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Abstract

Objective—To evaluate a system we developed that connects natural language processing (NLP) 

for information extraction from narrative text mammography reports with a Bayesian network for 

decision-support about breast cancer diagnosis. The ultimate goal of this system is to provide 

decision support as part of the workflow of producing the radiology report.

Materials and methods—We built a system that uses an NLP information extraction system 

(which extract BI-RADS descriptors and clinical information from mammography reports) to 

provide the necessary inputs to a Bayesian network (BN) decision support system (DSS) that 

estimates lesion malignancy from BI-RADS descriptors. We used this integrated system to predict 

diagnosis of breast cancer from radiology text reports and evaluated it with a reference standard of 

300 mammography reports. We collected two different outputs from the DSS: (1) the probability 

of malignancy and (2) the BI-RADS final assessment category. Since NLP may produce imperfect 

inputs to the DSS, we compared the difference between using perfect (“reference standard”) 

structured inputs to the DSS (“RS-DSS”) vs NLP-derived inputs (“NLP-DSS”) on the output of 

the DSS using the concordance correlation coefficient. We measured the classification accuracy of 

the BI-RADS final assessment category when using NLP-DSS, compared with the ground truth 

category established by the radiologist.

Results—The NLP-DSS and RS-DSS had closely matched probabilities, with a mean paired 

difference of 0.004 ± 0.025. The concordance correlation of these paired measures was 0.95. The 

accuracy of the NLP-DSS to predict the correct BI-RADS final assessment category was 97.58%.

Conclusion—The accuracy of the information extracted from mammography reports using the 

NLP system was sufficient to provide accurate DSS results. We believe our system could 
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ultimately reduce the variation in practice in mammography related to assessment of malignant 

lesions and improve management decisions.
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1. Introduction

Screening mammography is a key approach in the early detection of breast cancer [1]. It is 

limited by a risk of causing false-positive findings leading to potentially unnecessary follow-

up imaging and biopsies [2]. In addition, it has been shown that large-scale screening is 

subject to variability due to the inherent subjective nature of evaluating mammograms [3–

10]. There are several sources of radiologist variability, such as age, experience and training 

of the radiologist, the number of mammograms performed, time between mammograms, and 

the availability of previous studies [6,8,10–12]. The Mammography Quality Standards Act 

(MQSA) attempts to reduce the variability of mammography practice by requiring 

radiologists to report their outcomes [13]. Based on those outcomes, studies have been 

carried out to identify particular performance levels for mammography interpretations [13–

14] as targets for improving quality medical practice. For instance, Positive predictive value 

(PPV) of biopsy recommendation less than 20% or greater than 40%, and cancer detection 

rate less than 2.5 per 1000 interpretations were metrics identified as indicating low 

performance [14].

In order to advance quality and to improve the overall performance of radiologists, decision 

support systems (DSS) that use quantitative decision-making methods [15,16] have been 

advocated. Despite their potential to enhance clinical practice, particularly in mammography 

[16–19], DSS are not widely adopted in the clinic. A review by Garg [20] summarized 

several key barriers to implementation of DSS, including failure of practitioners to use the 

system, poor usability or integration into practitioner workflow [21], or practitioner non-

acceptance with the computer recommendations. In their review, studies in which users were 

automatically prompted to use the system had better performance compared with studies in 

which users were required to actively initiate the system to receive decision support [20]. A 

particular challenge is that most current DSS require a parallel workflow, in which the 

clinician enters pertinent findings into the system after creating a report that already 

documents the same findings [18,19,22]. This duplicative data entry activity is both time-

inefficient and error-prone, and could explain some of the reasons that DSS is not yet widely 

used in mammography practice, despite the potential advantages.

