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Effects of endothelial cell 
proliferation and migration  
rates in a computational model  
of sprouting angiogenesis
Kerri-Ann Norton & Aleksander S. Popel

Angiogenesis, the recruitment of new blood vessels, is a critical process for the growth, expansion, and 
metastatic dissemination of developing tumors. Three types of cells make up the new vasculature: tip 
cells, which migrate in response to gradients of vascular endothelial growth factor (VEGF), stalk cells, 
which proliferate and extend the vessels, and phalanx cells, which are quiescent and support the sprout. 
In this study we examine the contribution of tip cell migration rate and stalk cell proliferation rate on 
the formation of new vasculature. We calculate several vascular metrics, such as the number of vascular 
bifurcations per unit volume, vascular segment length per unit volume, and vascular tortuosity. These 
measurements predict that proliferation rate has a greater effect on the spread and extent of vascular 
growth compared to migration rate. Together, these findings provide strong implications for designing 
anti-angiogenic therapies that may differentially target endothelial cell proliferation and migration. 
Computational models can be used to predict optimal anti-angiogenic therapies in combination with 
other therapeutics to improve outcome.

Angiogenesis, the formation of new blood vasculature, is one of the hallmarks of cancer1,2 that is necessary for the 
transition from a contained tumor to invasive disease that eventually leads to metastasis. Initially, the lack of oxy-
gen and nutrients prevents the growth of tumors in excess of 1–2 mm in diameter. However, in an event known as 
the ‘angiogenic switch’, populations of cells within the tumor are able to uncouple the regulation of pro-angiogenic 
factors and initiate neovascularization3. Notably, these cells release vascular endothelial growth factor A (VEGF-A 
or VEGF for brevity), a primary factor necessary for the initiation of sprouting angiogenesis4. VEGF promotes 
angiogenesis by binding to VEGF receptors VEGFR1 and VEGFR2 and co-receptors neuropilins-1 (NRP1) and 
−​2 (NRP2) and is known to play a role in endothelial cell survival, proliferation, and migration5. Angiogenesis is 
initiated by the degradation of the extracellular matrix by matrix metalloproteinases, which clears a path for the 
developing sprout and releases proteases6. The developing sprout extends towards a VEGF gradient but there are 
several VEGF isoforms which have different affinities to VEGF receptors and binding to heparan sulfate proteo-
glycans resulting in distinct vascular architectures7.

The first step in angiogenesis occurs by the formation of a new sprout, off of the existing vasculature, mediated 
by tip cell migration and stalk cell proliferation. VEGF causes the activation of endothelial tip cells that migrate 
towards VEGF signals and is supported by stalk cell proliferation. Delta-like ligand, DLL4, is expressed on the 
tip cell which binds to Notch receptors on the stalk cells preventing their transformation into tip cells6. Notch 
signaling shuts down adjacent cells to the tip cell causing adequate spacing between sprouts, whereas blockage of 
Notch signaling results in a dramatic increase of sprouts, branching, and filopodia extension8. Stalk cells prolif-
erate to extend the sprout towards the VEGF gradient and eventually these tip cells reestablish connections with 
previously established vasculature to form a closed network.

The initiation of sprouting angiogenesis and the onset of blood flow through the neovasculature leads to 
increased tissue oxygenation, tumor survival, and cancer progression. Many drugs have shown promise for their 
use in anti-angiogenic therapy, especially when combined with other drugs, typically cytotoxic chemotherapy. 
However, there are still considerable difficulties that need to be overcome, such as drug resistance, promotion 
of metastasis, and toxicity9. Computational modeling and multiscale systems biology can be effective tools for 
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modeling sprouting angiogenesis and for the prediction of potent anti-angiogenic treatments for reducing tumor 
size, inhibiting or slowing growth. Modeling can help elucidate the contributions of endothelial cell proliferation 
and migration to vascular coverage, thus enabling the prediction of which mechanism would be the most effective 
for drug targeting.

