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Abstract

A genome-wide association study (GWAS) typically is focused on detecting marginal genetic 

effects. However, many complex traits are likely to be the result of the interplay of genes and 

environmental factors. These SNPs may have a weak marginal effect and thus unlikely to be 

detected from a scan of marginal effects, but may be detectable in a gene-environment (G×E) 

interaction analysis. However, a genome-wide interaction scan (GWIS) using a standard test of 

G×E interaction is known to have low power, particularly when one corrects for testing multiple 

SNPs. Two 2-step methods for GWIS have been previously proposed, aimed at improving 

efficiency by prioritizing SNPs most likely to be involved in a G×E interaction using a screening 

step. For a quantitative trait, these include a method that screens on marginal effects [Kooperberg 

and Leblanc, 2008] and a method that screens on variance heterogeneity by genotype [Paré et al., 

2010] In this paper, we show that the Paré et al. approach has an inflated false-positive rate in the 

presence of an environmental marginal effect, and we propose an alternative that remains valid. 

We also propose a novel 2-step approach that combines the two screening approaches, and provide 

simulations demonstrating that the new method can outperform other GWIS approaches. 

Application of this method to a G × Hispanic-ethnicity scan for childhood lung function reveals a 

SNP near the MARCO locus that was not identified by previous marginal-effect scans.
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Introduction

Genome-wide association studies (GWAS) have been conducted for years as a tool for 

identifying genetic susceptibility loci that are associated with complex traits. Several 

hundred trait-related loci for many human diseases and quantitative traits have been 

discovered through the scans of marginal genetic effects [Hindorff et al., 2015]. However, 

there remains a significant amount of heritability left unexplained for many traits after 

accounting for the SNPs that have been identified. This missing heritability is not likely to 

be explained by additional marginal-effect loci that might be detectable even with larger 
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sample sizes [Maher, 2008]. A number of alternative explanations for this “missing” 

heritability have been discussed [Manolio et al., 2009]. One possible reason is that many 

complex traits are likely to be the result of the interplay of genes and environmental factors, 

such that a given trait-related locus may be important only for a subgroup of the population 

defined by some environmental factor. The presence of gene-environment (G×E) interaction 

may produce a weak marginal genetic effect that is unlikely to be detected using a standard 

genome-wide scan. In fact, an interaction with opposite genetic effects in different 

subgroups (qualitative interaction) could produce virtually no marginal genetic effect. 

Testing for G×E interactions in genome-wide association studies is a promising approach to 

find novel genes that could be missed from the primary scans of marginal effect. Identifying 

G×E interaction is considered one possible key to better understanding the genetic 

architecture of complex traits [Manolio and Collins, 2007; Zuk et al., 2012], and 

incorporating G×E interactions into trait prediction models is a primary goal of the 

President's Precision Medicine Initiative (http://www.nih.gov/news/health/sep2015/

od-17.htm).

The traditional analysis of G×E interaction is based on an exhaustive scan for interaction 

with each SNP using a regression framework – linear regression for a quantitative outcome 

and logistic regression for a dichotomous outcome. In the context of dichotomous outcome 

this approach has been shown to have poor power and several 2-step approaches have been 

developed to improve efficiency in the context of case-control sampling [Murcray et al., 

2009, 2011; Kooperberg and LeBlanc, 2008; Hsu et al., 2012; Gauderman et al, 2013]. For a 

quantitative trait, power for the traditional approach is also poor and 2-step alternatives have 

been proposed. Kooperberg and LeBlanc [Kooperberg and Leblanc, 2008] proposed 

screening SNPs based on their marginal effect, followed by testing of G×E interaction in 

Step 2 for only those SNPs that pass a 0.05 significance threshold in the screen. Pare et al. 

[Paré et al., 2010] developed an alternative procedure, with screening in Step 1 based on a 

test of variance heterogeneity across SNP genotypes. However, as we show in this paper, the 

Pare et al. approach does not preserve the overall Type I error, except in limited 

circumstances. In this paper, we develop a solution to this problem that recovers a valid 2-

step method using variance heterogeneity screening. We also propose a new 2-step approach 

that combines both marginal and variance-heterogeneity information in a single screening 

test. We use simulations to compare the Type I error and power of these various approaches 

across a wide range of underlying models. We also apply these methods to a GWIS of 

childhood lung function.