A strategy for deploying DSS into the clinical workflow is to provide automated structured 

entry of the necessary data into the DSS. Although the need for this strategy is widely 

acknowledged [20,23,24], few DSS provide automated data entry. In particular, in 

mammography, the narrative radiology report is commonly the only format used for 

recording and communicating the imaging results to the referring physician or others. Even 

when auditing requirements lead many radiology practices to use structured reporting 
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systems, narrative reports are invariably produced as the final product to preserve effective 

communication with referring physicians. This reduces the availability of machine-

interpretable structured data for direct use by DSS. In addition, the high-volume and fast 

pace of medical practice puts emphasis on efficiency, hindering efforts for more detailed 

structured capture of report data in routine clinical practice; in fact, narrative reporting using 

voice recognition greatly dominates radiology reporting [25].

Given that most radiology results are in a narrative, unstructured format, NLP tools that 

extract structured information from narrative radiology reports and directly feed that 

information into a DSS could close a critical gap hindering the translation of DSS into the 

clinical workflow [24,26,27], ultimately resulting in substantial reductions in variation in 

practice and improvement in the quality of care. Many prior works have shown the utility of 

NLP to extract information from text reports and to represent that information in a 

computable format suitable for DSS [27–31]. The structured output of these systems was 

used for automated classification to infer a variety of clinical conditions were present in the 

text [27,28,32–34]. The focus of these prior works was on automatic text classification, 

rather than accurate estimation of the probability of disease (such provided by a Bayesian 

Network using inputs from the NLP)—a critical task in mammography, in which decisions 

about the patient management are made based on the probability of disease. In this study, we 

produce a DSS that estimates the probability of disease directly from NLP extraction of the 

pertinent information from mammography text reports. The ultimate goal is to provide 

decision support to radiologists during the routine workflow of dictating narrative reports.

A particular challenge to using NLP to provide the structured information needed by a DSS 

is that the performance of the latter depends on the accuracy of its inputs. Although many 

NLP systems have excellent performance in their analysis of unstructured text [26,27,34–

37], no NLP system has perfect performance. It is thus imperative to understand the 

sensitivity of the DSS to imperfect input from the NLP system. However, to our knowledge, 

no prior studies have measured the effect of imperfect NLP information extraction on the 

performance of a DSS.

The first goal of our work is to evaluate whether an NLP system we developed has sufficient 

accuracy to create an NLP-driven mammography reporting decision support system (NLP-

DSS) that (1) extracts from narrative mammography reports structured information about 

breast lesions and clinical information about the patient, and (2) inputs this structured 

information into a Bayesian network (BN) to provide decision support about the diagnosis 

based on the information in the radiology report, computed immediately after the radiologist 

completes the report. The second goal of our work is to assess the robustness of the 

performance of the DSS given imperfect NLP extraction from the input narrative text.

2. Materials and methods

2.1. System overview

NLP-driven mammography reporting decision support system (NLP-DSS) consists of two 

main parts: (1) an NLP system for automatic annotation and extraction of data required for 

decision support in mammography reports and (2) a decision support model to provide 
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decision support about the diagnosis based on the information in the radiology report. Since 

the NLP system and the decision support model are integrated into the NLP-DSS, this 

system can provide “real-time” decision support to radiologists, as soon as they have 

completed dictating their report, providing the probability of malignancy and enabling them 

to determine if their conclusions are consistent with the predicted diagnoses. Thus, this 

provides a workflow that could permit incorporating decision support into the radiology 

interpretation workflow (occurring concomitant with reporting), without requiring a parallel 

data entry process (Fig. 1).

