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Abstract

Background—Cross-frequency coupling (CFC) occurs when non-identical frequency 

components entrain one another. A ubiquitous example from neuroscience is low frequency phase 

to high frequency amplitude coupling in electrophysiological signals. Seminal work by Canolty 

revealed CFC in human ECoG data. Established methods band-pass the data into component 

frequencies then convert the band-passed signals into the analytic representation, from which we 

infer the instantaneous amplitude and phase of each component. Though powerful, such methods 

resolve signals with respect to time and frequency without addressing the multiresolution problem.

New Method—We build upon the ground-breaking work of Canolty and others and derive a 

wavelet-based CFC detection algorithm that efficiently searches a range of frequencies using a 

sequence of filters with optimal trade-off between time and frequency resolution. We validate our 

method using simulated data and analyze CFC within and between the primary motor cortex and 

dorsal striatum of rats under ketamine-xylazine anesthesia.

Results—Our method detects the correct CFC in simulated data and reveals CFC between 

frequency bands that were previously shown to participate in corticostriatal effective connectivity.

Comparison with Existing Methods—Other CFC detection methods address the need to 

increase bandwidth when analyzing high frequency components but none to date permit rigorous 
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bandwidth selection with no a priori knowledge of underlying CFC. Our method is thus 

particularly useful for exploratory studies.

Conclusions—The method developed here permits rigorous and efficient exploration of a 

hypothesis space and is particularly useful when the frequencies participating in CFC are 

unknown.

Graphical abstract
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1. Introduction

1.1. Cross-Frequency Coupling and Conventional Estimation Methods

Cross-frequency coupling (CFC), defined as correlated activity across distinct frequency 

bands, is a recently discovered neural correlate of multiple cognitive and behavioral states 

(Canolty et al., 2006; Canolty and Knight, 2010). CFC has been observed in intra-cranial 

recordings from epileptic patients (Fitzgerald et al., 2013), the basal ganglia of patients 

undergoing DBS (Cohen et al., 2009), EEG data recorded from schizophrenia patients 

during auditory steady state response (Spencer et al., 2009) and rats engaged in reward 

seeking behavior (Tort et al., 2008). Given the ubiquity of CFC, this phenomenon has 

become a topic of intense investigation in recent years. While the functional significance of 

CFC is not fully understood, it likely plays a role in perceptual binding as well as in intra-

structural and cross-structural neuronal synchronization in the brain.

Canolty et al. first proposed to study CFC using a sequence of standard linear least squared 

(LLS) band-pass filters followed by converting the signal xt to the form xt,analytic = xt + 

iH(xt) where i is the imaginary unit and H(f) is the Hilbert transform of the enclosed 
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function. The Hilbert transform is the convolution of a function with the kernel (πt)−1. In 

practice, the analytic representation is obtained by Fourier transforming the signal, setting 

all frequencies above the Nyquist frequency to zero, and inverse Fourier transforming the 

resulting function. The analytic signal gives both the instananeous amplitude and phase of 

the signal at a given time; by extracting these values from band passed data we obtain the 

amplitude and phase - the modulus and angle of xt,analytic - of the frequency components 

under analysis. Binning the amplitude values by phase and computing a modified version of 

the Kullback-Leibler divergence between the obtained distribution and the uniform 

distribution yields the modulation index (MI). The MI measures the degree of phase-

amplitude synchronization across frequency bands. Statistical significance is determined via 

permutation techniques.

1.2. The Multiresolution Problem and Motivation for a Wavelet-Based Approach

We build upon Canolty's approach and develop a novel method of CFC detection using the 

generalized Morse Wavelets (GMWs). Resolving instantaneous amplitude and phase 

requires one to analyze a signal with respect to both time and frequency simultaneously. By 

the uncertainty principle, it is not possible to resolve a signal with simultaneous arbitrary 

precision in both domains. Canolty's method does not provide a principled manner in which 

to vary the frequency range of the band-pass filters in order to obviate this issue. 

Furthermore, it is preferable to use a narrow band filter for low frequency components and a 

broader filter for high frequency components. This increases the chance that the low 

frequency signal consists of smoothly varying sinusoidal components in order to avoid phase 

slips, while the high frequency signal is obtained with a sufficiently broad filter to ensure the 

side bands arising from cross-frequency influence are not excluded (See Aru et al. (2014) for 

a detailed discussion). Fortunately, the wavelet transform applies narrow-band filters to low 

frequency components and increasingly broad-band filters as the peak frequency of the 

impulse response function increases.