Materials and Methods

Let Y be a quantitative phenotype. We define E to be an exposure variable, it can be an 

environmental variable (e.g. air pollution), personal exposure (e.g. smoking), or other 

personal characteristic (e.g. sex). We further assume that M SNPs have been genotyped on 

each of the N study individuals, with G1, G2, ..., GM denoting the genotypes at the M loci. 

We let qA to be the minor allele frequency (MAF) of allele A for the quantitative trait locus 

(QTL). In the following sections we describe several different approaches that can be used to 

analyze these data.
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Marginal (YG) test

A standard GWAS is conducted by testing the null hypothesis βG=0 for each of the M SNPs 

using a linear regression model of the form

(1)

Adjustment covariates to control for potential confounders are typically included in the 

model. A correction [Dudbridge and Gusnanto, 2008] is applied to the p-value (pG) to 

preserve the family-wise error rate (FWER). In the presence of an environmental factor (E) 

and a G×E interaction, βG is a weighted average of the corresponding genetic effect in each 

environmental group, hence the use of the term ‘marginal’ to describe this effect. The same 

magnitude of βG can result from different underlying patterns of G×E interaction.

Interaction test (G×E)

In a follow-up to the primary marginal scan, one can test for G×E interaction using the 

model

(2)

based on testing the null hypothesis βGE=0 for each of the M SNPs. Let pG×E denote the p-

value for the test of G×E interaction. A correction is also needed to preserve the FWER.

Two-Step test with screening on marginal G (YG|G×E)

In the pursuit of gene-gene (G×G) interactions, Kooperberg and Leblanc [Kooperberg and 

Leblanc, 2008] developed a 2-step approach that screens SNPs by genetic marginal effects at 

Step-1 significance level α1. They proposed to formally test for G×G interactions for the 

subset m ≤ M SNPs that pass the Step-1 screen, with a Bonferroni-corrected significance 

level α/m to preserve the FWER. This approach is based on the observation that most 

variants involved in the interactions are also likely to display some non-zero (although 

possibly weak) marginal effect on the phenotype. An analogous screening on marginal 

effects can also be applied for G×E analysis. We explore the power of this strategy for G×E 

interactions by screening M SNPs in the first step by genetic marginal effects (model 1). 

One can use either subset testing [Kooperberg and Leblanc, 2008] or an alternative weighted 

hypothesis testing [Ionita-Laza et al., 2007] in Step 2 (model 2). These two hypothesis 

testing approaches are described in more detail below.

Two-Step test with screening on variance heterogeneity (Var|G×E)

An alternative 2-step approach can be constructed by screening for variance heterogeneity 

across genotypic groups [Paré et al., 2010]. The rationale is that if the effect of a QTL differs 

depending on an environmental factor, the variability of the quantitative trait among 

individuals carrying the risk allele will also be different from the variability among non-

carriers. Paré et al. [Paré et al., 2010] proposed to use Levene's test [Levene H, 1960] for 

homogeneity of variance across genotypic groups at the screening step for all M SNPs, and 
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then only test for G×E interactions for a subset of SNPs that pass the screening step using 

model 2. They showed that the power of this procedure can be higher than the power of the 

standard G×E analysis depending on the magnitude of the main effect of the interacting 

factor E, where the main effect is defined as the effect of E when G=0. However, we show 

that the correlation between the variance estimator and the G×E interaction estimator is 

dependent on the marginal effect of E and this correlation will only be equal to zero when no 

marginal effect of E exists (Details shown in Supplemental material). In other words, the 

Step-1 Levene's test, which is based on comparing variances across G, is correlated with the 

Step-2 test of G×E in the presence of a marginal effect of E. This correlation violates the 

basic premise of 2-step testing procedures that requires independence of Steps 1 and 2 for 

validity [Murcray et al., 2009]. The result, as we will show in our simulation studies, is that 

the Paré et al. approach can produce an unacceptably high false-positive rate.

