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Abstract

Cyanobactins are are rapidly growing family of linear and cyclic peptides produced by 

cyanobacteria. Kawaguchipeptins A and B, two macrocyclic undecapeptides reported earlier from 

Microcystis aeruginosa NIES-88, are shown to be products of the cyanobactin biosynthetic 

pathway. The 9 kb kawaguchipeptin (kgp) gene cluster was identified in a 5.26 Mb draft genome 

of Microcystis aeruginosa NIES-88. We verified that this gene cluster is responsible for the 

production of the kawaguchipeptins through heterologous expression of the kgp gene cluster in 

Escherichia coli. The KgpF prenyltransferase was overexpressed and was shown to prenylate C-3 

of Trp residues in both linear and cyclic peptides in vitro. Our findings serve to further enhance the 

structural diversity of cyanobactins to include tryptophan-prenylated cyclic peptides.

Cyanobactins are a family of ribosomally-synthesized and posttranslationally modified 

peptides (RiPPs) produced by cyanobacteria.[1–6] Cyanobactin posttranslational 

modifications include N-to-C macrocyclization; epimerization; heterocyclization to form 

thiazolines and oxazolines; oxidation of heterocycles to thiazoles and oxazoles; N-

methylation of His; O-prenylation on Ser, Thr, and Tyr; and N-prenylation.[2, 7, 8] 

Biological activities that have been reported for cyanobactins include anticancer, 

antimalarial, antibacterial, and protease inhibitory activity.[2]

The posttranslational prenylation of cyanobactins is catalyzed by a prenyltransferase enzyme 

encoded within the cyanobactin biosynthetic gene cluster, which uses 3-methyl-but-2-en-1-

yl group derived from dimethylallyl pyrophosphate (DMAPP).[9–12] Although a putative 

prenyltransferase gene is present in all known cyanobactin gene clusters, only a few of the 

cyanobactins are known to be prenylated, including prenylagaramides, aestuaramides, 

trunkamides, and anacyclamides.[4, 6, 10, 12] The known cyanobactin prenyltransferases 

are O-prenyltransferases that catalyze the O-prenylation of Tyr, Thr, and Ser in forward or 

reverse orientation. C-prenylated cyanobactins have been shown to be synthesized originally 

as O-prenylated peptides that later undergo a Claisen rearrangement to yield C-prenylated 

peptides.[12]

Kawaguchipeptins are macrocyclic undecapeptides produced by the cyanobacterial strain 

Microcystis aeruginosa NIES-88.[13, 14] Two variants of kawaguchipeptin have been 

reported (Scheme 1). Kawaguchipeptin A contains two C-3-prenylated tryptophan residues 

and a d-Leu residue.[13] Kawaguchipeptin B consists of solely unmodified amino acids and 
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is reported to show antimicrobial activity against Staphylococcus aureus.[14] Herein, we 

report a genome sequence for Microcystis aeruginosa NIES-88, identify the 

kawaguchipeptin biosynthetic gene cluster, and confirm enzymatic prenylation activity.

The cyclic undecapeptides kawaguchipeptin A (1) and kawaguchipeptin B (2) reported from 

Microcystis aeruginosa NIES-88. Kawaguchipeptin A contains two C-3-prenylated 

tryptophan residues (highlighted). Prenylation of C-3 is coupled to the formation of a new 

ring formation as a result of bond formation between C-2 and NH in the main chain.

We obtained a 5.26 Mb genome sequence for Microcystis aeruginosa NIES-88 by using a 

combination of 3 kb 454 sequencing and short-insert illumina Miseq paired-end data, which 

were subsequently assembled into 29 scaffolds. A total of 4,996 genes, including 4 

ribosomal RNA operons and 41 tRNAs, were annotated from this genome. The 

kawaguchipeptin precursor gene was identified through tBLASTn using the predicted 

kawaguchipeptin peptide backbone (WLNGDNNWSTP). The KgpE precursor peptide was 

found to encode three exact copies of the WLNGDNNWSTP core (Figure 1). The KgpE 

precursor peptide was encoded in a 9 kb gene cluster (kgp) together with the KgpA and 

KgpG cyanobactin proteases, as well as the putative KgpF prenyltransferase (Figure 1). The 

KgpF prenyltransferase shows just 20–45% identity to known and putative cyanobactin 

prenyltransferases. A homologue of cyclodehydrase (PatD) was not detected in the gene 

cluster, which is consistent with the absence of heterocyclized amino acids in the cyclic 

peptides.