The wavelet transform was developed in part to overcome the multiresolution problem and 

naturally partitions time-frequency space such that the trade-off between temporal and 

spectral resolution is constant across all bands. We use the term “multiresolution” to refer to 

the problem of partitioning a univariate signal over a multivariate space when constant 

resolution across all degrees of freedom is unavailable; this use of the term should not be 

confused with the multiresolution approach to constructing wavelet bases (see chapter 5 of 

Daubechies (1992)). We consider the GMWs over the Morlet wavelet since, while the 

Morlet wavelets are commonly used and their construction is relatively intuitive, we believe 

the GMWs are preferable for phase analysis. Though the Morlet wavelets are in theory 

strictly analytic - that is they have vanishing support for non-positive frequencies - in reality 

they exhibit leakage onto the negative frequency axis under certain paramaterizations that 

increase time resolution at the cost of frequency resolution (Lilly and Olhede, 2009). Due to 

this property, use of the Morlet wavelets risks aliasing. The GMWs, in contrast, are strictly 

analytic across their parameter regime.

Here, we explore the behavior of the GMWs as the band-pass filters used to generate the MI. 

We validate our method using both simulated and empirical data. Our method gives rise to 
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an efficient and parsimonious means to scan multiple frequency bands for CFC without prior 

knowledge of whether and where CFC will occur. We conclude with a discussion of the 

comparative strengths and weaknesses of our approach and recommendations regarding best 

practices when applying the method.

2. Materials and Methods

2.1. Animals and Electrophysiology

All procedures followed NIH guidelines regarding use of animals in research and were 

approved by the Institutional Animal Care and Use Committee (Assurance Number 

A4049-01)

Surgery and electrophysiology techniques are described in detail elsewhere (Nakhnikian et 

al., 2014). Briefly, we recorded local field potentials in the primary motor cortex (M1) and 

dorsal striatum (dStr) of 4 male Sprague-Dawley rats under ketamine/xylazine anesthesia. 

Signals were sampled at 1 kHz and downsampled to 240 Hz offline using an in-house 

interpolation algorithm. Power line noise at 60 Hz was reduced using a multitaper method 

(Mitra and Pesaran, 1999). Data gathered under anesthesia were divided into 5 s epochs 

separated by 2 s buffers to reduce serial correlations among consecutive epochs. Epochs 

contaminated with obvious artifacts, as well as those recorded from animals exhibiting 

incomplete anesthesia (as indicated by any response to a paw pinch or whisker flick) were 

discarded. In our final analysis, we used 252 5 s trials.

2.2. Data Analysis

To assess CFC within and between M1 and dStr, we applied our CFC detection algorithm 

(see section 3) to the data set described above. We extracted phase and amplitude 

information for all frequencies from 1 to 80 Hz by convolving each trial with the 0th GMW. 

Instantaneous phase and amplitude data were extracted for each bandpassed signal. We 

constructed phase to amplitude histograms for all pair-wise combinations of frequencies and 

computed the modulation index for each pair. For all analyses, we set γ = 3 and β = 6 (see 

section 3.2). Analysis was carried out using the open-source Jlab package developed by Lilly 

(2016) (available online: http://www.jmlilly.net/software.html) and in-house code. Jlab uses 

a spacing parameter, D, to determine the amount of overlap in Fourier between consecutive 

wavelets. We set D to Lilly's recommended value of 4. We compared results for multiple 

values of D and found them to be almost identical (data not shown).

3. Theory and Computation

3.1. Conventional CFC Estimation

The standard flow of computation to estimate CFC is as follows.

1. Extract the frequency bands of interest using a LLS filter. Reverse filter to 

reduce phase distortions.

2. Transform the band passed data sets to Fourier space and set all values 

corresponding to negative frequencies equal to zero.

Nakhnikian et al. Page 4

J Neurosci Methods. Author manuscript; available in PMC 2017 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.jmlilly.net/software.html


3. Inverse Fourier transform the resulting function to obtain the analytic 

representation.

4. Extract amplitude and phase values from the analytic representation. Bin 

the amplitudes by phase and average the resulting histograms over 

multiple trials to obtain an ensemble estimate of phase-amplitude 

coupling.

5. Estimate the normalized entropy of the phase-amplitude distribution to get 

the MI. Specifically, we define the MI as (Hmax – Hobt)/Hmax, where Hobt 

is the entropy of the obtained distribution and Hmax is the maximum 

entropy (the logarithm of the number of bins).

Useful illustrations of the steps involved in CFC computation are provided in the 

supplements to Tort et al. (2008).

As noted above, the LLS filter approach does not account for the multiresolution problem in 

a rigorous manner. Furthermore, our wavelet approach is more parsimonious as it requires 

fewer steps. First, it is not necessary to reverse filter using the GMWs, which are acausal 

filters since there is zero phase lag when implementing the transformation digitally - analytic 

wavelets are conjugate-symmetric in the time domain hence their Fourier transform is purely 

real. By the convolution theorem, convolving the wavelet with a signal amounts to 

multiplying the signal's Fourier transform by a real-valued sequence; hence, only the 

amplitude is altered, with zero phase distortion. Second, the wavelet transform naturally 

returns a complex valued time-series and obviates the need to convert the signal to its 

analytic representation following the Fourier transform.