There are several in vitro ways to access proliferation and migration of endothelial cells. A common way 
of measuring proliferation is with BrdU, which living cells incorporate into their DNA and allows them to be 
counted10. Colorimetric proliferation assays are also common, such as WST-1, cell counting kit-8 assay, which 
causes the reduction of formazan dye in proportion to the number of living cells and can be measured with a 
fluorescence plate reader11,12. Migration can be measured in real time using an RTCA reader based on electrical 
impedance13. Wound healing type assays are also used, where cells are plated with a stopper in the center of the 
chamber, which is then removed. After a certain number of hours, the cells that have migrated within that region 
can be counted11,12.

A significant class of studies have been performed in the area of computational modeling of angiogenesis (for 
reviews see14,15) and as it relates specifically to tumor growth (for reviews see16–18). The migration of tip cells, both 
chemotactic and haptotactic, was examined in response to differences in angiogenic factor distributions19. A cel-
lular Potts model was used to understand the growth of vasculature under different extracellular matrix (ECM) 
conditions20. A significant number of studies have focused on the tumor vasculature in regards to drug delivery 
for cancer treatment21. Computational models have examined the effects of interstitial and vessel pressure on 
drug delivery22, transport of different drugs on tumor treatment23, delivery of anti-angiogenic drugs on tumor 
growth24, as well as examining the role of vasculature and drug delivery on drug resistance25. These models help 
us understand the overall process of angiogenesis but in this study we are interested in the specific contributions 
of endothelial cell migration and proliferation.

The importance of endothelial cell migration and proliferation has been a topic of several modeling studies. 
Burke et al. used a 2D lattice-based model to study endothelial cell proliferation and migration under mechanical 
stress26. They determined that the changes seen under mechanical stress could only be reproduced by increasing 
migration, increasing proliferation and having biased endothelial cell migration perpendicular to the direction 
of the strain. Another model used partial differential equations to study angiogenesis as an interplay between cell 
adhesion, traction force (elongation), and proliferation; the authors found that straight (non-tortuous) vascula-
ture was found when proliferation was triggered by endothelial cell strain27. This model focuses on mechanical 
strain under in vitro conditions, rather than in a tumor microenvironment. In a cellular Potts model, migration 
and growth were considered to be modulated by blood flow, without which the vasculature would collapse28; the 
model did not examine the individual contributions of endothelial cell elongation, proliferation and migration.

Popel and his colleagues in a series of studies29,30 have formulated a class of 3D models of angiogenesis at mul-
tiple scales. In parallel with these 3D simulations, whole-body compartmental models have been used to predict 
VEGF distributions and VEGF receptor occupancy31,32 as well as pharmacokinetics and pharmacodynamics of 
anti-angiogenic drugs, such as bevacizumab and aflibercept17,31,33,34. Other models focused on the effects of vascu-
lar endothelial growth factor (VEGF) and Delta-like 4 Notch ligand on angiogenic tip sprouting29,35. In this paper, 
we develop a modified version of the angiogenic tip sprouting module, including tip cell migration, endothelial 
cell proliferation, and sprouting. This model is then used to understand the interplay between endothelial cell 
proliferation and migration rates in tumor angiogenesis. Specifically, the model investigates the therapeutic effects 
of increasing or decreasing endothelial cell migration and proliferation. Thus, we can use this model to predict 
angiogenic response to therapeutics affecting migration or proliferation. The problem of the relative contributions 
of proliferation and migration is very important for the general understanding of the regulation of angiogenesis, 
and also for translational applications since there are pharmacological agents that can differentially affect these 
phenomena. For example, there are anti-angiogenic peptide agents that preferentially affect blood or lymphatic 
endothelial cell proliferation and migration36,37. It should also be noted that these results would be important in 
the field of therapeutic angiogenesis where the growth of blood vessels is stimulated to provide blood flow and 
oxygen delivery to ischemic tissues, e.g. in the case of coronary and peripheral artery diseases, wound healing, 
and regenerative medicine38. Thus, the results of this study could also provide guidance to pro-angiogenic ther-
apeutic treatments.