2.1.1. Natural language processing system to extract data required for NLP-
DSS—We previously developed an NLP system for automatic annotation and extraction of 

imaging observations that characterize breast lesions, the locations of the lesions, and other 

attributes of breast lesions described in mammography reports [38]. We used BI-RADS [39] 

to provide a controlled terminology for the terms used in mammography reports for 

describing named entities (imaging observations and locations of lesions). The BI-RADS 

terms are useful to unify the variety of terminological variants occurring in texts that 

describe these named entities; using terminologies (or ontologies) such as BI-RADS is a 

common approach for mapping textual descriptions to canonical meanings [40]. The BI-

RADS terminology contains descriptors, which are specialized terms that describe breast 

density and lesion features (types of imaging observations). Since BI-RADS is not 

distributed in a structured format, we previously created a simple ontology structure of this 

terminology for our system (“BI-RADS ontology”) [38]. Our NLP system takes as input a 

free text mammography report and produces as output a set of information frames 

summarizing each lesion described in the report and its attributes, with all terms being 

normalized to the BI-RADS terminology [38] (Fig. 2a). The system performed extraction of 

imaging observations with their modifiers from text reports with precision = 94.9%, recall = 

90.9%, and F-measure = 92% [38].

Since the decision model requires clinical information in addition to imaging observations, 

we extended our NLP system by adding a component to detect and extract personal and 

family history of breast cancer. This clinical information is reported in the history section of 

the mammography reports, so our module segmented this section of the report and extracted 

the information using a similar rule-based approach (Fig. 2b) that we described previously 

[38]. We used the Con-Text algorithm [41], which determines whether the clinical 

conditions mentioned in clinical reports are negated, hypothetical, historical, or experienced 

by someone other than the patient. In addition, to run in the decision model, we combined 

the associated lesions such as “there is skin thickening associated with this mass” as an 

abnormality and its characteristics. This context is needed in order to appropriately report 

these clinical variables as being observed or not observed in the decision support model.

2.1.2. Bayesian Network (BN) decision support model—We used a previously 

developed Bayesian network decision-support system for this study [42]. This BN 

(“diagnosis-prediction BN”) contains a variable for each of the BI-RADS descriptors, as 

well as variables capturing the clinical variables of personal and family history of breast 

cancer. Given a set of BI-RADS descriptors describing a single lesion in a mammography 
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report and the associated patient data provided in that report as input to the BN, the 

diagnosis-prediction BN outputs the probability of malignancy given the observed findings 

(Fig. 3). We chose this model for its strong performance in this diagnostic task (Area under 

curve (AUC) = 0.96, sensitivity = 90.0%, specificity = 93.0%) [42]. In addition to predicting 

the probability of lesion malignancy, we modified the original BN model to create a second 

BN model that predicts the BI-RADS final assessment category (hereafter referred to as “BI-

RADS category”). Among the clinical variables in this new model (age, hormone therapy, 

personal and family history of breast cancer), very few mammography reports described the 

age (14 reports) and hormone treatment history (77 reports); thus, we removed these two 

variables from our decision model. As a preprocessing step, the continuous variable “lesion 

size” was categorized as small (size < 3 cm) and large (size ≥ 3 cm).

2.2. Integrating NLP and decision support

In order to integrate the NLP system and the BN model, we adapted our previous NLP 

system so that its output could be directly consumed by this Bayesian Network model 

[18,22,42,43]. To do so, we built an interface to map the outputs of our NLP system to the 

BN by mapping the information frames output by our NLP system to the state variable 

inputs of the BN. Our NLP-DSS is thus an integrated system, taking free text radiology 

reports as input, and outputting the probability of malignancy for each lesion described in 

the mammography report (the probability of malignancy is specific to each lesion in the 

mammogram; it is possible to integrate the results of multiple lesions into a composite 

probability score, but in practice, each lesion is evaluated separately).

2.3. Evaluation

2.3.1. Reference standard inputs for DSS—The output of the DSS depends on the 

accuracy of its inputs, and since our NLP system may produce imperfect inputs to DSS, we 

developed a reference standard set of “ground truth” inputs for evaluating the DSS. We 

randomly selected 300 mammography reports from a report database from an academic 

radiology practice. A fellowship- trained, subspecialty-expert breast-imaging radiologist 

reviewed each of these 300 reports to determine the set of BI-RADS descriptors that 

described each breast lesion in the radiology reports; this served as our reference standard 

set of BI-RADS descriptors for testing the DSS (called the RS-DSS), to be compared with 

results obtained when using NLP for the input (NLP-DSS).