3.2. The Generalized Morse Wavelets

The GMWs are described in detail elsewhere (Olhede and Walden, 2002). Briefly, the 

GMWs are a set of eigenvectors corresponding to the following time frequency localization 

operator PDC,β,γ under certain parameterizations of D. Daubechies and Paul (1988) showed 

that the domain over which the operator can be completely characterized is (in terms of t and 

f):

where C1 and C2 are parameters defined by Olhede and Walden (2002). For particular 

parameter choices, PDC,β,γ admits a complete orthonormal eigenbasis. For example, when D 

corresponds to a disc in time-frequency space, the eigenfunctions are equal to the scaled 

Hermite functions. Olhede and Walden (2002) extend this analysis to affine time-scale space 

and show 1) the resulting eigenfunctions are equal to the class of GMWs and 2) the GMWs 

outperform the Hermite functions in energy concentration except for the special cases for 

which γ = 1.
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Ordering the GMWs by k=0,1,…n (where λ0 is the principal eigenvalue) we have the 

following definition of the kth GMW in the frequency domain:

(1)

where H(f) is the Heaviside step function, which sends the negative frequency components 

to zero, “A” and “c” are parameters defined in Brittain et al. (2007) and Olhede and Walden 

(2002) and  is the Laguerre polynomial:

Γ(*) is the gamma function.  is the analytic GMW, that is ψ+ is zero for all f < 0. The 

analytic wavelet is appropriate for real-valued functions. For signals that are complex in the 

time domain, both the analytic and anti-analytic wavelet -  or 

equivalently  (where *¯ denotes complex conjugation) - are required to 

analyze the signal. As we are only concerned with real-valued signals we consider the 

analytic GMWs from here onward. The time-domain representation of the wavelet 

transformed signal is easily obtained utilizing Eq. 1 and the convolution theorem. 

Importantly, PDC,β,γ is self-adjoint and, assuming D is bounded, P is compact; hence, by the 

Hilbert-Schmidt theorem the eigenbasis of P is orthonormal and complete. The 

orthogonality of the wavelets decorrelates the spectral estimators derived from any two 

eigenfunctions corresponding to non-identical eigenvalues and allows us to treat the 

convolution of a signal with any GMW as an independent estimate of the signal's energy. 

Here we consider only the 0th GWM, which corresponds to the largest eigenvalue of P and 

has optimal energy concentration properties. Note that when assessing power and coherence, 

the GMWs can be used in an analogous manner to Thomson's multitaper method (Thomson, 

1982) and provide a smoothing method in time frequency space that does not require the use 

of overlapping data segments (see Brittain et al. (2007) for details on generating smoothed 

spectrograms using the GMWs). Though higher order wavelets are not considered here, they 

are useful for researchers interested in smoothed spectral estimators in time-frequency space. 

A representative GMW, corresponding to the principal eigenvalue of PDC,β,γ is shown in 

both the time and frequency domains in Fig. 1.

3.3. Estimating CFC from the GWMs

Estimating CFC from the GMWs follows naturally from the fact that the wavelet transform 

of a signal (in the time domain) assigns an amplitude and phase value to each time point, as 

does the analytic representation. Moreover, as each scaled wavelet acts as a band-pass filter, 

we are able to convert the signal to an analytic representation and filter it in a single step. 

Note that “scale” is inversely related to oscillatory frequency since larger scales produce 

broader wavelets in time space. Broadening or shortening the wavelet increases or decreases 
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the wavelength, respectively, without altering the number of complete cycles. The software 

used in this analysis takes a user-defined upper and lower frequency, creates a 

logarithmically spaced frequency vector, and scales the wavelets such that the peak of the 

wavelet's Fourier transform occurs at the frequency of interest. Once we have the wavelet 

transforms across all frequencies under analysis, we proceed to construct the MI per 

Canolty's method. A visual flow of computation is provided in Fig. 2.

3.4. Validation of the Method

To confirm that our method correctly detects CFC when present, we applied the algorithm to 

a simulated signal with known phase to amplitude coupling between the theta and gamma 

bands. We used simulated data generated using the methods of Tort et al. (2010). Briefly, 

CFC between two frequencies of interest is governed by a single parameter, χ ∈ [0, 1], that 

is inversely proportional to the magnitude of CFC. This method allows the end user both to 

control the magnitude of CFC and to produce either unimodal or multimodal coupling. 

Multimodal coupling occurs when the phase-amplitude histogram exhibits more than one 

peak over the phase range [0,2π], that is the modulation of the carrier wave is distributed 

across multiple phases of the modulator.

The technical details of the model are given in the appendix to Tort et al. (2010). The model 

developed by Tort and colleagues allows the end user to generate both unimodal and 

multimodal coupling. Using this model, we examined the behavior of our method over a 

range of coupling strengths, and tested its sensitivity to multimodal interactions. Note that 

Tort et al. provide two approaches to modeling CFC. One uses only element wise 

multiplication of the carrier signal by a time-varying amplitude governed by χ and the 

modulator frequency. The simulated amplitude envelope is given by:

(2)

and the simulated signal by:

where ĀfA and ĀfP are constants that determine, respectively, the maximum amplitude of the 

carrier and modulator components (for all simulations we set these to 1). W(t) is Gaussian 

white noise.