Two-Step test with a screening on residual variance heterogeneity (rVar|G×E)

As we show in the Supplemental materials, the correlation between Levene's test and the 

G×E interaction test can be eliminated if the marginal effect of E is removed. Moreover, 

removing the marginal effect of E will not affect the magnitude of G×E interaction 

(Supplemental materials, Fig. S1). Based on these two observations, we propose a revised 2-

step approach to using variance heterogeneity as follows:

Step-0—Given a quantitative trait Y, fit the linear regression model:

(3)

Where i=1,...,N for N individuals in the sample.

Step-1—Given K groups defined by genotype, test the null hypothesis of equality of 

variance, H0: σ1= σ2=... σK, where σk is the standard deviation of τ within the kth subgroup 

(k=1,...,K, e.g. K=3 for an additive model, K=2 for a dominant model), using Levene's test 

defined as:

(4)

Where N is the total sample size, Zkj=|τkj– τk•| where τkj is the residual of the regression in 

(3) for jth observation in kth subgroup, and τk• is the mean or median of kth subgroup. Zk• is 

the mean of Zkj for kth subgroup, and Z•• is the mean of all Zkj. Note that Equation 4 defined 

Levene's test of variance heterogeneity applied to the residuals τ instead of the original trait 

Y. The p-value is defined as:
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(5)

Where F is the F-distribution with K–1 and N–K degrees of freedom.

Step-2—Considering results of the Step-1 screen, test the null hypothesis H0: βGE=0 using 

model 2.

The use of residuals removes the marginal E effect and thus eliminates the correlation 

between the Levene's test and the test of G×E interaction. This leads to a 2-step procedure 

that preserves the FWER, as we show by simulation. One can use either subset testing or 

weighted hypothesis testing in Step 2 (see below).

Joint Two-Step test with screening based on both YG and rVar (Joint|G×E)

So far we have seen three pieces of information that can be utilized in the search for G×E 

interactions: the G×E interaction effect, the marginal G effect, and variance heterogeneity 

across G. The standard test uses only the G×E interaction effect, Kooperberg and Leblanc 

[Kooperberg and Leblanc, 2008] use the marginal effect of G to screen and G×E to test, and 

our modification of Paré et al [Paré et al., 2010] utilizes residual variance heterogeneity to 

screen and G×E to test. We propose a novel 2-step approach that uses all three of these 

sources of available information, as follows:

Step-0—Remove the marginal E effect and collect residuals from model 3, as described for 

the rVar|G×E approach above.

Step-1—Combine the P-value (PG) from marginal G scan and P-value (PrVar) from test of 

variance heterogeneity using Fisher's method [Fisher RA, 1932]:

(6)

Note that the test of marginal G effect is independent of the test of variance heterogeneity 

across G (Supplemental materials). Tjoint therefore follows a chi-squared distribution with 4 

degrees of freedom under the joint null H0: σ1= σ2=... σk and βG=0.

Step-2—Considering results of the Step-1 screen, test the null hypothesis H0: βGE=0 using 

model 2.

The G×E interaction estimator is uncorrelated with both the residual variance per genotype 

(Supplemental materials) and with the marginal G estimator [Dai et al., 2012], and so the 

joint test in Step-1 is uncorrelated with the Step-2 interaction test. One can either use subset 

testing or weighted hypothesis testing in Step 2 (see below).
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Hypothesis Testing Approaches in Step 2

For a 2-step approach, it is important to have an efficient testing scheme in Step 2 to make 

the best use of the information from Step 1. Previously developed 2-step methods have 

described both subset testing and hypothesis testing for Step 2 [Gauderman et al., 2013; Hsu 

et al., 2012]. In subset testing, a step-1 significance threshold α1 is pre-specified. At the 

screening step, SNPs with a step-1 p-value less than α1 will be passed into the Step 2 and 

only that subset of SNPs passed into Step 2 will be formally tested for G×E interaction. A 

Bonferroni correction for the number of SNPs tested in Step 2 will be utilized. Simulation 

studies suggest that the power of this 2-step approach depends strongly on the choice of α1 

(Gauderman et al, 2013). A larger value of α1 will increase the chance of passing a true 

trait-related SNP into Step 2, but at the expense of also passing more null markers leading to 

a larger penalty for multiple testing. A lower value of α1 will produce a smaller subset of 

SNPs tested in Step 2 and less-severe multiple testing burden, but at the possible cost of 

screening out a truly associated SNP.

Instead of specifying a significance threshold α1 to screen out SNPs, Ionita-Laza et al. 

