
pro-inflammatory lipid mediators, SPMs are a group of x-3
polyunsaturated fatty acid-derived molecules encompassing
families such as lipoxins, protectins, maresins, and the D- or
E-series resolvins. Mainly metabolized from docosahexanoic
acid and eicosapentaenoic acid, SPMs contribute to the
resolution of inflammation by regulating the production of
cytokines and chemokines, limiting neutrophil influx, and
enhancing the pro-resolving actions of macrophages such
as efferocytosis of apoptotic cells and clearance of bacteria
and debris [reviewed in Serhan et al. (76)]. Maresins, for
example, promote a transition from pro-inflammatory to
anti-inflammatory macrophages in an autocrine manner,
encouraging resolution of tissue inflammation and wound
healing (77, 78). The pro-resolution activities of SPMs do
not seem to act in an immunosuppressive manner (69, 74,
83). Animal experiments offer evidence that SPMs may
also improve microbial removal and play a protective role
against infections, lowering the antibiotic requirements to
effectively clear bacterial infections (26, 74). In a murine
model of age-associated adipose inflammation (14), low
doses (1 nM) of lipoxin-A4, a potent SPM, reduced pro-
duction of IL-6 and increased IL-10 levels in adipose tissue
explants, as well as attenuated in vitro secretion of TNFa
and monocyte chemotactic protein 1 (MCP-1) by lipopoly-
saccharide (LPS)-treated J774 macrophages. Furthermore,
studies by Arnardottir et al. (6) demonstrated that aged miceFIG. 1. Macrophage characteristics altered in aging.

806 ALBRIGHT ET AL.



exhibit delayed resolution of acute inflammation in parallel
with altered lipid signaling dynamics, finding that aged mice
produced lower levels of SPMs and increased quantities of
pro-inflammatory prostaglandins and thromboxanes relative to
young controls. Remarkably, levels of pro-inflammatory lipid
mediators were higher in the aged mice even at baseline, in-
dicating that dysregulated SPM signaling is an inherent factor
in age-related immune dysfunction. The authors also em-
ployed resolvins D1 and D3 to enhance efferocytosis by
macrophages from aged mice and to reduce prolonged in-
flammation in aged mice, partially compensating for deregu-
lated SPM production. The pro-resolving activities of SPMs,
as well as their potent ability to help macrophages control
inflammation, make SPMs and their synthetic analogs attrac-
tive candidates for immune-modulating therapeutics, with a
wide range of applications in experimental models and human
disease (28, 75).

Macrophage Activation Nomenclature

Macrophage transition from equilibrium to inflammation
and back again is made possible by the remarkable plasticity
of macrophages (36, 59). Reversible activation into a pro-
inflammatory state depends on factors present within the
microenvironment. Classification guidelines of macrophage
activation profiles have recently changed. Leading experts in
macrophage research provided a consensus classification
terminology in 2014 (65). Three recommendations were put
forth to describe the activation state of macrophages. First,
identify the model (in vitro vs. in vivo) and method of iso-
lation. Second, identify the mediators used to stimulate
macrophage activation. Lastly, describe the up- or down-
regulation of cell-surface or intracellular markers that are
associated with mediator-specific induction.

Before these guidelines, most reports generalized macro-
phages into either a classical, pro-inflammatory M1-activated
macrophage or an alternative, anti-inflammatory M2-activated
macrophage (this included all postulated subsets of M2: M2a,
M2b, and M2c). Figure 2 outlines a generalized classification of
M1 and M2 macrophages. M1/pro-inflammatory macrophages
are characterized by mediators of activation, including inter-

feron gamma (IFNc), TNFa, and LPS. These factors activate
signal transducer and activator of transcription (STAT) 1 sig-
naling and upregulate a scavenger receptor macrophage
receptor with collagenous structure, inducible nitric oxide
(iNOS, Nos2), and IL-6 and TNFa gene expression. In contrast,
M2/anti-inflammatory macrophages are activated by IL-4, IL-
10, IL-13, and TGFb. These mediators stimulate the STAT3 or
STAT6 signaling cascade and upregulate gene expression of
mannose receptor CD206, IL-4 receptor, IL-10, TGFb, arginase
1 (ARG1), resistin-like a (Retnla, Fizz1), and chitinase 3-like 3
(Chi3l3, Ym1) (81). Publications are now starting to utilize this
environmental nomenclature to define macrophage populations
(29, 89). Thus, the studies reviewed here will attempt to use the
terms pro-inflammatory and anti-inflammatory as well as these
markers for the general classification of macrophages and to
avoid terms such as M1, M2, classical, regulatory, etc.