The second, which is used to model multimodal coupling, uses a mixture of Gaussian 

functions g(fpt), where
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and the amplitude envelope is given by:

g(fpt) is a normalized Gaussian function and Φ is a standard Gaussian distribution. For all 

simulations, we set the variance of Φ to 1, although one can modify the variance across 

simulations if desired (Tort et al., 2010). Finally, s is a sawtooth function oscillating at fp Hz. 

Multimodal coupling is generated by mixing Gaussian functions that are identical except for 

variations in the phase lag of s. We implemented the model developed by Tort and 

colleagues to generate multiple simulated “trials” with a random phase lag added to the 

modulator and carrier component of each pseudo-trial. This approach allows us to treat each 

pseudo-trial as a separate realization of the same underlying stochastic process.

We also modeled non-stationary coupling by replacing the sine function in Eq. 2 with an 

order α chirp, c(x) = sin(2πfPtα), to explore the behavior of the GMW MI when the 

modulation is non-constant over time. This is of particular interest here since an advantage 

of wavelets is their utility in resolving time-localized variations in signals.

3.5. Determining Statistical Significance

To determine statistical significance for each phase-amplitude pairing, we permuted the 

phase and amplitude information across trials following the approach of Tort et al. (2008). 

We permuted the phase and amplitude information 200 times. For each randomization the 

phase information obtained from the ith trial is randomly matched with the amplitude data 

from the jth trial, where i and j are pseudorandom integers. This procedure retains the global 

statistical properties of the data while disrupting the phase-amplitude concordance and 

generating a sequence of MIs expected under the null hypothesis that phase-amplitude 

coupling is due to chance. To obtain p values for each phase-amplitude pair we converted the 

corresponding vector of random MI values to an empirical cumulative distribution function 

and then found p values based on the non-randomized MI's location in the cumulative 

distribution of the randomized MIs.

To control for multiple comparisons we applied false discovery rate (FDR). Instead of 

modifying the critical p value for all tests based on the number of comparisons, the FDR 

approach controls the proportion of incorrectly rejected true null hypotheses (Benjamini and 

Hochberg, 1995). A free parameter determines the maximum percentage (e.g. 5%) of true 

null hypotheses that are incorrectly rejected. We applied the Benjamini-Yekutieli algorithm 

(Benjamini and Yekutieli, 2001) using code written by David M. Groppe available on the 

Mathworks file exchange. We validated this approach using simulated data. Furthermore, 

this method detects significant CFC between frequency bands already shown to participate 

in effective corticostriatal connectivity in a previous study (Nakhnikian et al., 2014).
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4. Results

4.1. General Observations

Our method reliably detects CFC in a simulated signal and our permutation algorithm 

detects CFC above chance when phase-amplitude coupling occurs and incorrectly rejects 

less than 5% of true null hypotheses when there is zero coupling and the critical FDR value 

is 0.05. Furthermore, we show that cross-frequency coupling occurs between two frequency 

bands that account for significant and near-significant Granger causality between M1 and 

dStr based on prior analysis of these data. Power spectral densities of signals recorded in M1 

and dStr showed a peak at 2 Hz (see Nakhnikian et al. (2014) for representative power 

spectra and coherence plots). The presence of a peak at the phase frequency is a requisite 

condition for reliable CFC analysis (Aru et al., 2014). A previous analysis of these data 

using bootstrapping and multiwavelet methods revealed consistency of the spectral estimates 

among trials and animals (Nakhnikian et al., 2014).

4.2. Results from Simulated Data

We showed that our algorithm reliably reconstructs the known CFC in a simulated data set. 

We set the modulator frequency to 4 Hz and the carrier frequency to 50 Hz. This selection 

ensures that the results are not confounded by harmonic interactions between the phase and 

amplitude components.

We tested our method's sensitivity to CFC, when present, by varying χ from 0.5 to 1 and 

computing the MI using both the GMW and Tort methods. We found excellent agreement 

between the MIs obtained from these methods over this range of the coupling parameter 

(Fig. 3).

We then generated comodulograms from simulated signals exhibiting unimodal and bimodal 

coupling (Fig. 4). Our results show that the GMW MI, like the Tort MI, is sensitive to 

multimodal coupling.

To demonstrate the influence of β on the GMW estimation of CFC we estimated the CFC 

between the known modulator and carrier signal in simulated data obtained with varying 

values of β (Fig. 5). Note that the effect of changing β depends upon the frequencies 

participating in CFC, at least for this particular model.

To show that the FDR approach correctly accepts all but a tolerable proportion (e.g. 0.05) of 

null hypotheses when no MIs are above chance, we compared three simulations with varying 

coupling strengths, including one in which there is no CFC (Fig. 6). When CFC is not 

present, the FDR method incorrectly rejects fewer than 5% of all null hypotheses.