[Ionita-Laza et al., 2007] proposed a weighted hypothesis testing scheme. At the screening 

step, all M SNPs are ordered by their step-1 p-values. At Step 2, the M SNPs are assigned 

with different weights to the significance level based on their rankings in Step 1. 

Specifically, an initial bin size B is pre-specified and the B most significant SNPs based on 

step-1 P-values are tested at significance level α/2B , the next 2B SNPs are tested at 

significance level α/[22(2B)], the next 4B SNPs will be tested at significance level α/

[23(22B)], etc.The weighted testing schema follows the intuition that SNPs with strong 

step-1 evidence are more likely to be truly involved in a G×E interaction, and thus should be 

‘rewarded’ with a less stringent significance threshold than the standard Bonferroni 

correction. However, this approach ‘punishes’ those SNPs with lower step-1 rankings by 

requiring a stricter significance threshold than the standard Bonferroni.

Simulation Study

We use simulation to evaluate Type I error rates and compare power of all methods 

discussed above. We consider two scenarios for the data generating model. In scenario 1, Y 

is a function of a marginal effect of G (the QTL), a marginal effect of E1 and an interaction 

effect between G and E1 as follows:

(7)

Here we assume μG and μE1 are the population means of the covariates G and E1. For 

example, if G is coded according to a dominant model (G = 1 for AA or Aa genotype, and 

G=0 for aa genotype), then μG=qA(2–qA). For simplicity, we assume E1 is a binary indicator 

of exposure, so that μE1=PE1, is the population prevalence of exposure.

In scenario 2, we assume Y is related to two uncorrelated exposures E1 and E2, according a 

model that includes marginal effects and two G×E interactions as follows:
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(8)

Similarly, μE2 is the population mean of E2 and the components in model 8 are pairwise 

uncorrelated due to the centering of each variable on its respective mean. The variance of Y 

conditional on G can be written as:

(9)

In this model, βG is the marginal effect of G, βE1 and βE2 are marginal effects of E1 and E2 

respectively, βGE1 and βGE2 are the two interaction effects, and ε is assumed to have a 

normal distribution with mean 0 and variance σ2. The expression for the variance and 

interpretations of the parameters are similar for the simpler model in scenario 1. Note that in 

scenario 2, although the true model includes E2 and G×E2, we assume that the focus is still 

only on G×E1 interaction, and that data for E2 are not part of the available data, to mimic the 

typical scenario in a GWIS that we only have limited data on environment. For both 

scenarios, we specify a ‘base’ model that includes a QTL with qA=0.1635 and a dominant 

model so that 30% carry at least one A allele. The exposure variables E1 and E2 were both 

assumed to be binary variables with PE1= PE2=0.3. Without loss of generality, we assumed 

the total variance of Y to be 1.0 and used the strategy proposed by Gauderman [Gauderman, 

2003] to partition the variance. Specifically, the proportion of the total variance of Y 

explained by the marginal effect of G (QTL) was defined as R2
G=β2

GVar(G–μG) where 

Var(G–μG)=Var(G)=qA(2–qA)(1–qA)2. Similarly, the proportion of the total variance of Y 

explained by the marginal effect of E1 was defined as R2
E1=β2

E1Var(E1–μE1) where Var(E1–

μE1)=Var(E1)=PE1(1– PE1). The quantity R2
GE1= β2

GE1Var[(G–μG)(E1–μE1)] gives the 

proportion of total variance explained by the interaction effect between G and E1, where 

Var[(G–μG)(E1–μE1)]=2PE1(1– PE1)qA(2–qA)(1–qA)2. The analogous quantities 

R2
E2=β2

E2Var(E2–μE2) and R2
GE2= β2

GE2Var[(G–μG)(E2–μE2)] denote the proportion of 

variance explained by the marginal effects of E2 and G×E2 interaction, respectively. The 

error ε was assumed to have a normal distribution with mean 0 and variance σ2=1 – (R2
G+ 

R2
E1+ R2

GE1) for scenario 1 and σ2=1 – (R2
G+ R2

E1+ R2
GE1+ R2

E2+ R2
GE2) for scenario 2. 