Advanced Age and Mononuclear Cells

No differences have been found in the number of periph-
eral blood monocytes in the circulation of elderly subjects
compared with their younger counterparts. However, there
is an age-dependent shift in the proportion of monocyte
subsets and subsequent inflammatory profiles (60, 86).
Human monocytes from elderly participants have increased
levels of CD14++(high)CD16+ and CD14+(low)CD16+ pro-
inflammatory/nonclassical monocytes and decreased levels
of CD14+CD16- monocytes (44, 67, 73). However, these
monocytes have a markedly attenuated inflammatory re-
sponse (decreased levels of both IL-6 and TNFa) after
TLR1/2 stimulation compared with the younger age group
alongside a decreased TLR1 expression (67).

In elderly participants compared with young subjects,
Hearps et al. (44) showed that CD11b, an integrin involved in
transendothelial migration and important in plaque formation
(82), had greater expression on circulating monocytes (91).
L-selectin is responsible for leukocyte rolling and adhesion to
endothelial cells and is downregulated on monocytes from
elderly individuals (27). The altered expression of CD11b
and L-selectin may affect monocyte migration and function
in elderly individuals. Additionally, Hearps and coworkers
demonstrated that TLR4-stimulated monocytes from elderly
participants had impaired phagocytosis, shorter telomeres,
and elevated intracellular TNF; these results suggest a dys-
regulation of monocyte function in the elderly. Clinically, the
pro-inflammatory nature of elderly monocytes may prove to
be a beneficial target to help maintain healthy aging. Recent
evidence from a study of Japanese centenarians shows that a
pro-inflammatory state, marked by elevated serum C-reactive
protein, IL-6, and TNFa, is a significant predictor of lon-
gevity over telomere length (3).

Renshaw et al. revealed that defects in the production of
cytokines by monocytes and macrophages from aged mice in
response to in vitro LPS stimulation stemmed from aberrant
expression of Toll-like receptor (TLR) mRNAs (72). We and
others have corroborated the observed diminished cytokine
release by macrophages from aged mice (11–13, 16, 24, 47,
56, 58). The mechanism responsible for this defect has not
been confirmed. However, it seems that chronic exposure to
low-level elevations of IL-6, a factor frequently implicated in
inflamm-aging, is associated with age-related dampening of
the macrophage pro-inflammatory response. In 2010, Gomez

FIG. 2. Macrophage mediator-based nomenclature. To
see this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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et al. published their observations on the role of IL-6 and the
behavior of macrophages from aged mice (39). Using young
and aged IL-6 knockout mice, in vitro cytokine production by
splenic macrophages was tested after LPS stimulation. When
IL-6 was present in aged mice, an impaired inflammatory
response was seen in these macrophages (lower TNFa, IL-1b,
IL-6, and IL-12). However, in the aged IL-6 deficient mouse
model by the same group, the aged mice had a stronger in-
flammatory response compared with young mice. The pres-
ence of elevated levels of IL-6 in aged mice did not seem to
play a role in the number of macrophages in the splenocyte
population or the surface expression of TLR4. Two inde-
pendent studies from separate groups also failed to show age-
dependent differences in cell-surface expression of TLR4 in
macrophages from aged mice (11, 23). Human monocyte
studies also fail to show a clear age-related difference in TLR
expression; factors such as exercise, sex, and comorbidities
seem to play a role as well [reviewed in van Duin and Shaw
(90)]. Possible explanations for the discrepancy in TLR4
expression could be related to cell populations and purity
(resident macrophages vs. peripheral blood mononuclear
cells) or methods of assessment (PCR vs. flow cytometry). It
should also be noted that although pro-inflammatory stimuli,
such as LPS and IFNc, are the more commonly used in vitro
mediators, aged macrophage response to anti-inflammatory
activation, for example, IL-4, is also altered (31, 48, 58).