The kawaguchipeptin biosynthetic pathway in Microcystis aeruginosa NIES-88.[23] A) The 

9 kb kgp biosynthetic gene cluster consists of six biosynthetic genes (shown in blue), 

organized in a single operon, that show homology to genes present in other known 

cyanobactin gene clusters. The grey arrows indicate genes that encode proteins with 

unknown functions. B) The kgpE precursor gene encodes the 87 amino acid precursor 

peptide, which contains three identical copies of the undecapeptide core (highlighted in 

grey).

To demonstrate that the kgpA-G genes encode kawaguchipeptin production in vivo, we 

cloned the entire kgp operon into a broad host range yeast/bacteria shuttle vector 

pMQ123i[15] and placed kgpA downstream of a pTac promoter to generate the expression 

plasmid pDK-kgp1 (Figure S1 in the Supporting Information). This construct allowed the 

regulated expression of the kgpA-G genes in E. coli TOP10. Liquid chromatography with 

high-resolution mass spectrometry (LC–HRMS) guided metabolite profiling of E. coli cells 

transformed with pDK-kgp1 revealed the presence of 2, for which the LC retention time and 

HRMS profile matched authentic 2 isolated from M. aeruginosa NIES-88 (Figure 2, traces 

2–3, and Figure S2). E. coli cells carrying pDK-kgp1 alone, however, did not produce 1 

(Figure 2, trace 5), which is potentially derived from 2 by bisprenylation at C-3 of Trp by 

prenyltransferase KgpF. We hypothesized that this observation may have been due to the 

lack of sufficient endogenous prenyl donor dimethylallyl pyrophosphate (DMAPP) in E. 
coli. To overcome this problem, we co-transformed E. coli with pDK-kgp1 and the plasmid 

pMBI,[16] which harbors four yeast mevalonate-dependent isoprenoid pathway biosynthetic 

genes that can convert mevalonate to isopentenyl pyrophosphate (IPP), a precursor to 
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DMAPP. Co-expression of the pDK-kgp1 and pMBI genes in E. coli TOP10 supplied with 

exogenous mevalonolactone 3 (1.0 mm) led to the production of both 1 and 2 that matched 

their authentic standards from M. aeruginosa NIES-88 (Figure 2, traces 1–2, 6–7, and Figure 

S3), as assessed by LC–HRMS. These experiments establish that the kgpA-G genes confer 1 

and 2 biogenesis in vivo. In addition, the coexistence of 1 and 2 in E. coli cells transformed 

with both pDK-kgp1 and pMBI and the lack of 1 in E. coli cells transformed with pDK-kgp1 

alone strongly suggest that 2 is the direct biosynthetic precursor to 1 and bis-prenylation by 

KgpF is likely the last enzymatic step in the biosynthetic maturation of kawaguchipeptins.

Heterologous expression of the kgp operon in E. coli demonstrates that the kgpA-G genes 

confer the production of 1 and 2 in vivo. Extracted ion chromatographs of LC–HRMS 

analysis of: Authentic 1 and 2 from M. aeruginosa NIES-88 (1, 2); 2 in E. coli transformed 

with pDK-kgp1 (3); 1 in E. coli transformed with pDK-kgp1 (4); 1 in E. coli co-transformed 

with pDK-kgp1 and pMBI and supplied with mevalonolactone 3 (5); and 2 in E. coli co-

transformed with pDK-kgp1 and pMBI and supplied with mevalonolactone 3 (6).

We overexpressed and purified the recombinant KgpF from E. coli and assessed the enzymes 

ability to process a range of cyclic and linear peptides and to use isopentenyl pyrophosphate 

(IPP), DMAPP, and geranyl pyrophosphate (GPP; Table 1 and Figures S4–S24).

Our results show that the enzyme processes a second Trp residue within macrocyclic peptide 

substrate 2, whereas in the linear peptide 9, despite 40 h of incubation, only a single 

modification was observed with DMAPP as the cofactor (Table 1; Figures S5–S7, S18–S20). 