Results
Simulations were performed on a 500 ×​ 500 ×​ 500 micron grid with the initial capillaries located along the edges 
of the cube. The proliferation and migration rates were varied for each simulation and the different simulation 
runs were averaged over 10 different trials. We will use the following metrics to characterize the vasculature simi-
lar to those used in describing vascular networks in tumor xenografts39. These are: Vascular Length Density, VLD, 
in mm/mm3; Bifurcation Density, BD, in 1/mm3; Vascular Segment Length, VSL, (length of vascular segment 
between adjacent bifurcations) in mm; Vascular Segment Tortuosity, VST, (total distance between bifurcations/
Euclidean distance between bifurcations) in mm/mm; Fractal Dimension (FD). We will report mean values and 
variation of these variables and also where appropriate their distributions. Note that in characterizing vascular 
tortuosity we follow the morphological definition in ref. 40 rather than an alternative functional definition in  
ref. 39.

Sprouting Angiogenesis Progression over Time: We performed simulations under different parameter values 
and calculated the progression of the emerging vasculature over time. The motivation and focus of this inves-
tigation is on how the proliferation (PR) and migration rates (MR) affect vasculature, since these rates can be 
differentially attenuated by selective agents in proliferative diseases like cancer; alternatively the rates can be dif-
ferentially increased by agents in the case of ischemic diseases, wound healing or regenerative medicine. In these 
simulations, VEGF is at a constant value of 20 ng/ml. Figure 1 shows the progression at days 1, 10 and 20 with a 
fixed migration rate, MR =​ 10 μ​/hr and three different values of the proliferation rate, PR =​ 0.0147 (A), 0.025 (B), 
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0.083 (C) 1/hr (corresponding to divisions every 68, 40, and 12 hours, respectively). Doubling times for micro-
vascular endothelial cells (MEC) range from about 12 hours to 4 days41–43 and human umbilical vein endothelial 
cells (HUVEC) range from 17 to 72 hours44–46. PR has a major effect on the progression of the tumor vasculature. 
At day 20, the values of parameters introduced above are: VLD =​ 72.4, 130.6, 16.9 mm/mm3, VSL =​ 0.193, 0.233, 
0.124 mm, and VST =​ 1.37, 1.41, 2.60 mm/mm, respectively. When PR is low, the vessels reach the interior of the 
tumor space but the capillaries do not cover much of the area, Fig. 1A; in this case the VLD, VSL, and VST values 
are intermediate. Thus, migration allows the vasculature to extend into the tumor space but with fewer cells and 
thus fewer bifurcations covering the tumor space. When PR is medium, the tumor vasculature spreads through-
out the entire region and has high VLD and VSL values and an intermediate VST, Fig. 1B. In this case, there is 
a balance between proliferation and migration, where proliferation is small enough to allow for the extension 
of the tip cell agent but fast enough for the vessels to grow as well. This leads to extensions into the tumor space 
due to migration and better coverage due to branching off of the new cell agents. When PR is high, the resulting 
vasculature is minimal but very tortuous with a low VLD and VSL and high VST level. The vasculature does not 
fully extend into the interior of the tumor space, Fig. 1C. This is partially due to the fact that the high PR limits the 
extension of the vasculature and so the capillaries do not spread into the interior. The growth is further limited 
by anastomosis; since the sprouts are short they end up growing into another tip cell agent and anastomosing, 
which in turn limits sprouting due to vessel regression. In general, the vasculature is the fullest at medium values 
of PR and is most tortuous at high values of PR. We have also performed simulations in the presence of a VEGF 
gradient to explore the effect of the gradient, see Supplemental Data for more information.

Medium Proliferation Values Produce the Most Vascular Coverage: In Fig. 2 we show simulation images with 
different PR and MR at day 20. Day 20 is chosen here since it is relevant to the timeframe of tumor xenograft 
growth that will be used in comparison with experimental data below. With low PR and MR values, the vascula-
ture is very minimal. Having high PR also results in very minimal architectures that are very tortuous. With low 
PR and high MR, the capillaries are long but there are not many sprouts and the tumor space is not well covered. 
With medium amounts of PR and MR, there is complete coverage of the tumor space. Here it is clear that the 
vasculature reaches the middle of the space and the density of the vasculature is not too high. Thus, these results 
suggest that medium proliferation values would be optimal for cancer vascular recruitment.