Note that significant modulation indices are not alone sufficient for the presence of CFC 

since there will almost surely be some false positives for any given analysis. With that in 

mind, we recommend inspecting the power spectral density of each signal to ensure that 

there is a clear peak at the putative modulator frequency. Furthermore, when the signal-to-

noise level permits, it is advisable to inspect the frequency regime near the putative carrier 

frequency to ensure for side-bands arising from cross-frequency interactions (Fig. 7).
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Finally, we tested the robustness of our method when non-stationary CFC is present in the 

system. We explored a variety of non-stationary modulators for which the chirp order varied 

from 1 to 3. To control for the effects of modulator frequency and band-width, we repeated 

the analysis with modulator frequencies ranging from 4 to 8 Hz and band-widths of the filter 

used to obtained amplitude components (for the Tort MI) from 4 to 20 Hz; the GMW MI is 

more accurate for high order chirps regardless of the analysis parameters. We used a chirp 

with a starting frequency of 8 Hz and a carrier signal at 53 Hz. We found that our method is 

more accurate in detecting the coupling present in this system. Though both methods return 

inaccurate results for chirp orders greater than 3 the Tort MI fails to detect the known CFC 

for low values of the chirp order whereas the GMW MI is accurate, given this particular 

model, for values up to and including 3. Representative results for a quadratic chirp are 

shown in Fig. 8. Importantly, we obtained superior results when β = 2, which is expected 

since the GMWs obtain better time resolution at low values of β. Our method is less accurate 

in detecting non-stationary CFC when β = 6. We address this issue in more detail in the 

discussion.

4.3. Results from Empirical Data

We found CFC between the 1-2 Hz phase component and the 10-15 Hz amplitude 

component. Representative single-trial traces and corresponding wavelet filtered data are 

shown in Fig. 9 and the comodulograms in Fig. 10. This effect was present within and 

between signals recorded in both M1 and dStr. In a previous analysis of these data 

(Nakhniian et al., 2014) we showed that the 1-2 Hz component of the co8rtical and striatal 

LFPs accounts for a significant portion of spectral Granger causality between these signals 

and that Granger causality at the 10-15 Hz component approached significance.

In addition to our analysis of corticostriatal CFC, we analyzed the effect of varying β on the 

empirical results using intracortical CFC as a representative data set. Changing β affects the 

frequency resolution and shape of the comodulogram but does not substantially change the 

modulator/carrier pair returned by our analysis. The peak MI obtained from these data 

exhibits the same variation with different values of β as do simulated data (Fig. 11 inset). 

Note that since our results include only a low frequency modulator we are not able to 

explore the effects of variations of β on the MIs for high frequency modulators using 

biological data.

Finally, we analyzed the M1 LFPs using a method developed by Pittman-Polletta et al. 

(2014) that is also designed to address some of the problems of established CFC analysis. 

Briefly, the method of Pittman-Polletta et al. uses adaptive signal decompositions to extract 

fast and slow components from a signal. We found significant corticocortical CFC using this 

approach that generally agrees with the results produced using the GMW approach (Fig. 12). 

Note that Pittman-Polletta et al.'s algorithm returns a slightly lower modulator frequency and 

an broader range of carrier frequencies; however, both methods detect the same overall 

pattern, with the phase of the delta components modulating the amplitude of the beta bands. 

See the discussion for more details regarding this method.
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5. Discussion

5.1. Overview

Our algorithm reliably detects simulated CFC. We have also demonstrated the utility of our 

method by applying it to data gathered at both a cortical and extra-cortical site in 

anesthetized rats. We conclude with possible applications of our method, theoretical 

considerations and pitfalls of which the end user should be aware, and a discussion of 

remaining problems in CFC detection and future avenues of research.

5.2. Implications of Empirical Results

Once we demonstrated that our method reliably estimates the known CFC in simulated data, 

we applied it to data gathered in rats under ketamine-xylazine anesthesia and showed that, in 

keeping with previous work (Thompson et al., 2014), NMDA-antagonist induced anesthesia 

is accompanied by CFC. In particular Thompson et al. report significant CFC within cortex 

when rats are under isoflurane, but not dexmedetomidine, anesthesia. It is important to note 

that there are substantial differences between these studies. In particular we analyze different 

structures, use different anesthetics, and found a modulator frequency that is twice that of 

the infraslow frequency reported by Thompson and colleagues; nevertheless, the presence of 

intracortical CFC under NDMA antagonist-induced anesthesia in both studies is worth 

considering. Thompson et al. suggest that isoflurane might produce CFC via the well-

established tonic bursting induced in thalamic neurons by NMDA-antagonists. As both 

isoflurane and ketamine belong to this category, our results along with those of Thompson et 

al. provide converging evidence that CFC is a neural correlate of anesthesia induced by 

attenuated NMDA receptor activation. It is possible that both ours and Thompson's results 

reflect an epiphenomenal correlate of anesthesia that emerges from a primary effect of the 

drug, specifically increased thalamic bursting, which generates network wide-oscillations 

giving rise to CFC with no functional significance. Alternatively, CFC might play a role in 

maintaining anesthesia. Testing this hypothesis will require assessing CFC in animals at 

varying levels of anesthesia. The issue would be further clarified by stimulating the thalamus 

in an anesthetized rat to disrupt tonic bursting. If such a manipulation has an effect on both 

the CFC we report here, as well as the animal's response to the drug, it would suggest that 

CFC in this circuit is functionally related to anesthesia. Such studies would provide useful 

data as the mechanisms of anesthetic are still poorly understood.