Boehmer et al. demonstrated the relationship between ag-
ing and defects in mitogen-activated protein kinase (MAPK)
signaling, leading to decreased cytokine production (11–13).
A subsequent publication identified that the activation/
signaling deficiencies in macrophages from aged mice were
limited to the TLR2 and TLR4 signaling pathways. Parallel
studies, using alternate means of activating macrophages
with IFNc, failed to show an age-dependent reduction in
cytokine production (12). Relative to macrophages from
young mice, cells from aged animals also have decreased
levels of cytoplasmic p38 and c-Jun N-terminal kinase ( JNK)
MAPKs (12, 13), which may help explain the inability of
macrophages in aged mice to be appropriately activated. A
simplified signal transduction model illustrating these find-
ings is included in Figure 3. Work from another group, also
using interferon activation, revealed that macrophages from
aged mice had a reduction in the activation of STAT1, rela-
tive to cells from younger mice (96). In both sets of studies,
the changes in the activation of signaling molecules paral-
lels a reduction in the total protein in cells from aged mice. In
the setting of infection, a recent study examining human
monocyte-derived macrophage showed altered responses in
PI3K-AKT signaling in cells from elderly subjects. Before
infection, there were no differences in protein kinase B
(AKT) phosphorylation but the baseline AKT phosphoryla-
tion in cells from the elderly varied widely, perhaps again
pointing to environmental factors such as diet and exercise
that can modulate the basal inflammatory state of an elderly
individual. Then after exposure to heat-killed bacteria, there
was greater activation of AKT in macrophages derived from
monocytes obtained from younger volunteers (92). This ob-
servation is not consistent with murine splenocyte studies
in which an increase in PI3K-AKT activation was seen in
splenic macrophages from aged mice. In the latter study,
activation with bacterial ligands yielded a decreased cytokine
production (30). These divergent observations may reflect

species-specific differences, variations in activation param-
eters or culture conditions. PI3K-AKT signaling is involved
in bacterial killing, NO production, and cytokine secretion.

Recently, Hinojosa et al. (46) focused on the cytosolic
suppressor of nuclear factor kappa-light-chain-enhancer of
activated B cells (NFjB) and MAPK known as A20. The A20
molecule has been shown to deubiquitinate and inhibit TNF
receptor-associated factor 6 (TRAF6), which activates the
NFjB and MAPK signaling cascades via interactions with
TGFb-activated kinase 1 (TAK1) (Fig. 3). It was found that
A20 is elevated in some of the tissues and macrophages of
aged mice, specifically in the lungs and alveolar macrophages.
The overexpression of A20 was found to dampen the cytokine
response to bacteria but had no effect on the ability of mac-
rophages to phagocytize. This study also describes a potential
mechanism by which TNFa contributes to inflamm-aging,
since in vitro stimulation of alveolar macrophages with TNFa
induced a rise in A20 levels. The authors discussed that the
elevated TNFa in this model could be secreted from senescent
lung cells, further supporting the thought that multiple factors
play a role in regulating cytokine production by macrophages.

When examining phagocytosis in macrophages from aged
mice, differences in age and tissue type again play an im-
portant role. The ability of peritoneal macrophages from aged
mice to phagocytose fluorescent particles was reduced rela-
tive to young mice, but bone marrow monocytes and bone
marrow-derived macrophages from aged mice had phagocytic

FIG. 3. TLR2 and TLR4 signaling pathways and aging.
This figure illustrates intracellular TLR signaling pathways as
discussed in the text of this article. Red arrows and dashed
boxes signify components of signal transduction pathways that
are found to be involved in age-related monocyte/macrophage
dysfunction (11–13, 16, 46). To see this illustration in color, the
reader is referred to the web version of this article at
www.liebertpub.com/ars
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ability similar to their younger counterparts. No intrinsic de-
fect in macrophages from aged mice could be found, but it
seems that the microenvironment in the peritoneum likely
caused the impairment of macrophage function in this model
(57). The aged mice had a decreased proportion of macro-
phages in the resident peritoneal population, as well as in-
creased peritoneal levels of B cell-derived IL-10, leading to
compromised macrophage phagocytosis. Takahashi et al. (87)
recently showed that in vivo phagocytosis of necrotic cells was
attenuated in aged peritoneal macrophages. In this study, the
decreased necrotic cell clearance led to prolonged peritoneal
inflammation, which may contribute to deleterious clinical
outcomes.