Most Vascular Metrics are Determined by Proliferation: To better understand the contribution and synergy 
of PR and MR in the sprouting angiogenesis model, we conducted a parameter space evaluation, varying MR 
between 0.24 and 40 μ​/hr and PR between 0.015 and 0.083 1/hr for 20 days, Fig. 3. We find that the bifurcation 
density (BD) and the vascular length density (VLD) are mostly dependent on proliferation. There is an optimal 
PR value of about 0.025 where the BD and VLD are highest except at very low MR. At very low or very high PR, 

Figure 1.  Simulations of Vascular Growth Over Time. (A) Example simulation with low proliferation, 
PR =​ 0.015. The vessels do not fill the space and are less tortuous. (B) Example simulation with medium 
proliferation rate, PR =​ 0.025 1/hr. The vessels are less tortuous and fill the space. (C) Example with high 
proliferation, PR =​ 0.083. The vessels do not fill the space and are very tortuous. In all cases the migration rate is 
MR =​ 10 μ​/hr.
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the BD is low. At low PR, there are fewer cells and therefore there are fewer places to sprout, resulting in a reduc-
tion of the number of bifurcations. At high PR, there tend to be too many sprouts formed over a short amount 
of time resulting in anastomosis, reducing the number of bifurcations and the number of vascular segments. 
Larger or smaller PR values cause a decrease in BD and VLD. In terms of treatment strategy, this would mean that 
decreasing proliferation would be an effective strategy for limiting vasculature. Surprisingly though, increasing 
proliferation would also be an effective strategy. This is due to the fact that highly proliferative vessels tend to 
anastomose quickly limiting their overall growth. Tortuosity (VST) is dependent on both PR and MR. The vascu-
lature is most tortuous at very low MR or very high PR. This is due to the fact that these values lead to the shorter 
segments that curve due to their random walk.

Comparison with Experimental Data: We compare our model results to in vivo data derived from a breast 
cancer xenograft model, where the mouse vasculature was perfused with a polymer solution and excised tumors 
were imaged with microCT for the purpose of visualizing the entire tumor vascular bed39,47. A digital map of the 
vascular network was obtained with a specially developed 3D reconstruction algorithm. Thus, 3D reconstructions 
of the entire xenograft tumors were able to be developed and vascular metrics were calculated for these tumors 
(Imaging Data). These metrics were also compared to data from the literature (Literature Values). Several metrics 
were used to characterize the vasculature, such as vascular length density, vascular segment length, bifurcation 
density, tortuosity, and fractal dimension, Table 1. We also present the ranges of these parameters for different 
tumors from the literature. The simulation results generally fall within the range of those seen in vivo. More 
detailed and focused simulations are necessary to simulate a specific tumor type.

Regression Distance does not Affect Mean Vessel Length: We varied the distance dr, in which vessels growing 
near a mature vessel would regress, from 50 to 200 microns. Any new sprout within this distance of a mature ves-
sel would retract, the base example being 100 microns. Using a radial distance of 200 microns, we found overall 
that the mean BD and VLD were lower than normal, 136 vs 194 bifurcations per mm3, and 18 vs 27.9 mm/mm3. 
In contrast, the VSLs were comparable: 0.107 and 0.104 mm. There were opposite effects using a regression dis-
tance of 50 microns. BD increased from 194 to 315 and VLD increased from 27.9 to 43.9 mm/mm3. Once again 
the VSL were the same 0.104 mm.

Vascular Network Characteristics as Functions of Time: In the previous simulations we presented the results 
for t =​ 20 days; this time point was chosen as a typical duration for tumor xenografts, eg39. However, it is of inter-
est to investigate how the network characteristics vary with time as the vasculature continues to evolve. Thus, we 
ran the simulations for 200 days. We plotted the results for BD averaged over 10 runs as functions of time and 
found that all simulations reached a steady state, Fig. 4A; we also plotted a sample simulation, Fig. 4B, that exhib-
its fluctuations associated with sprout formation and retraction. Most of the simulation values resulted in high BD 
(200 or above) but there were a small sample of cases where there were very few bifurcations <​20. The cases with 
low BD all had high PR values of 0.083, corresponding to proliferating every 6 hours. In conclusion, the limited 
number of bifurcations at high PR values does not change with more time.

