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Abstract

Chiral, neutral H-bond donors have found widespread use as catalysts in enantioselective reactions 

involving ion-pair intermediates. Herein, a systematic mechanistic study of a prototypical anion-

binding reaction, the thiourea-catalyzed enantioselective alkylation of α-chloroethers, is detailed. 

This study reveals that the catalyst resting state is an inactive dimeric aggregate that must 

dissociate and then reassemble to form a 2:1 catalyst–substrate complex in the rate-determining 

transition structure. Insight into this mode of catalyst cooperativity sheds light on the practical 

limitations that have plagued many of the H-bond donor-catalyzed reactions developed to date and 

suggests design strategies for new, highly efficient catalyst structures.

Graphical abstract

Hydrogen-bond (H-bond) donors such as chiral urea, thiourea, and squaramide derivatives 

enjoy widespread application in a range of highly enantioselective transformations.1 These 

catalysts have many desirable properties, including stability to air and moisture, 

comparatively low cost, and ease of synthesis from readily available building blocks. These 

systems were initially explored for the direct activation of neutral, Lewis basic electrophiles 

through a LUMO-lowering effect (Figure 1A).1,2 More recently, they have been increasingly 

applied for ion-pairing catalysis, wherein the chiral H-bond donor promotes enantioselective 

addition to a reactive cationic intermediate indirectly by binding its counter-anion (Figure 
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1B).3,4 Chiral ion pairs may be accessed in a number of ways, including by catalyst-driven 

anion abstraction from a neutral electrophilic precursor.3–5

Despite their practical attributes, chiral H-bond donors frequently exhibit low catalytic 

efficiency. With a few noteworthy exceptions,6 many H-bond donor-catalyzed reactions 

require high catalyst loadings (5–20 mol %) and long reaction times (>24 h). Furthermore, 

these catalysts are often most effective under dilute reaction conditions (≤0.1 M in initial 

substrate concentration), limiting volumetric throughput. After over a decade of 

investigation into the synthetic scope of these catalysts, the basis for these limitations has 

remained largely unknown. We reasoned that detailed mechanistic study of H-bond donor-

mediated anion-binding catalysis could elucidate the origin of these limitations and thereby 

guide development of more efficient and broadly useful catalysts.

Toward this aim, we elected to study the enantioselective, thiourea-catalyzed alkylation of 

α-chloroether electrophiles with silyl ketene acetals (Scheme 1C).5b,7 In addition to serving 

as a representative model for numerous methods proposed to proceed via anion-abstraction, 

this reaction lends itself well to rigorous kinetic analysis due to its intermolecular nature and 

the fact that the active chloroether electrophile can be isolated and distilled to purity. Our 

analyses were conducted with both the optimal thiourea derivative (1a) and its urea analog 

(1b),8 with the goal of elucidating the similarities and differences between these H-bond 

donor catalyst classes.

We initiated our study with the goal of identifying the rate- and enantioselectivity-

determining step(s) of the transformation. Observation of characteristic spectral features of 

both silyl ketene acetal 3b and product 4b by in situ attenuated total reflectance Fourier-

transform infrared (ATR FTIR) spectroscopy enabled reaction progress kinetic analysis 

under synthetically relevant conditions.9 The excellent overlay of rate vs. concentration 

curves in a “same-excess” experiment demonstrated that the model system exhibits well-

behaved kinetics with no appreciable catalyst deactivation, through decomposition pathways 

or by product inhibition, throughout the reaction (Figure 1A).10 This result has important 

implications, as it indicates that a more complex phenomenon must be responsible for the 

poor catalyst efficiency at low loading.

The kinetic order of each of the reagents was determined via “different-excess” experiments 

in which the initial concentration of one component was varied while the others were kept 

constant.9 The reaction displays 1st-order dependence on the concentrations of both the α-

chloroisochroman electrophile, [2], and the silyl ketene acetal nucleophile, [3]. Furthermore, 

an inverse secondary kinetic isotope effect (kH/kD = 0.87) was observed in a competition 

experiment with 3c and 3c-d2 (Scheme 2). Taken together, these results indicate that C–C 

bond formation is rate- and enantioselectivity-determining. The minimal rate dependence on 

the identity of the silyl group of the silyl ketene acetal further suggests that desilylation 

occurs after the rate-determining step.11

At high catalyst loading (≥ 5 mol % under the standard reaction conditions), the reaction 

exhibits 1st-order rate dependence on total catalyst concentration, [1]T, while nonlinear 

behavior corresponding to low activity is observed at low catalyst concentrations (Figure 
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1B). This deviation from strict 1st-order behavior shed light on the low catalytic efficiency 

we were seeking to address, and prompted further investigation. Because a change in the 

kinetic order in catalyst is suggestive of aggregation,12 the relationship between the 

enantiomeric purity of the catalyst and the enantioselectivity of the reaction was examined 

(Figure 1C). A pronounced nonlinear effect was observed, providing definitive evidence that 

catalyst–catalyst interaction occurs under the reaction conditions.12–14 As such, we sought to 

identify probable aggregation states and to elucidate their roles in the catalytic mechanism.