2.3.2. Evaluation of clinical history extraction—Since in this work we extended our 

previous NLP system to extract additional information (specifically, the clinical history), we 

evaluated the accuracy of this task in terms of precision and recall by comparing the clinical 

history information produced by our system with that determined by the radiologist who 

reviewed the reports. For this evaluation, we used the same 300 mammography reports 

which we previously used to evaluate our NLP system [38].

2.3.3. Evaluation of NLP-DSS—The primary outcome for our evaluation of the NLP-

DSS was whether the probability of malignancy and the BI-RADS category (which 

represents a categorization of the probability of malignancy) matched that produced by the 

same decision model run on the reference standard. Since the reference standard report set 
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did not include any report classified as BI-RADS 6, our evaluation did not include any BI-

RADS 6 cases. We assessed the agreement in two ways: (1) agreement in absolute value of 

the probability of malignancy and (2) agreement of the BI-RADS category. We assessed the 

latter because it is used for clinical decision making [44]. For assessing the probability of 

malignancy, the diagnosis-prediction BN was used as the decision model in the NLP-DSS, 

and for assessing the BI-RADS category, the BI-RADS category-prediction BN was used as 

the decision model.

We assessed the agreement in the probability of malignancy using the concordance 

correlation coefficient [45], comparing the probability of malignancy predicted by our 

system using free text reports and that determined by the decision model applied to the same 

cases using the reference standard data as input. A two-tailed p value less than 0.05 was 

considered statistically significant.

To assess the accuracy of the NLP-DSS in terms of the qualitative BI-RADS category, we 

created confusion matrices and calculated the percentage agreement in the BI-RADS 

categories between that predicted by our NLP-DSS and that determined by the decision 

model applied to the same cases in the reference standard. We conducted the evaluation in 

two ways: (1) personal and cancer history variables were included in the BN, and (2) 

personal and cancer history nodes were not included in the BN.

3. Results

3.1. Cancer history extraction

Of the 300 reports in which we evaluated our patient cancer history extraction module, 

family cancer history were reported in 90 (30%) reports, while personal cancer history was 

reported in 177 (59%) reports. Among those, 88 of the family history (97.7%) and 175 of the 

personal cancer history (98.8%) extractions by our system were true positives. Two 

extractions were false negatives for both family and personal cancer histories (2.2% and 

1.1%, respectively). In addition, two family cancer history (2.2%) and three personal cancer 

history (1.7%) detected by our NLP system were false positives. For personal cancer history 

extraction, the precision of extracting the breast cancer history using our system was 98.3% 

and recall was 98.8%. For family history extraction, the precision and recall of extracting the 

breast cancer history using our system was 97.7% for each. The accuracy of the remainder 

of the information extraction tasks of our NLP system has been reported previously [38].

3.2. NLP-DSS evaluation

Among the 300 mammography reports in our dataset, there were 702 different breast 

lesions. The probability of malignancy was calculated for each lesion based on descriptors 

and clinical values in the reference standard and based on of the values of these variables 

derived from our NLP system. We thus had paired probabilities of malignancy for each of 

the 702 breast lesions. The concordance correlation between these two sets of probabilities 

was 0.952 (Fig. 4).

We also compared the BI-RADS categories for each of the 702 breast lesions derived from 

the reference standard and derived from the output of the NLP system. The results were 
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summarized in Table 1. Accuracy rate of the BN outputs for each setting were calculated as 

98.14% (history nodes included) and 98.15% (history nodes not included).

The common reasons for the inconsistencies are summarized in Table 2. Lymph Nodes, 

stability, and calcification extraction problems were the primary cause of disagreement 

between RS-DSS and NLP-DSS.