Figure 2.  Effects of Proliferation Rate (PR) and Migration Rate (MR) on the vasculature at day 20. With low 
MR, there is less growth of vasculature. When MR is high and PR is low, there is more vascular coverage but it 
does not fill the space. The optimal coverage occurs at medium amounts of proliferation and migration. When 
PR is high, the vessels are very tortuous and do not cover the space.
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To further elucidate the changes with respect to time, in Fig. 5 we show simulation images under different PR 
and MR conditions at 50 days, similar to the same variables at 20 days in Fig. 2. As described before, under most 
conditions the vasculature completely covers the tumor space. Only at very high levels of proliferation does the 
vasculature become shunted and non-functional. This supports the notion that surprisingly increasing endothe-
lial cell proliferation might actually decrease vascular coverage, although this effectiveness might be limited to 
small tumors that have recruited very little vasculature.

Figure 3.  Contour Plots of Vascular Metrics at 20 Days. We show a contour plot of the number of bifurcations 
per mm3, the vascular length density in mm/mm3 and tortuosity for different MR and PR. The number of 
bifurcations and the length density depend mostly on proliferation whereas tortuosity depends on both 
parameters.

Metric Units
Imaging Data, cited 

in [47]
Model Values, 20 

Days
Model Values, Steady 

State
Literature Values, cited 

in [47]

Vascular length density* mm/mm3 8.73–101.18 2.5–95.4 (27.9) 7.66–234 (130) 10–72

Tortuosity* mm/mm 1.10–2.52 (1.58) 1.29–2.92 (1.616)

Vascular segment length* mm 0.13–0.43 0.04–0.17 (0.104) 0.07–0.23 (0.17) 0.06–0.3

Bifurcation density* 1/mm3 40.1–231.5 60–493 (194) 97–918 (555) NA

Fractal dimension* — 1.01–2 1.57–1.91 (1.72) 1.94–2.04

Table 1.   A Comparison of Vascular Metrics. We compare a range of vascular metrics from our simulation to 
3D vascular reconstruction data from whole tumor xenografts (Imaging Data). Our values are comparable with 
those in the tumor xenografts and other literature.

Figure 4.  Mean Bifurcation Density Over Time. (A) We performed simulations until they reach steady state 
and show the mean bifurcation density over time for different PR and MR. There is a set of high proliferation 
values (PR =​ 0.083) that results in a low number of bifurcations. (B) An example simulation showing the 
numbers of bifurcations reaching a plateau at around 80 days. PR =​ 0.010 1/hr and MR =​ 4 μ​/hr.
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Discussion
Computational models can be useful in formulating hypotheses, especially when care is taken to justify each 
abstraction made and to reconcile it with biological reality. This task is made easier by the discrete modeling of 
endothelial cells as agents capable of independent decisions as well as inter-agent actions. Discrete models like 
this can serve as a framework for the type of module-based modeling previously described14,29,30 which attempt 
to combine independently validated models of cellular processes as modules in a larger integrated model of angi-
ogenesis, or can be incorporated into other models as processes such as tumor growth or metastatic colonization 
in which angiogenesis is involved.

It is well known that tumor vasculature is abnormal and differs from the normal vasculature of the host 
organ48,49. One of the abnormalities is that the vessels are very tortuous50 in and around the tumor. Endothelial 
cell proliferation and migration are controlled by a myriad of factors in the tumor microenvironment including 
a large number of pro- and anti-angiogenic factors that could be used for pro- and anti-angiogenic therapy51. 
Therefore in an experimental setting it is very difficult to modulate or separate out these two processes. In con-
trast, it is possible to modulate proliferation and migration rates separately in a computational model. Thus, we 
examined the effects of both of these properties on the characteristics of a growing vascular network.