Further investigation revealed that the altered behavior of
macrophages from aged subjects is not necessarily due to
intrinsic aged macrophage defects but the tissue-specific
inflamm-aging microenvironment (48, 54, 58). These studies
set out to characterize the aged phenotype and, though they
are conflicting at times, there are a few common elements.
Some inconsistencies can be explained by differences in
experimental technique and design. Nevertheless, bone
marrow-derived cells seem to be the least affected by the
aging microenvironment (Table 1). Mononuclear cells sep-
arated directly from aged bone marrow as well as those
cultured from harvested bone marrow did not tend to show
differences in cytokine production or phagocytosis when

Table 1. Unique Age-Dependent Findings in Select Recent Publications

Species, strain, and age Major macrophage findings Additional comments Reference

Mouse
C57BL/6
20–24 months

In aged mice:
[ percentage of circulating monocytes and

macrophages in the spleen
Y percentage of macrophages in the

peritoneum
[ number of mitochondria and mitochondrial

reactive oxygen species after LPS
stimulation

Y autophagy

Showed that autophagy deficient
macrophages (Atg7 knockout)
have similar phenotype to
aged macs in their studies

(85)

Mouse
C57BL/6
18–24 months

Y percentage of peritoneal macrophages
in aged animals with Y phagocytosis
of necrotic cells.

Decreased necrotic cell clearance
in vivo (peritoneum) lead to
elevated peritoneal MIP-2

Prolonged inflammation in
aged mice

(87)

Mouse
C57BL/6
21 months

[ A20 expression in alveolar macrophages
from healthy aged mice

Y NFjB and MAPK signaling
A20 can be induced by TNFa but not IL-6.

Dietary fish oil lowers A20 levels
and protects aged mice from
Streptococcus pneumoniae
infection

(46)

Mouse
Swiss Albino
12 and 16 months

YTLR2 and TLR4 expression in resident
peritoneal macrophages from aged mice

(79)

Mouse
BALB/c
19–21 months

Response to infection by alveolar macrophages
from aged mice:

Y TNFa and IL-6 production
Y NFjB, JNK, and p38 activation
[ ERK activation

Aged lung lower levels of IL-6
and IL-1b after infectious
challenge

(16)

Mouse
BALB/c
17–18 months

Y number of marginal zone macrophages
in the spleen of aged mice

No age-dependent difference in phagocytosis

Anatomical breakdown of the
marginal zone with age.

(10)

Mouse
BALB/c
18–20 months

Y splenic macrophages, pro-inflammatory
response after LPS stimulation and other
pro-inflammatory stimuli

Y anti-inflammatory response after
incubation with IL-4

No difference in pro-and anti-inflammatory
phenotype markers between bone
marrow-derived macrophages from young
and aged mice

From primary macrophages:
global suppression of
macrophage function.

From bone marrow-derived
macrophages: age-dependent
differences in macrophage
phenotype lost after
prolonged cell culture

(58)

Mouse/C57BL/6 and
B6.SJL-Ptprca

Pepcb/BoyJ
15–20 months

Y phagocytosis by peritoneal macrophages
from aged mice both in vivo and in vitro.

No difference in phagocytosis by bone
marrow-derived macrophages or bone
marrow monocytes

(57)

IL, interleukin; JNK, c-Jun N-terminal kinase; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MIP-2, macrophage
inflammatory protein 2; NFjB, nuclear factor kappa-light-chain-enhancer of activated B cells; TLR, Toll-like receptor; TNFa, tumor
necrosis factor alpha.
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compared with young cells (57, 58). This could suggest that,
though there is evidence of age-related changes (48, 68), the
bone marrow is not as affected by inflamm-aging (58). On the
other hand, peritoneal macrophages appear to be the most
impaired of tissue-specific types but this has not been well
delineated. Differences between publications could be at-
tributed to inconsistencies between resident cells and
thioglycolate-elicited macrophages and/or the increasing
numbers of peritoneal lymphocytes and their secretions as
animals age (22, 25, 54, 57).