The catalytic activity of the enzyme decreased when IPP was used as a cofactor instead of 

DMAPP, as seen in the processing of one Trp residue out of two in kawaguchipeptin B (2) 

when IPP instead of DMAPP was used (Table 1; Figures S8). We did not detect any 

processing of other residues in the linear or macrocyclic peptide substrates. The enzyme did 

not process Boc-Trp (13) in presence of DMAPP or IPP. Interestingly, the enzyme could not 

use GPP as a cofactor. According to these results, the selectivity of prenylation in linear 

substrates can be explained by the necessity of the Trp residue to be sandwiched between 

two residues. Terminal Trp residues would presumably be too strongly solvated to bind 

efficiently the enzymatic site and undergo transformation (Figures S20, S22).

O- or C-prenylation of Tyr, Ser, and Thr in forward or reverse orientation have been 

observed for cyclic cyanobactins.[2, 5, 12] C-prenylated peptides like the C-prenylated Tyr 

in aestuaramides have been reported.[12] However, the latter is the result of reverse O-

prenylation on the oxygen atom of Tyr followed by Claisen rearrangement.[12] The 

biochemical characterization of C-3 Trp prenylation[13] and demonstration of the presence 

of a homologue of the prenyltransferase gene kgpF in the gene cluster confirm that this is a 

direct posttranslational modification, which is rare in cyanobactins. To our knowledge, C-3 

prenylation of Trp through posttranslational modification of a peptide has been demonstrated 

only once before for the ComX peptide, a pheromone produced by Bacillus subtilis and 

related bacilli.[17, 18]

Trp prenylation is common in some plants and bacteria, but mostly in fungi, and the 

respective prenyltransferases catalyze the addition of a dimethylallyl group to Trp during the 
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synthesis of secondary metabolites.[19–21] The synthesis and biosynthesis of these 

compounds, particularly indole alkaloids that contain prenylated Trp at their core, have been 

the subject of considerable interest.[22] Our findings therefore expand the chemical diversity 

of cyanobactins and confirm the existence of a rare Trp prenyltransferase. The 

prenyltransferases of the cyanobactin family are now known to catalyze the O-, C-, and N-

prenylation of amino acids in cyclic peptides.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
The cyclic undecapeptides Kawaguchipeptin A (1) and kawaguchipeptin B (2) reported from 

Microcystis aeruginosa NIES-88. Kawaguchipeptin A contains two C-3 prenylated 

tryptophans (highlighted).
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Figure 1. 
The kawaguchipeptin biosynthetic pathway in Microcystis aeruginosa NIES-88. (A) The 10 

kb biosynthetic gene cluster that consists of six biosynthetic genes (indicated by grey and 

black) are organized in a single operon and have homology to genes present in other known 

cyanobactin gene clusters. The open arrows indicate the genes that encode proteins with 

unknown functions. The kgpE precursor gene (black) encodes the 87 amino-acid precursor 

protein (B). Three identical copies of the undecapeptide core are encoded by the single 

precursor gene (highlighted in gray).
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Figure 2. 
Heterologous expression of the kgp operon in E. coli demonstrates that the kgpA-G genes 

confer the production of 1 and 2 in vivo. Extracted ion chromatographs of LC–HRMS 

analysis of: Authentic 1 and 2 from M. aeruginosa NIES-88 (1, 2); 2 in E. coli transformed 

with pDK-kgp1 (3); 1 in E. coli transformed with pDK-kgp1 (4); 1 in E. coli co-transformed 

with pDK-kgp1 and pMBI and supplied with mevalonolactone 3 (5); and 2 in E. coli co-

transformed with pDK-kgp1 and pMBI and supplied with mevalonolactone 3 (6).
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Table 1

Substrates and co-factors used for the in vitro reactions.

Substrate Co-factor Mono-prenylation

Cyclic [WLNGDNNWSTP] (2) DMAPP +

Cyclic [WLNGDNNWSTP] (2) IPP +

Cyclic [WLNGDNNWSTP] (2) GPP -

Cyclic [TSQIWGSPVP] (3) DMAPP +

Cyclic [SAQWQNFGVP] (4) DMAPP +

Cyclic [HAFIGYDQDPTGKYP] (5) DMAPP +

Cyclic [RERFVYP] (6) DMAPP

Cyclic [LIGIMHP] (7) DMAPP

WLNGDNNWSTP (8) DMAPP +

WLNGDNNWSTPAYDG (9) DMAPP +

EDWYFDHPAYDG (10) DMAPP -

VPWPFPAYDG (11) DMAPP -

Boc-Trp (12) DMAPP -

Boc-Trp (13) IPP -

Boc-Tyr (14) DMAPP -

Boc-Tyr (15) IPP -

[+] Product detected, [-] Product not detected.
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