We note that, though there is some variation in the CFC reported both within and between 

MI and dStr, the effect is largely symmetric; maximum CFC values are within a comparable 

range for all analyses, and the participating frequencies are the same. In previous work, we 

not only showed that theta and alpha oscillations contribute to the causality spectrum 

between M1 and dStr of anesthetized rats, we also show that this effect is asymmetric 

(Nakhnikian et al., 2014). Though we previously reported asymmetric connectivity between 

M1 and dStr, while here reporting symmetric CFC, there is no reason to expect that CFC 

between these bands would also be asymmetric as Granger causality and CFC are 

fundamentally different metrics. Unlike Granger causality, CFC is not an effective 

connectivity measure since it quantifies correlated activity and not directed influence. 

Furthermore, Granger causality by construction cannot detect interactions across distinct 
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frequencies. In spite of the fundamental differences between Granger causality and CFC 

analysis, it is noteworthy that the theta and alpha bands participate in anesthesia-induced 

cortiostriatal coactivation as measured by these two distinct metrics.

5.3. Advantages of our method and potential applications

The wavelet approach we develop here overcomes the multiresolution problem inherent in 

any time-frequency analysis that employs a fixed bandwidth across all spectral regimes of 

interest. Other researchers have proposed a bandwidth varying approach to CFC analysis 

that has distinct strengths and weaknesses relative to ours (Berman et al., 2012). The method 

of Berman et al. rigorously accounts for the effect of the modulator frequency on the 

location of the side bands surrounding the carrier frequency. Using Berman's method, the 

bandwidth of the amplitude filter is given by fc ± fm, where fc is the carrier (amplitude) 

frequency and fm is the the modulator (phase) frequency. An advantage of Berman's method 

is that it minimizes the probability of type-II error by ensuring that existing CFC is not 

undetected due to a filter that is too narrow to capture the side bands. This advantage comes 

at the cost of inconsistent time-frequency resolution; moreover, Berman's method requires a 
priori knowledge of the modulator and carrier frequency, which is not always available. Our 

method is thus suitable for exploratory experiments and, in concert with method such as 

those of Berman et al., could be used to search for converging evidence of CFC using 

different analytic techniques that complement one another's strengths and weaknesses.

Our method also requires fewer computational steps than most existing CFC detection 

algorithms. Note that, unlike LLS filters, the GMWs admit closed form expressions for any 

given paramaterization and frequency range of interest. Thus, there is no need to fit a model 

to each trial in order to construct the filter. Furthermore, using a computational 

implementation of an analytic wavelet transform we are able to produce a zero-phase lag 

convolution, obviating the need to reverse filter the data. Finally, the GMWs return a 

complex valued analytic signal from which we can infer the instantaneous amplitude hence 

there is no need to analyze the signal's Hilbert transform.

5.4. Pitfalls and Limitations of the Method

Our method has a number of substantial advantages over established CFC detection 

algorithms; however, it is not without limitations and we present this method to complement, 

rather than replace, existing analysis methods. Here we discuss the limits of our method and 

provide recommendations regarding best practices given the behavior of the GMWs.

Parameter choice is critical when constructing the family of wavelets to be used in CFC 

detection. We recommend setting γ to 3 and leaving it unaltered as the GMWs achieve 

optimal energy localization in time-frequency space when γ = 3 (Lilly and Olhede, 2009).

β is the critical parameter and must be chosen with care. Note that certain results in the 

analysis of the GMWs depend on the restriction β > (γ – 1)/2 (Olhede and Walden, 2002). 

See Lilly and Olhede (2009) for a thorough discussion of the effects of various parameter 

choices on the GMWs. The practical result of increasing β is that the wavelet transform 

obtains better frequency resolution at the cost of reduced temporal resolution. As there does 

not exist, to our knowledge, a rigorous theoretical justification for a particular choice of β, 
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we suggest exploring the behavior of the MI over the parameter space of β and avoid 

regimes over which the MIs returned by the algorithm vary substantially. Furthermore, as 

noted in the results, optimal value of β depends upon the particulars of the data. Data 

containing high modulator frequencies may be susceptible to spurious separation of peaks in 

the comodulograms for higher values of β, although we cannot say whether this is the case 

for empirical as well as simulated data. In particular, we recommend a number of 

preliminary steps prior to applying our method. First, inspect the power spectra for multiple 

low frequency peaks that could suggest more than one modulator is present in the signal. 