The overall growth of vasculature is a result of both proliferation and migration. Cell migration in the model is 
a combination of elongation and motility, such that it includes elongation because the length of the tip cell agent 
gets longer. It also includes motility such that the leading node of the tip agent can change direction and the rate in 
which it migrates. It should be noted that the motility of a tip cell does not directly relate to isolated cell migration 
measured in vitro, such that isolated cells moving on a plate or in 3D matrix may not follow the same dynamics 
as a tip cell migrating with stalk and phalanx cells behind it. In the model we show that when either proliferation 
or migration is acting on its own, the vasculature is shunted and ineffective at covering the tumor space. This can 
be seen by comparing the VLD, at low PR with high MR yields VLD of around 20–30 mm/mm3, high PR with 
low MR rate yields VLD of around 10 mm/mm3. whereas an intermediate value of both yields a VLD of around 
80–90 mm/mm3. Thus, neither proliferation nor migration alone can create organized vascular growth; a balance 
is necessary between the two processes.

Comparing the contour plots of the parameter space with the representation of the tumor vasculature, we 
find interesting results. When examining the contour plot for VLD, it is clear that values with high PR and low to 
medium MR result in large values of total vasculature. When examining the parameter space, simulations with 
low PR do not have large BD or VLD. High levels of PR actually decrease the BD and VLD. This suggests that 
tumors that give uncontrolled proliferatory signals might actually cause the vasculature to be sparse in certain 

Figure 5.  Simulations for Different Proliferation and Migration Rates at Steady State. We show examples 
of the steady state images at 50 days. At very high PR the vasculature is stunted and does not fill the space. At all 
other values, the vasculature fills the space.
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areas of the tumor resulting in areas of hypoxia. Thus, controlling proliferation through vascular normalization52, 
may improve the vessel coverage and improve dysfunctional vasculature and drug delivery.

We can relate our results to work done by Lee et al. who analyzed the effects of anti-angiogenic peptides on 
the proliferation and migration of endothelial cells11. For example, somatotropin-derived peptide SP5028 inhibits 
migration of microvascular endothelial cells (at 50 μ​M concentration at 20 h) by 70% and is also a potent prolifer-
ation inhibitor; thus, our model predicts that it would be an effective angiogenic inhibitor. Also, another peptide 
from the same class, SP5031, is a less potent proliferation inhibitor, but it reduces migration by >​90% which is 
predicted to be effective at inhibiting angiogenesis. In agreement with these data, the peptide SP5031 signifi-
cantly reduced VEGF-induced angiogenesis, which was measured by staining with CD34 in an in vivo subcuta-
neous Matrigel plug assay. Using a collagen-derived biomimetic peptide SP2043, a 95% reduction in migration 
would inhibit bifurcations and vascular segment density enough to inhibit angiogenesis so treating with 25 μ​M of 
SP2043 is predicted to be sufficient to inhibit angiogenesis in agreement with experimental data53.

The major prediction of our model is that PR would have a greater effect than MR on reducing vascular 
growth. In support of this conclusion, Jackson and colleagues found that proliferation is necessary for the exten-
sion of the vasculature otherwise the capillary ceases to extend54. Very low MR causes a reduction in BD and SLD 
but overall proliferation has more of an effect on these metrics. Tortuosity is governed by both PR and MR, such 
that high tortuosity occurs at very high PR or very low MR. This makes sense because migration causes vessels 
to be straighter7 and thus low migration reduces this; high proliferation limits BD because it limits the extension 
of each tip cell agent. Interestingly, our model predicts that increasing PR might also be an effective strategy at 
reducing vasculature, as it leads to an increase in sprouts which then anastomose to create non-functional vessels. 
Others have found that increasing branching can lead to tumor growth inhibition by forming non-productive  
angiogenesis55,56. This is in line with the commonly seen effect of tumor vasculature being tortuous and 
non-functional, possibly due to over-proliferation.