For scenario 1, our base model has a modest interaction effect with no effect of G when E=0 

and no effect of E when G=0, and with marginal G and E effect sizes of R2
G= R2

E1=0.17% 

and interaction effect size R2
GE1=0.4%. For scenario 2, we used the same settings as for 

Scenario 1, but add a marginal effect of E2 (R2
E2=2%) and an interaction effect between G 
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and E2 (R2
GE2=2%). In all simulations we generated 1,000 replicate data sets per simulation. 

For all of the 2-step approaches, we adopted weighted hypothesis testing and assumed the 

initial bin size of B=5.

Type 1 Error—We evaluated the Type I error rate for both scenarios 1 and 2. We defined 

non-QTL (null) SNPs as those have neither marginal G nor G×E1 effect. We performed 

multiple simulations varying the magnitude of R2
E1 from 0 to 4% by 2%. For scenario 2, 

one SNP was generated to have G×E2 interaction effect (but no marginal G and G×E effect) 

and R2
E2 and R2

GE2 were fixed at 2%. We also considered an alternative model in which 10 

loci had a marginal (but no G×E1 or G×E2) effect on the trait, with R2
G for those 10 loci 

randomly sampled from a uniform distribution in the range 0.17%-0.43%. In each replicated 

data set, we simulated 10,000 null SNPs with 6,000 study individuals. For each of the SNPs 

we randomly sampled an allele frequency from a uniform distribution in the range 0.1 – 0.4. 

The Type I error rate for each procedure was estimated as the proportion of replicates in 

which at least one of the 10,000 non-QTL SNPs was declared statistically significant at a 

FWER of α=0.05.

Power Comparison—To estimate power, we simulated 1,000 replicate datasets, each 

including 1 million SNPs and 6,000 study subjects. One SNP was designated as the QTL, 

first generated according to the base model and then using alternative models to examine 

sensitivity of the power comparisons. We performed GWIS using all the methods described 

above. The marginal effect of E1 is expected to affect neither the power to detect the 

marginal G effect nor the power to detect G×E1 interaction. Moreover, since the marginal 

effect of E1 needs to be removed in the rVar|G×E and Joint|G×E methods, the magnitude of 

βE1 is also expected not to affect the power of the test of variance heterogeneity. Thus, we 

kept R2
E1 fixed at 0.17% for all scenarios. We varied R2

G from 0 to 0.425% by 0.085%. 

These settings yielded a wide range of interaction models, including both quantitative 

(effects of G in same direction depending on E1) and qualitative (effects of G in opposite 

directions depending on E1) interaction models (Table S1 in Supplemental materials). We 

also performed multiple simulations varying R2
GE1 from 0.10% to 0.85%. In scenario 2, we 

performed additional simulations varying the magnitudes of R2
E2 in the interval [0, 10%], 

and R2
GE2 in the interval [0, 5%]. To further explore the robustness of our power 

comparisons, we also considered alternative models with different QTL minor allele 

frequency (qA) and exposure prevalence (PE1 and PE2). The power for each method was 

estimated as the proportion of replicates in which the QTL was declared as statistically 

significant at a FWER of α=0.05. For each model, we also estimated the power to detect the 

marginal effect of the QTL, to quantify the chance that the QTL would be identified by the 

primary G-only scan.

Lung Function Analysis

Forced expiratory volume in the first second (FEV1) is a widely used measure to evaluate 

pulmonary function. Prior GWAS scans have identified several loci that have marginal G 

association with FEV1 [Hancock et al., 2009]. We hypothesize that heritability for FEV1 can 

be different across ethnic groups for three possible reasons: 1) there is a difference in allele 

frequency across groups, but the same effect of the QTL on the trait in all groups, 2) the 
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allele frequency is similar across groups but the QTL effect varies by group, 3) both the 

allele frequency and QTL effect vary across groups. In the first situation, a standard 

marginal G scan should provide the best power, while situations 2 and 3 should show 

evidence of G × Ethnicity interaction. For example, a QTL could have no effect on FEV1 in 

a non-Hispanic White population but serve as an important contributor to the explained 

heritability for a Hispanic White population.