4. Discussion

In this paper, we show that the output of an NLP information extraction system applied to 

mammography reports can provide the necessary inputs to a DSS, and the outputs of this 

DSS could ultimately guide decision making at the time of dictating the reports. Invoking 

decision support inference directly from narrative radiology reports could ultimately enable 

its deployment in the routine clinical workflow of report generation. The results of the 

evaluation of our NLP-DSS are promising; we found excellent agreement in DSS outputs 

(probability of malignancy and the BI-RADS category) when using the inputs derived from 

our NLP system and those from the reference standard.

A unique aspect of our work is that in addition to assessing the accuracy of the information 

extraction performed by our system, we assess the impact the imperfect extraction by the 

NLP system on the decision support outputs (predictions of the probability of cancer and the 

BI-RADS category). We found that the decision support outputs when using our NLP 

system, compared with that when using hand-curated structured data (the reference 

standard), are accurate and highly correlated. To our knowledge, this is the first study to 

undertake an evaluation of the impact of imperfections in automated information extraction 

on the accuracy of DSS output.

The concept of using narrative text as the input to decision support by integrating NLP and 

decision support systems has been previously described [27,34,46–52]. In their review, 

Demner-Fushman et al. categorize NLP–DSS systems, including specialized systems 

dedicated to a specific task, a set of NLP modules run by a DSS system, and stand-alone 

systems/services that take clinical text as input and generate output to be used in DSS 

systems [24]. Under this frame-work, our NLP-DSS is a stand-alone system, developed for a 

specific task that could be customized and extended for different tasks. The Demner-

Fushman et al. review also points out that an NLP system could process clinical reports in 

real-time, and the NLP output can then be used by a DSS to provide decision support during 

the clinical workflow [24]. In fact, our NLP-DSS, if integrated with a voice-recognition 

reporting application, provides an example scenario of this, in which decision support is 

provided immediately after completion of the radiology report to enable the radiologist to 

consider whether their assessment of the likelihood of malignancy of breast cancer in patient 

concurs with that predicted by a decision model. With a similar approach in different domain 

[52], Evans et al. developed an automated identification and predictive risk report for 

hospitalized heart failure patients, and the addition of NLP increased the identification HF 

patients.
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Since the narrative text of radiology reports lacks the structure and controlled language 

needed to directly support DSS, such as Bayesian models or other computer reasoning 

systems that require such inputs [53], NLP methods have been proposed to bridge the gap 

from unstructured narrative text to structured input for decision support [24,27,31]. A 

number of researchers have investigated NLP methods to automatically recognize and 

encode the concepts conveyed in medical texts [27,29,31,34–37,48,52,54–60]. Most of those 

NLP systems have been created as general purpose systems that attempt to extract diseases 

and findings that are commonly discussed in a medical texts. In some studies, the NLP 

applications have been integrated in both active and passive DSS, and specific information 

that was extracted was used for decision support [24,50–52,61]. Although NLP methods 

have been used to extract information to infer a variety of conditions in text reports 

[27,28,34], to our knowledge, ours is the first system that uses NLP information extraction 

to accurately estimate the probability of disease by extracting a multitude of radiology 

imaging features and using that in a BN to infer the probability of disease.

A particularly relevant prior NLP system is MedLEE, a semantically- driven NLP system 

originally designed for decision support applications in the domain of radiological reports of 

the chest, and it was later extended for mammography reports [62,63]. MedLEE is a 

generalizable system and includes extensible lexicons and deep parsing and that could 

theoretically be extended to meet the needs of DSS for mammography. However, its 

development in mammography did not incorporate BI-RADS or patient clinical variables 

required for inferring the probability of breast cancer in a DSS [62]. In addition, it was not 

publicly available for modification or extension.

Other related work has used BI-RADS as a knowledge resource for information extraction 

tasks [64–69], but not to the level of detailed recognition and extraction of each lesion and 

its characteristics that is needed for lesion-specific decision support, as we describe in this 

study. Similarly Gao et al. focused on extraction of four mammographic findings (mass, 

calcification, asymmetry, and architectural distortion) with their laterality information. 