Second, inspect time-frequency plots of the data for evidence that multiple carrier signals are 

present. Third, inspect the spectrograms for evidence that the modulator frequency is 

stationary -such information is not available from the power spectra. If multiple, stationary 

components are present in the data, we recommend setting β to a relatively high value to 

increase spectral resolution. If there is evidence that the modulator itself is non-stationary we 

recommend lower values of β to increase temporal resolution.

A major caveat regarding this method is that it necessarily imposes a broad band-pass on 

higher frequencies. This is an unavoidable consequence of the logarithmic spacing the 

wavelet transform imposes on frequency space and without varying the band width across 

frequencies we would violate the uncertainty principle. Though broad-band filters should be 

applied to high frequency components in order to capture the side bands, our method does 

not allow the end user to specify a particular bandwidth such that the filter captures only the 

central frequency and side-bands (the location of the side bands varies depending on the 

frequency of the modulator). Such flexible bandwidth selection is not possible if we wish to 

maintain consistent resolution across all frequencies.

Note that broad band-pass filtering has risks when using the analytic representation to 

extract time-varying phase and amplitude information. Incorporating a wide range of 

frequencies - both those arising from signal and noise components - might return a mixture 

of more than one oscillatory function varying with time. This is a concern if multiple 

spectral peaks occur between the upper and lower bounds of the filter. Mixing of different 

time-varying functions violates the assumptions underlying Gabor's solution to the problem 

of resolving instantaneous frequency in band-passed noisy data. The technical reasons for 

this behavior are discussed elsewhere (Bedrosian, 1962; Boashash, 1992) and also addressed 

briefly by Aru et al. (2014).

It is important to note that the wavelet transform imposes narrow band filtering on low 

frequency components, which generally account for the modulator frequency. We strongly 

advise, however, that if the phase of high frequency components is of interest our method 

should be applied conservatively and used in tandem with a constant band-pass analysis 

method. Converging evidence between results returned by our method and those returned by 

other methods would mutually obviate the shortcomings of each.

Finally, ours is not the only available CFC detection method that addresses the limitations of 

conventional CFC analysis. For example, Pittman-Polletta et al. (2014) provide a creative 

approach to CFC detection using the Hilbert-Huang transform (HHT); see the results section 

for a representative comodulogram generated with this method. The HHT is an iterative 
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process, operating entirely in the time-domain, that decomposes a signal into oscillator-like 

“intrinsic mode functions” (IMFs). The HHT is sensitive to both non-stationary and 

nonlinear dynamics. Moreover, in contrast to the Fourier transform, the HHT decomposes 

the signal according to its characteristic time scales instead of projecting the data onto a 

predefined space. The only major drawback of the HHT is that it lacks an analytic form and 

hence the underlying theory is less easily characterized than that of the Fourier and wavelet 

transforms. It is, nevertheless, a powerful tool. In keeping with our view that converging 

evidence is critical to CFC analysis given the state of the field, we recommend this method 

as well as our own for researchers interested in exploratory analyses.

6. Conclusions

We have developed a novel CFC detection method that partly overcomes the problem of 

bandwidth selection. We validate this method using simulated data in which the phase and 

amplitude components involved in CFC are known a priori. Applying this method to data 

gathered in anesthetized rats yielded new results that dovetail with previous work 

(Thompson et al., 2014; Nakhnikian et al., 2014). Our method is well-suited for exploratory 

analysis and analysis of large data sets.
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Highlights

We develop a wavelet based cross-frequency coupling detection method

This analysis produces consistent time-frequency resolution

We select a wavelet with zero-phase distortion

We analyze corticostriatal interactions in anesthetized rats
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Figure 1. 
A 0th order GMW in the time (left) and frequency (right) domains. In the time domain, blue 

and red curves indicate, respectively, the real and imaginary parts of the wavelet.
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Figure 2. 
Scanning multiple frequency bands for CFC using the GMWs. The simulated signal 

displayed at the top exhibits cross-frequency modulation from 4 Hz to 50 Hz. The signal is 

separated into component frequencies via the wavelet transform (A), where blue and red 

curves indicate, respectively, the real and imaginary parts of the wavelet. In B we show 

extraction of amplitude (first and third trace) or phase information (middle trace) from 3 

bands with central frequencies - from left to right - of 15 Hz, 4 Hz, and 50 Hz. The 4 Hz 

component is converted to a phase series and the 15 Hz and 50 Hz components to amplitude 

series. Combining amplitude and phase information into a normalized histogram and 

computing the MI corresponding to each frequency combination measures CFC for each 

phase/amplitude pair.
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Figure 3. 
MIs between a simulated modulator and carrier frequency generated using both the GMW 

(solid line) and Tort methods (dashed line) across varying values of the coupling parameter 

χ, which is inversely proportionate to modulation strength. Note the agreement between 

these methods.
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Figure 4. 
Comodulograms generated from data exhibiting unimodal (A) and bimodal (B) coupling. 