In an attempt to identify additional loci for FEV1, we performed a genome-wide scan for G 

× Hispanic-ethnicity interaction using data from the Children's Health Study (CHS). The 

CHS is an ongoing cohort study investigating both genetic and environmental effect on 

asthma risk [McConnell et al., 2006] and lung function development [Gauderman et al., 

2015] in children from 16 southern California communities. FEV1 was measured for each 

child by trained technicians and was log-transformed to satisfy assumptions of the linear 

regression model. The GWAS was based on a nested Case-Control sample of 1,249 

asthmatic and 1,751 nonasthmatic children selected from the Hispanic White (HW) and non-

Hispanic White (NHW) participants in the CHS cohorts. Ethnicity was self-reported by 

parents on the CHS baseline questionnaire. For our G × Hispanic-ethnicity analysis of FEV1, 

we focused on participants that had a lung function measurement in 9th grade (average 15 

years of age), which included a total of 1,728 children (684 HW, 1,044 NHW). Genome-

wide genotyping was conducted using the Illumina Human Hap 550 or Human610Quad 

Bead Chip microarrays at the USC Genomic Center. After quality control, 506,788 SNPs 

were included in the GWIS analysis. The model included adjustment for sex, age, body-

mass index (BMI), BMI squared, log transformed height (log height), log height squared, 

community and estimated individual global ancestry (adjustment for population 

substructure). We applied all the methods described in this paper. Both subset testing with 

α1=0.1 and weighted hypothesis testing with initial bin size of 5 were used for each of the 2-

step approaches.

Results

Simulation Study

Type 1 Error—Both Table 1 and Table S2 (Supplemental materials) show that when there 

is no marginal effect of E1 (R2
E1), all the methods maintain the correct test size. However, 

the Type 1 error rate of the Var|G×E approach (Paré et al.) is inflated to unacceptable levels 

as the marginal effect of E1 increased. The standard G×E test, and the YG|G×E, rVar|G×E 

and Joint|G×E 2-step methods achieve the nominal Type 1 error rate, whether or not there is 

a marginal effect of E1. The Type I error rates are similar for all methods under either 

scenario 1 or 2.

Power Comparison—Figure 1 shows the results when G×E1 is the only interaction 

contributing to the heritability of Y(scenario 1). The power to detect an interaction of 

magnitude R2
GE1=0.4% with 6,000 individuals is quite low (30%) using the standard G×E 

analysis (Fig. 1A). The rVar|G×E method is the least powerful method (2%) under this 

scenario, almost always failing to detect the QTL. Power for these two methods was nearly 

independent of the size of the marginal G effect (R2
G). On the other hand, power for those 
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methods that utilize marginal G information in the screen (YG|G×E and Joint|G×E) depend 

strongly on the size of R2
G. The YG|G×E method is the most powerful method when there is 

a small to moderate marginal genetic effect and is always more powerful than the Joint|G×E 

method.

Holding the marginal G effect constant at R2
G=0.17%, power for all the procedures 

increases as the magnitude of the interaction effect increases (Fig. 1B), as we would expect. 

The rVar|G×E method again performs poorly in this situation. The YG|G×E method still 

provides greater power than the Joint|G×E method across all the magnitudes of R2
GE1 

considered, with a gain of power in the range 2%-9%.

Figure 2 presents the power to detect G×E1 when two G×E interactions (G×E1 and G×E2) 

contributing to the heritability of Y (Scenario 2). Unlike the results for scenario 1, the rVar|

G×E method provides higher power (by about 10%) than the standard G×E scan across a 

range of marginal G effect sizes (Fig. 2A). The Joint|G×E method is more powerful than the 

YG|G×E method across all the sizes of R2
G evaluated, with a gain of power from 4% to 27% 

(Fig. 2A). Note that when the magnitude of marginal genetic effect is small (R2
G=0.085%), 

the power for YG|G×E method is about 9% lower than the standard G×E scan, while the 

Joint|G×E method provides power that is 26% higher than the standard G×E scan.

As shown in Fig 2B, the standard G×E scan has the least power when the size of R2
GE1 is 

small to moderate, in the range of 0.1%-0.55%. The power for rVar|G×E and YG|G×E is 

about the same across the sizes of R2
GE1 evaluated. The Joint|G×E method again provides 

most power across all the sizes of R2
GE1 evaluated. When R2

GE1=0.7%, power for the 

standard G×E scan is about 4% higher than both YG|G×E and rVar|G×E, while Joint|G×E 

still provides about 9% higher power than the standard G×E scan.