Additionally, the aged phenotype can be returned to a
young phenotype with ex vivo cellular interventions or by
in vivo treatments in an animal model. For example, aged
macrophage response to stimuli is similar to young macro-
phage response after removal from the tissue and in vitro
treatment with cytokines such as IFNc. This demonstrates
that macrophages from aged mice do not lose their functional
plasticity/adaptivity, and it further reveals that altered re-
sponses by macrophages from aged mice are due to micro-
environmental effects (58, 84). Structural differences in
macrophages from aged mice include reduced receptor ex-
pression and telomere length, but these changes do not seem
to have as dramatic an effect as the cytokine milieu. Finally,
and perhaps most clinically relevant, several investigators
have found that some of the variances in macrophages from
an aged milieu can be abrogated with diet and exercise (2, 37,
46, 54, 62). Exercise-trained older mice had greater resis-
tance to viral infection than the nonexercise group, and their

cytokine production also normalized to younger mice levels
after LPS stimulation; whereas nonexercising older mice did
not show the same change. Exercise has also been shown to
enhance TNFa release and antiviral resistance in macro-
phages from aged mice (53). Hinojosa et al. found that the
age-associated elevations in A20 were nullified by supple-
menting the mouse diet with anti-inflammatory n-3 polyun-
saturated fatty acids from fish oil (46).

Responses to systemic stressors such as viral infections
and neoplasia are also different in aging. Elsewhere in this
Forum, tumor-associated macrophages will be reviewed
(Submitted by Jo Van Ginderachten), but it is worth pointing
out in this article that there is evidence that the systemic
innate immune changes related to neoplasia are different in
aged mice compared with young mice (84). For example,
Jackaman et al. found that both young and aged mice mac-
rophages were polarized to an anti-inflammatory response
when challenged with a tumor. However, aged mouse mac-
rophages made large amounts of IL-4 in response to a neo-
plastic environment whereas young mice did not, leading to
an immunosuppressive tumor microenvironment in the aged
(48). After stimulation with herpes simplex virus 1 (HSV-1),
peritoneal macrophages from old and middle-aged mice
showed better intrinsic viral resistance compared with
younger mice. However, alveolar macrophages from middle-
aged mice were more effective than those in both young and
aged mice. Resident peritoneal macrophages from aged mice
also produced less TNFa on HSV-1 stimulation, and alveolar

FIG. 4. The physiological
effects of inflamm-aging.
Examples of organ dysfunc-
tion and pathologies related
to immunosenescence and
innate immune dysregulation
in the elderly. To see this il-
lustration in color, the reader is
referred to the web version of
this article at www.liebertpub
.com/ars
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macrophages secreted less IL-12 compared with the younger
group, showing both age- and location-related changes in
macrophage response. Viral infections are common in the el-
derly population and typically lead to worse outcomes. Both
alveolar and peritoneal resident macrophages seem to have
impaired extracellular combat of viral infections and may
prove to be important cellular targets for improving clinical
outcomes.

Models of aging that involve an in vivo inflammatory
challenge (i.e., injury or systemic infection) show that tissue-
specific macrophages from aged mice have a heightened
inflammatory response and an impaired anti-inflammatory
response (31, 55). There are, however, conflicting results
from human studies of infection. For example, Verschoor
et al. reported that monocyte-derived macrophages from el-
derly subjects produced less TNFa and IL-6 after exposure to
Streptococcus pneumoniae in vitro. This decrease in cytokine
production paralleled a decrease in bacterial killing com-
pared with cells derived from young subjects, but there was
no difference in phagocytosis (92). Pro-inflammatory re-
sponses such as IL-1b, TNFa, and iNOS have all been shown
to be upregulated more in aged animals compared with the
response seen in younger mice after injury (19, 66). IL-4
receptor expression and cellular anti-inflammatory response
to IL-4 treatment are also reduced after exposure to in vivo
inflammation.