However, they did not included other imaging observations’ characteristics [35]. A study by 

Sippo focused only on extraction BI-RADS final assessment categories from mammography 

reports [68]. A study by Nassif used a simple and effective parser, based on regular grammar 

expressions, to extract BI-RADS terms from English free-text documents [65,66]. The 

Nassif study also constructed a parser to extract Portuguese BI-RADS features [67]. 

Although one of the aims of those studies was to extract information to use for decision 

purposes, none of the prior works were integrated with a DSS with an evaluation of the 

decision support outputs. We thus believe that our study is the first which integrates and 

evaluates NLP-with a decision support model for mammography interpretation.

The performance of any integrated NLP-DSS system is constrained by the quality of the 

NLP of the input text. Although the NLP system used in our work has good overall accuracy, 

it is imperfect, and an additional novelty of our work is in assessing the impact of inaccurate 

NLP extraction on the decision support outputs from DSS. The concordance correlation 

between the probabilities produced by DSS using our NLP (NLP-DSS) and when using the 

reference standard inputs (RS-DSS) in 702 breast lesions was 0.95. In addition, the accuracy 
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in the qualitative BI-RADS categories for the 702 breast lesions was 98% when comparing 

the RS-DSS and our NLP-DSS.

A limitation of using NLP for generating the inputs for DSS is that the information in 

narrative texts may be inconsistent or incomplete [37]. In fact, in our study, we found that 

fewer than half (138 of 300) of the mammography reports described personal and family 

history of breast cancer, and very few reports described the age and hormone treatment 

history. The decision support output of our system may, in fact, help the radiologist to 

recognize incomplete and inconsistent reports. An enhancement we could pursue with our 

NLP-DSS in the future is to examine the inputs to the decision model to get insights into the 

type of information in the radiology report that may be incomplete and inconsistent and 

provide feedback about that to the radiologist, e.g., the report lacks personal and/or family 

history of breast cancer.

There are many approaches to NLP of narrative texts, including simple keyword extraction, 

information extraction, and natural language understanding. For the task of decision support 

with mammography reports, we argue that extraction of information frames is needed, since 

mammograms may have multiple lesions and it is necessary to disambiguate and associate 

the descriptors of the various lesions. Fiszman et al. [49] showed that an NLP system to 

identify pneumonia performed better than the simple keyword-based methods.

An advantage of our system is that it provides necessary input for DSS directly from the 

text; the data it extracts from the radiology report can directly drive the DSS. Beyond 

potential use in clinical practice, our NLP-DSS may facilitate large-scale studies related to 

covariates of breast cancer risk by enabling the collection of structured descriptions of the 

characteristics of breast lesions in large scale during routine clinical practice, and enable 

improvement in risk prediction models by allowing them to better incorporate real time 

information extraction. Beyond the utility of our methods to enabling decision support, 

methods such as ours could enable discovery by enabling researchers to tap into large 

historical collections of clinical report data. The information in mammography reports is a 

key component in diagnosing breast cancer, and automated extraction of imaging 

observations from a large repository of radiology reports in which the cancer outcomes are 

known could permit hypothesis generation about the clinical importance of particular 

imaging observations, or the most appropriate thresholds of probability for malignancy 

warranting biopsy.

Our work has several limitations. Although our NLP-DSS produced similar results to the 

reference standard in terms of recognizing and extracting BI-RADS descriptors for DSS 

based on the text narrative mammography reports, the generalizability of our system among 

different institutions has not been tested. However, we could likely extend our system as 

needed to accommodate local variations in reporting conventions; mammography reports 

tend to follow a similar constrained language and content as part of good clinical practice. 