Power for YG|G×E and standard G×E scan is independent of the size of R2
E2 (Fig. 2C). On 

the other hand, power of the 2-step methods that utilize variance heterogeneity information 

in their screening step (rVar|G×E and Joint|G×E) depends strongly on the magnitude of 

R2
E2. When R2

E2=0, there is little heterogeneity in variance across genotype and as a result, 

rVar|G×E performs poorly, with power 6% compared to 30% for the standard G×E scan. The 

Joint|G×E and rVar|G×E methods begin to outperform YG|G×E and the standard G×E scan 

when R2
E2>0, with a gain in power increasing with the magnitude of R2

E2.

Similar trends are observed across a range of different values for R2
GE2 (Fig. 2D). When 

there is no G×E2 interaction (R2
GE2=0), the rVar|G×E method has almost no power to detect 

the QTL (2%). The Joint|G×E method provides a power slightly greater than the standard 

G×E scan but less than the YG|G×E. The power for the two 2-step approaches that utilize 

variance heterogeneity information in their screening step increases as the magnitude of the 

R2
GE2 increases. The Joint|G×E method again is the most powerful method when 

R2
GE2≥1%.

The power for the 2-step approaches that utilize the variance heterogeneity information also 

depends on the magnitude of qA for the QTL (Supplemental materials, Fig. S2A). Note that 

the proportions of variance explained by each component (G, E1, E2, G×E1 and G×E2) are 

fixed under the base model (See ‘Simulation Study’ for details). The power for the Joint|
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G×E and rVar|G×E drops as the magnitude of the minor allele frequency qA increases. The 

Joint|G×E method remains as the most powerful across the range of qA evaluated 

(0.01-0.25). The power of all the methods is independent of the size of PE1 and PE2 

(Supplemental materials, Figs. S2B, S2C).

For the 2-step methods, all of the above results are based on weighted hypothesis testing. We 

also examined the power using subset testing, considering a range of step-1 significance 

threshold (α1). We explored the power varying the model settings around the base model. 

Table S3 (Supplemental materials) shows that the power of Joint|G×E using subset testing 

depends strongly on the choice of α1 and the optimal magnitude of α1 varies across the 

underlying models. When the information (marginal G association or residual variance 

heterogeneity) used in the screening step is weak, for example, when any of R2
G, R2

E2 or 

R2
GE2 is set to be 0, the highest power for subset testing occurs with a loose step-1 threshold 

(α1=0.05 or 0.01) and is higher than the power for the weighted testing. However, when any 

of R2
G, R2

E2 or R2
GE2 has a relatively large value, a strict step-1 threshold (α1=0.0001) 

leads to the highest power for the subset testing and no choice of α1 for a subset testing 

leads to as much power as can be achieved using weighted hypothesis testing.

Lung Function Analysis

In our analysis of G × Hispanicity interaction for FEV1, the marginal G scan does not 

identify any SNPs with genome-wide significant P-values after Bonferroni correction 

(Supplemental materials, Fig. S3). Note that the test of variance heterogeneity is not specific 

to the G×E interaction tested in step-2 and variance heterogeneity could also be induced by 

biological mechanisms other than interactions (Takeuchi et al., 2011). As a result, we 

observed inflation of Levene's test statistic in the step-1 QQ plot for the rVar|G×E method. 

As shown in the Manhattan plots of Figure S4 (Supplemental materials), one SNP was 

identified by the standard G×E test and the rVar|G×E and Joint|G×E 2-step approaches. This 

SNP is rs1439945 with MAF=0.16 in the Hispanic White (HW) sample, MAF=0.14 in non-

Hispanic White (NHW) sample, and MAF= 0.15 for the combined sample. The SNP is 

located on chromosome 2 near the MARCO gene, with Step-1 screening P-value 5.4 × 10−2 

for Joint|G×E, 1.8 × 10−2 for rVar|G×E and Step-2 testing P-value 6.4 × 10−8 (Table 2).