Note that, in agreement with previous results reported by Tort et al. (2010), CFC is reduced 

for bimodal coupling when the value of χ is the same for both simulations.
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Figure 5. 
The effect of β on simulated cross-frequency coupling. Row 1 shows two comodulograms 

with equal coupling strength from 4 to 50 Hz with β = 2 (A) and β = 6 (B). Note that the 

results are generally similar for different values of β in the first row; this is the case for low 

frequency modulators. Row 2 shows the effect of increasing β when CFC involves a higher 

modulator frequency. Here, increasing β from 2 (C) to 6 (D) creates splits in the peak of the 

comodulogram, likely due to increased spectral resolution resulting in partitioning of the 

carrier frequency and side-bands into distinct frequencies. Note that the frequency axes are 

non-identical for different panels because changing the value of β changes the frequency 

resolution of the corresponding wavelet. Insets in the second column show the peak MI 

obtained for different values of coupling strength with 4 Hz modulator and 50 Hz carrier. 

The curve for χ = 0.5 is shown in C and the one for χ = 0.07 in D.
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Figure 6. 
Comodulograms generated from simulated data with, from left to right, strong coupling, 

weak coupling, and no coupling. FDR control was applied to determine MIs above chance 

with correction for multiple comparisons. MIs below change are set to zero. Note that the 

FDR algorithm returns some “significant” MIs even when no coupling is present (MIs 

“above chance” when CFC is absent are circled in red in panel C). The proportion of 

incorrectly rejected true null hypothesis is approximately 0.01-0.03 across different 

simulations with no CFC, a tolerable false discovery rate. Because the FDR returns some 

false positives in general, it is necessary to inspect the data to ensure that the signals' power 

spectral densities support the hypothesis that CFC is present (See Fig. 7). Panel C is 

displayed on a different color scale so that the false positive values are visible.
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Figure 7. 
Power spectral densities generated using simulated data in which CFC is absent (A) and 

present (B). Arrows in B indicate side-bands arising from CFC. The 4 Hz component 

modulates the 50 Hz component in B. The spectrum in Fig. 7 A was generated using the 

same simulated data analyzed to produce Fig. 6 C. Note that, although some MIs are above 

chance according to the permutation with FDR correction method, the power spectra 

corresponding to non-zero coupling do not show a clear modulator peak, nor side bands 

around the putative carrier frequency.
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Figure 8. 
A comparison of CFC analysis of a non-stationary signal using the GMWs (left column) and 

Hilbert Transform (right column) approaches. The signal was generated by coupling the 53 

Hz amplitude to the phase of a quadratic chirp with a starting frequency of 8 Hz and 

injecting unit amplitude Gaussian white noise. The upper row shows chance-corrected 

comodulograms generated using the GMW (A) and Tort (B) MIs. Note that the frequency 

axes are non-identical for different comodulograms because the GMW method using 

logarithmic frequency spacing, whereas the Tort method uses linearly spaced frequencies. 

The entries in the lower row shows, from top to bottom, representative 1 s epochs of the 

signal and time-frequency representations of low frequency energy, low frequency phase, 

and high frequency energy derived using the GMWs with γ = 3, β = 2 (C) and Hilbert 

transform (D). For clarity, we show noise-free signals in C and D.
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Figure 9. 
Representative 5 s epochs of LFP data recorded from M1 (top row) and dStr (bottom row) 

with wavelet transformed data (blue) and the corresponding amplitude envelope (red) in the 

right column. The bandwidths of the wavelets are beside the corresponding arrows.
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Figure 10. 
Comodulograms showing CFC between all pairs of structures during anesthesia. Plots show 

corticocortical (A), corticostriatal (B), striatocortical (C), and striatostriatal (D) coupling. 

Note that CFC is strongest in frequency bands involved in striatocortical functional and 

effective connectivity reported elsewhere (Nakhnikian et al., 2014). All non-zero values are 

above chance at the 0.05 significance level.
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Figure 11. 
The effect of varying β on empirical data. Here we show the same comodulogram, 

displaying intracortical CFC for β values of 2, 5 and 8 (left to right). Frequency axes are 

non-identical for different comodulograms since high values of β produce increased spectral 

resolution. Also note that though the shape of the comodulgram changes for different values 

of β each shows a similar overall pattern: delta phase to high alpha/beta amplitude coupling. 

The inset in the third panel shows peak CFC across different values of β for corticocortical 

(solid white) corticostriatal (solid red) striatostriatal (dashed white) and striatocortical 

(dashed red)
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Figure 12. 
Intra-structural CFC in M1 quantified using the method of Pittman-Polletta and colleagues. 

The results obtained using this method are non-identical to ours,though the both show CFC 

between the delta phase and beta amplitude of the coritical signal. Note that the frequency 

axes on comodulograms differ between those generated using the GMW and those generated 

with the Pittman-Polletta method because these methods do not identically partition 

frequency space.
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