Crystallographic analysis of catalysts 1a and 1b reveals that discrete dimeric complexes are 

formed both in the presence and absence of co-crystallized tetramethylammonium chloride 

(Figure 2A).15,16 Catalysts 1a and 1b were also found to undergo dimerization in solution, 

as established through the computationally aided analysis of diagnostic nuclear Overhauser 

effect (nOe) correlations (Figure 2B, C).17–19

Catalysts 1a and 1b exist as mixtures of slowly inter-converting (E)- and (Z)-amide 

rotamers, as determined by 1H NMR analysis, and homodimeric (ZZ and EE) and 

heterodimeric (ZE) complexes are all detectable. A low-energy computed structure predicted 

for [(Z)-1a]2 is in good agreement with the nOe correlations observed experimentally.20 

Both in solution and in the solid state, the dimeric structures share defining features 

including a “head-to-tail” arrangement, wherein the thiourea NH's of each monomer engage 

in H-bonding interactions with the amide oxygen of the partner molecule. The degree of 

aggregation was quantified by determining the dimerization constants for the (Z)- and (E)-

rotamers of catalysts 1a and 1b by measuring changes in the chemical shifts of 

diagnostic 1H NMR signals observed upon serial dilution (Figure 2C).21,22 Both rotameric 

forms of the catalysts were thus shown to exist in predominantly dimeric states under 

conditions relevant to catalysis.

This fact has profound implications for interpretation of the kinetic analysis described 

above. Because the alkylation displays a 1st-order dependence on [1]T at high 

concentrations, the resting state and turnover-limiting transition state must possess the same, 

dimeric, catalyst stoichiometry under these conditions. The deviation from 1st-order 

dependence at low [1]T can be ascribed to a change in the catalyst resting state to favor the 

monomer. A mechanistic model emerges wherein the catalyst is subject to a monomer–

dimer equilibrium in the ground state, but where the transition state engages two molecules 

of catalyst. While the arrangement of the two catalyst molecules cannot be determined from 

the kinetic data, a plausible transition structure resembling the [(Z)-1a]2•NMe4Cl complex 

observed in the solid state is illustrated in Figure 3.23 The kinetic data fit well to the 

corresponding rate law (Figure 3),24,25 where the fit values for Kdim are in excellent 

agreement with those determined by fitting NMR data (Figure 2C). Qualitatively, this rate 

law dictates that the reaction displays a 2nd-order kinetic dependence on catalyst 

concentration at low [1]T and a 1st-order dependence at high [1]T.

This kinetic analysis sheds light on why dual H-bond donor catalysts such as 1a and b tend 

to be intrinsically inefficient in anion-binding pathways. At high loadings, the catalysts rest 

predominantly in unproductive homodimeric states.26 While the catalysts rest as monomers 

at low loadings, each monomer must find a second catalyst molecule to engage in the anion-

Ford et al. Page 3

J Am Chem Soc. Author manuscript; available in PMC 2017 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



binding mechanism. This insight thus lays a path for mechanism-driven improvement of 

catalytic activity. For example, designs for linked dimeric catalysts that favor cooperative 

substrate activation while avoiding nonproductive aggregation hold great promise for 

enabling improved catalytic efficiencies. Such linked catalysts may also provide insight into 

the nature of the cooperativity between the catalysts in the transition structure. Our ongoing 

efforts are directed toward the realization of these aims.
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Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Enantioselective, H-bond donor-mediated anion-binding catalysis.
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Figure 1. 
A. Same-excess experiment with [1a]T = 0.01 M. B. Dependence of alkylation rate (at 30% 

conv) on [1]T, fit to the rate law in Figure 3. C. Nonlinear relationship between product ee 
and catalyst ee. See Supporting Information for details.
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Scheme 2. 
Kinetic isotope effect.

Ford et al. Page 9

J Am Chem Soc. Author manuscript; available in PMC 2017 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
A. X-ray crystallographic structures of 1a in the absence (left) and presence (right) of co-

crystallized NMe4Cl. B. Low-energy ground-state dimeric complex of 1a identified 

computationally (B3LYP/6-31G(d,p)). C. Head-to-tail dimers of 1a identified by 2D 

NOESY NMR in toluene-d8 at 23 °C. Key nOe correlations utilized to assign these 

structures are labeled in blue, while the resonances monitored to determine the dimerization 

constants of (Z)-1a and (E)-1a are indicated in red. Experimental details and the 

corresponding data for urea 1b are provided in the Supporting Information. Ar = 4-

fluorophenyl
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Figure 3. 
Proposed mechanism for the enantioselective, H-bond donor-catalyzed alkylation of α-

chloroisochroman. The rate law derived from this mechanistic picture accounts for the 

kinetic behavior shown in Figure 1B. The fit parameters for catalysts 1a and 1b are, as 

follows: with 1a, kcat = 4.6 ± 1.9 × 102 M−3 s−1, Kdim = 94 ± 56 M−1, R2 = 0.97; with 1b, 

kcat = 39 ± 9 M−3 s−1, Kdim = 1.6 ± 4.5 M−1, R2 = 0.987. See ref 24.
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