Future studies with larger and more diverse reports could be performed to confirm the 

accuracy and generalizability of our approach to reports from other institutions.
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Another limitation of our system is that it does not extract age and hormone treatment 

history. This information was recorded in too few reports, but our methods could be 

extended to capture it by adding more rules to our NLP system in the future once we acquire 

more report examples. In addition, our system could detect the absence of such information 

and prompt the radiologist to provide this information as they dictate their reports, or, if 

suitable interfaces are available, the age and hormone treatment history could be extracted 

from the electronic medical record system.

Our NLP method is domain-specific and might not be generalizable to other applications 

within the field of radiology. We will be investigating extensions of our system to other 

types of radiology reports. We did not compare the output of our system directly to the ac 

tual physician inferences (e.g., to their assessed probability of malignancy). Radiologists do 

not report their estimated probability of malignancy in mammography reports, so we 

estimated this by using a BN applied to their imaging observations in our reference standard, 

and we compared those probabilities (as well as the BI-RADS categories derived from them) 

to those produced by our NLP-DSS.

Integrating an NLP system with decision support in a production- level system may be 

difficult. This was the case in the Antibiotic Assistant [49], and the authors needed to 

implement a simpler keyword- based approach to NLP. Although we have not yet attempted 

to deploy our NLP-DSS into the clinical workflow, we believe it will be feasible if our NLP 

system can be invoked as a service to the production reporting application. Commercial 

radiology reporting applications have voice-to-text functionality, and they show the text 

reports to the radiologists as they dictate them. Some vendors provide integration interfaces, 

which could enable us to consume the report text and send the output of the decision support 

application to the radiologist’s display screen. The practicality of this approach will need to 

be explored in future work, however.

Notwithstanding the foregoing limitations and challenges, we believe there is potential for 

clinical utility of our system to improve radiologist practice by enabling DSS in conjunction 

with reporting, providing feedback about the probability of malignancy based on the content 

of their reports. The ultimate impact of this on actual patient outcomes will need to be 

assessed in future work.

5. Conclusion

Our study to create and evaluate a NLP-DSS showed that the NLP component of our system 

acquires sufficient information needed as inputs to a DSS to produce results that are 

consistent with those obtained when using inputs from a reference standard. This raises the 

potential of introducing the NLP-DSS into the mammography interpretation workflow, 

potentially enabling real-time decision support. The NLP system performs automated 

extraction of BI-RADS descriptors and certain patient clinical data from the reports dictated 

by radiologists. A Bayesian DSS system uses the BI-RADS descriptors observed by the 

radiologist with the patient data to estimate the probability of malignancy and BI-RADS 

categories. Our system could ultimately reduce the variation in practice in mammography 

related to assessment of malignant lesions and improve management decisions. With further 
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testing, the system may ultimately help to improve mammography practice and improve the 

quality of patient care.
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Fig. 1. 
Decision support tools developed and their relationship to the radiology workflow.
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Fig. 2. 
Fig. 2a. Output from NLP system produced from the input sentence, “There is a 1 cm oval 

nodular density with an obscured margin in the right breast in the anterior depth.” The upper 

rows represent entities whose modifier values are shown in lower rows.

Fig. 2b. Output from NLP system on GATE NLP GUI.
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Fig. 3. 
Decision support system flowchart.
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Fig. 4. 
Correlation between the probabilities calculated from NLP system output and reference data 

set.
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Table 2

Reasons of inconsistencies among BI-RADS categories.

Reference Test Reason Frequency

The reasons of the differences among BI-RADS categories for Reference data set and Test set

B0 B1–2 Lymph node and “Stability” information of the lesion was not detected by NLP
Lymph node was not detected by NLP

1
2

B0 B4 Lymph node and “Stability” information of the lesion was not detected by NLP
“Density” and “Shape” information of the lesion was not detected by NLP

1
1

B1–2 B3 Skin Thickening and “Stability” information of the lesion was not detected by NLP 1

B1–2 B4 Skin Lesion was not detected by NLP 1

B3 B1–2 Calcification was not found by NLP 3

B4 B1–2 Calcification was not found by NLP 3
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