Yabluchanskiy et al. showed that cardiac outcomes were
worse in aged mice but improved if anti-inflammatory mac-
rophages were present (94). Aged animals had elevated plasma
levels of matrix metalloproteinase-9 (MMP-9), corresponding
to increased left ventricular dilation and worse left ventricular
ejection fraction. In a model with gene deletion of MMP-9
expression, mice had improved cardiac function and survival.
Importantly, the macrophages isolated from the cardiac scar in
the null animals had significantly higher expression of the
following tissue-repairing, anti-inflammatory markers: CD163,
mannose receptor, TGFb, and Ym1.

Models that represent diseases commonly found in the
elderly have also shown age-related differences in macro-
phage activation. Using naturally occurring periodontitis in
aged Rhesus monkeys, Gonzalez et al. found that macro-
phages from healthy aged gingival tissue had increased ex-
pression of pro-inflammatory genes compared with young
monkeys (41). These genes were then further elevated in the
setting of aging and periodontitis. Studies such as these
suggest that in certain anatomic locations, healthy aged tis-
sues host a macrophage phenotype that promotes increased
inflammation and tissue destruction that is made worse in a
diseased state (1, 97).

Conclusions, Opportunities, and Challenges

Research in aging macrophages presents unique challenges.
First, defining tissue-specific basal aged phenotypes remains
elusive. In areas of the body with constant inflammatory
stimulus and exposure to environmental pathogens, the system
seems to be heightened with an elevated resting inflammatory
state and a subsequent excessive reaction. However, in other
areas with limited environmental exposure, the macrophages
tend to present an anti-inflammatory phenotype with a sub-
dued reaction to stimulation compared to responses in
younger individuals.

Second, it seems as if the ‘‘aged phenotype’’ is reversible.
Once removed from the inflamm-aging microenvironment,
the macrophage response can be restored to generate a re-
sponse similar to the young macrophage activation profiles.
This presents therapeutic opportunities that may involve a
patient’s own macrophages to not only treat acquired diseases
but also affect many pathologies and physiological dys-
functions associated with the aging process (Fig. 4) (18).
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Abbreviations Used

AKT¼ protein kinase B (PKB)
AP1¼ activator protein 1

ARG1¼ arginase 1
Chi3l3¼ chitinase 3-like 3 (Ym1)
CREB¼ cAMP response element binding protein

CRP¼C-reactive protein
CXCL1¼KC
CXCL2¼macrophage inflammatory protein 2 (MIP-2)
CXCL8¼ interleukin-8 (IL-8)
HSV-1¼ herpes simplex virus 1

IFNc¼ interferon gamma
IKK¼ IjB kinase

IL-10¼ interleukin-10
IL-1b¼ interleukin-1 beta

IL-4¼ interleukin-4
IL-6¼ interleukin-6

iNOS¼ inducible nitric oxide (Nos2)
JNK¼ c-Jun N-terminal kinase
LPS¼ lipopolysaccharide
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Abbreviations Used (Cont.)

MAL¼MyD88 adaptor-like protein
MAPK¼mitogen-activated protein kinase

MARCO¼macrophage receptor with collagenous
structure

MCP-1¼monocyte chemotactic protein 1 (CCL-2)
MKK¼MAPK kinase

MMP-9¼matrix metalloproteinase-9
MyD88¼myeloid differentiation primary response

gene 88
NFjB¼ nuclear factor kappa-light-chain-enhancer

of activated B cells

NO ¼ nitric oxide
PI3K ¼ phosphatidylinositide 3 kinase

Retnla ¼ resistin-like a (Fizz1)
SPMs ¼ specialized pro-resolving mediators

STAT1 ¼ signal transducer and activator of
transcription 1

TAK1 ¼ transforming growth factor beta-activated
kinase 1

TGFb ¼ transforming growth factor beta
TLR ¼ Toll-like receptor

TNFa ¼ tumor necrosis factor alpha
TRAF6 ¼ TNF receptor-associated factor 6
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