There are several limitations of the current model. For one, we consider a tumor space that is constant and 
unchanging, whereas in reality the tumor would grow over time with the recruitment of new vasculature. Thus, 
we are focused on a section of a tumor that is recruiting new vasculature but not focusing on the expansion of 
the tumor. The interplay between the tumor and vasculature should be the subject of further studies. Another 
limitation of this model is that we have explicitly included the extracellular matrix and interplay with matrix 
metalloproteinases (MMPs). This is an important process but beyond the scope of this study. Another limitation 
is that we only examine VEGF-A with the assumption that it consists of isoform VEGF164. In the present analysis 
we do not distinguish between different VEGF isoforms, e.g. VEGF121, VEGF165 and VEGF189. However, it is well 
established that the patterns of vascular network formation depends on the differential isoform expression7, the 
current model will need to be expanded to incorporate these differences.

In conclusion, this model examines the complex interplay between tip cell migration and stalk cell prolifera-
tion. Specifically, we demonstrate that proliferation greatly influences total vascular coverage and, thus, may be a 
more effective target for anti-angiogenic therapies. These findings highlight the utility of computational modeling 
in parsing the critical components of complex biological processes, such as angiogenesis, to better optimize ther-
apeutic development and the identification of potentially synergistic drug combinations.

Methods
Model Overview.  The capillary sprouting model presented here is a hybrid agent-based model that models 
endothelial cells (EC) as physical agents on a discrete three-dimensional grid. The coordinates of the agents and 
events such as proliferation and migration occur in continuous space but are mapped to a discrete grid for rep-
resentation and storage of environmental values. The model takes advantage of the well-developed agent-based 
and probabilistic approaches to modeling directional angiogenesis in order to produce realistic capillary mor-
phologies under various settings. The general flow of the code is illustrated in Supplementary Figure 1: tip cell 
migration and anastomosis, stalk cell proliferation and anastomosis, sprouting and vessel regression.

Endothelial Cell Agent.  The environment of the in silico model is a discrete 500 ×​ 500 ×​ 500 micron grid. 
Each grid coordinate contains environmental variable [VEGF] and may be occupied by an agent. The default 
VEGF concentration is assumed to be a constant value of 20 ng/ml. The environmental grid represents the ‘tumor 
space.’ We have also examined several different VEGF gradients, see Supplementary Figure 1. Endothelial cells 
(EC) are the main components of blood vessels and each agent in the model is assigned an endothelial cell type, 
either tip, stalk, or phalanx, and comprises a forward node (Node 2) and trailing node (Node 1). An agent ahead 
of another agent would share its trailing node coordinate with the forward node of the agent behind it, thus 
forming continuous capillaries. This agent definition is an extension of35; along with node coordinates, agents 
also store values for radius, activation level, phenotype, and cell cycle length. Each endothelial cell is made up of 
a group of agents. Sprouting can only occur once for each endothelial cell.

Initial Capillaries.  The initial configuration consists of two capillaries at diagonal ends of the tumor space. 
These capillaries are mature and do not proliferate or migrate. Each capillary is made up of ten endothelial cell 
agents. During the first iteration, an endothelial agent in each of the capillaries forms a sprout, creating a new tip 
cell. This is the start of sprouting angiogenesis in the simulation. The simulation runs for twenty days (or 50 days 
for comparison), similar to the length of time of an in vivo xenograft model.

Tip Cell Decisions.  Proliferation.  A tip cell agent only proliferates if it has sprouted, creating a bifurcation, 
and thus needs to form a stalk cell agent. It must wait until it has reached its cell cycle to proliferate. The amount of 
time it takes to complete a cell cycle is chosen from a normal distribution with a mean Ps and standard deviation σ​s.  
These values are presented in Supplementary Table 1. The former tip cell agent becomes the new stalk cell agent 
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and a new agent is created which becomes the new tip cell agent. The new tip cell extends in the direction of the 
old tip agent. Once the tip cell agent has proliferated to form the stalk cell agent, it no longer proliferates.

Migration.  Migration is the primary means by which the growing sprout is able to change directions in response 
to chemotactic and haptotactic cues. Migration is limited to tip cell agents in this model. Many previous models 
have modeled angiogenesis as a reinforced random walk or a diffusion process57. We model migration the same 
way as was done previously35:

= δ +d d (1)mig base,

where dbase is the base endothelial cell migration rate in μ​/hr. Thus the tip cell agent migrates by dmig in the 
direction chosen by the filopodia search. Migration is limited, such that an agent can only extend 50% of its cur-
rent length. The maximum total length of an agent is limited to dmax. The values of parameters are presented in 
Supplementary Table 1.

The search for the direction of tip cell migration includes persistence. Persistence is defined as
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is the probability of moving in the direction (i,j,k).
In this model, tip cell agents migrate each iteration, attempting to reorient themselves according to equation 

(3)58. It is likely the case that the tip cell blazes a path forward by releasing matrix metalloproteinases (MMP) that 
degrade the surrounding ECM and by secreting components of basement membrane such as collagens59.

Stalk Cell Proliferation.  Proliferation is based on the individual cell cycle that must be completed before prolif-
erating. The amount of time it takes to complete a cell cycle is chosen as above. These values are varied based on 
the cell’s proliferation rate.

Proliferation is implemented first by creating a new agent. The forward node of the new tip cell agent is posi-
tioned in the same direction as the old tip in the normalized direction of the old tip cell agent. The tip cell agent 
remains active and the stalk cell agent deactivates. The new agent is assigned a cell cycle duration. Each new agent 
is part of a larger endothelial cell unit, thus once the total length of the endothelial cell unit is greater than emin 
the new stalk agent become part of a new endothelial cell unit. The stalk cell agent only proliferates if the new tip 
agent does not leave the gridspace. After the stalk cell agent proliferates, it determines whether it will anastomose 
(see section on anastomosis).

Sprouting.  Sprouting is determined probabilistically as long as the new sprout will not be on the boundary. A 
stalk cell agent must be at the beginning of an endothelial cell unit to bifurcate and form a sprout. The trailing 
node of the new sprout is the position of the forward node of the sprouting capillary agent and the direction of 
the forward node of the new sprout is determined randomly. This new agent is an activated tip cell agent and the 
first cell in a new capillary. The tip cell agent then proliferates to form a stalk cell. Once sprouting has occurred the 
cells attached to the sprouting capillary cell deactivate and are no longer able to sprout. This is due to Delta-Notch 
signaling in sprouting angiogenesis which has been demonstrated in vivo and in silico60.

Anastomosis.  Anastomosis can form in one of two ways: 1) when two tip cell agents migrate into one another 
they can anastomose and form a connection between the two capillaries; and 2) when a tip cell agent migrates into 
a non-tip cell (either a stalk agent or a phalanx cell) and they fuse. The two different processes are essentially the 
same with a few minor modifications. Specifically when a migrating tip cell agent approaches another tip cell, the 
migrating tip agent’s forward node is assigned to the location of the forward node of the position of the other tip 
cell agent, essentially connecting the two tip cells at their ends. This is logical because the filopodia of two tip cells 
will sense one another and reorient the migrating tip cell to attach to its end. When a migrating tip cell hits any 
other cell (either a stalk cell agent or a quiescent phalanx cell), the migrating tip cell agent’s forward node will be 
placed at the point in the grid where they hit and the two capillaries will fuse at this point. The tip cells deactivate 
when they anastomose. Both capillaries that have anastomosed become mature, such that the cells in each capil-
lary are no longer allowed to proliferate or migrate.

Sprout Regression.  Endothelial cells can sense the level of VEGF; if a sprout is close to a functional vessel (with 
blood flow under in vivo conditions), oxygen is delivered locally by the functional vessel that would prevent 
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VEGF elevation in the vicinity of the sprout via HIF1α​ mechanism. We include sprout regression if a newly 
formed sprout comes close to a functional vessel. Specifically, we assume that if there is a functional vessel within 
a distance dr from the tip, other than the capillary from which it originated, the sprout will no longer grow 
and will regress; we will refer to dr as regression distance. The values of dr are varied within a range shown in 
Supplementary Table 1 to study the sensitivity of the results to this parameter. Two mature capillaries within a 
distance dr from each other would have overlapping areas of diffusion. So newly formed sprouts within the regres-
sion distance dr from another functional capillary would feel a smaller oxygen gradient, causing regression. On 
the other hand, sprouts that are farther than the distance dr from a mature vessel would sense a stronger gradient 
and would continue to grow.
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