The MARCO gene has been found to be associated with susceptibility to pulmonary 

tuberculosis in a Chinese Han population (Ma et al., 2011) and in a Gambian population 

(Bowdish et al., 2013). This locus exhibits a qualitative interaction (Supplemental materials, 

Fig. S5), with a 130.3 milliliters decrease in FEV1 per allele for Hispanic whites and a 83.0 

milliliters increase in FEV1 per allele for non-Hispanic whites. Note that this SNP was 

identified by subset testing with α1=0.1 and would not have been found using the weighted 

hypothesis testing. The marginal effect of this SNP is weak (βG = −0.004, P-value=0.53), 

and as shown in Table S3 (Supplemental materials), subset testing with a liberal screening 

threshold provides the highest power in this situation. This locus has not been previously 

identified in marginal G scans of FEV1.
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Discussion

As demonstrated by simulation, the previously proposed 2-step G×E method that screens on 

variance heterogeneity [Paré et al., 2010] has inflated Type 1 error in presence of a marginal 

E effect. In this paper, we proposed an alternative that uses variance heterogeneity and 

preserves the Type 1 error rate whether or not there is a marginal effect of E. We also 

proposed a novel 2-step method that utilizes both variance heterogeneity and the marginal G 

effect in a joint screening test. However, when only one G×E interaction is involved in the 

underlying trait model, our simulations demonstrated that neither the variance heterogeneity 

nor the joint approach lead to increased power to detect G×E interaction compared to the 

standard test of G×E interaction. However, these two new methods can provide greater 

power than the standard test across a wide range of models when the trait depends on two 

(or more) G×E interactions. When only one interaction with a modest effect size is involved 

in the development of Y (scenario 1), the variance of Y conditional on G only depends on 

G×E1 interaction effect βGE1 and marginal effect of E1 βE1 (See equation 9). The magnitude 

of variance heterogeneity across G also depends on βE1 and βGE1 if βGE1≠0. When βE1 is 

removed, as required in the 2-step approaches that utilize the test of variance heterogeneity 

in their screening step (Joint|G×E and rVar|G×E), the magnitude of variance heterogeneity is 

reduced which makes the screening steps of those methods have very limited power to pass 

the true QTL to the testing step. As a result, power of the 2-step approaches that utilize the 

test of residual variance heterogeneity will be diminished due to sacrificing degrees of 

freedom for utilizing an inefficient source of information. The YG|G×E method is generally 

the most powerful method in the presence of one interaction. The YG|G×E method can 

outperform the standard G×E test when even a small marginal G effect is present, with 

increasing gains in power as the marginal G effect increases (Figure 1).

When two interactions (G×E1 and G×E2) are involved in the development of Y (scenario 2), 

the test of variance heterogeneity begins to play a part and the rVar|G×E method can provide 

higher power than the standard G×E test (Fig. 2). That is because when βE1 is removed, the 

magnitude of variance heterogeneity across G still depends on βGE1, βE2 and βGE2. If the 

sizes of βE2 and βGE2 are large enough, then the magnitude of variance heterogeneity 

remains an efficient source of information even when the size of βGE1 is small. As 

demonstrated by simulation, the rVar|G×E method can outperform YG|G×E method when 

the size of marginal G effect is small. When interactions induce both a marginal G effect and 

variance heterogeneity across G, the Joint|G×E method can prioritize SNPs for step-2 testing 

more efficiently than either the YG|G×E or rVar|G×E method. Note that in this paper E1 and 

E2 are simulated to be independent. It would be of interest to evaluate our new methods in 

the presence of different relationships between E1 and E2 (positively correlated and 

negatively correlated), which could be a subject of a future paper.

Note that the 2-step approaches for a case-control sample [Murcray et al., 2009, 2011; 2008; 

Hsu et al., 2012; Gauderman et al, 2013] are all based on the observation that there is an 

induced correlation between environment and genetic (E-G) in the combined case-control 

sample due to the over ascertainment of cases from the source population in the presence of 

G×E interaction (e.g., Unmatched case-control with 1 control per case). However, in a scan 

for quantitative trait loci (QTLs), we typically draw a random sample from the source 
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population without regard for phenotype, and thus there is no induced E-G correlation in the 

sample. Consequently, unlike the case-control sample, screening on the E-G correlation 

cannot provide us with information on potential G×E interaction. The previously proposed 

joint/hybird approaches [Murcray et al., 2009, 2011; 2008; Hsu et al., 2012; Gauderman et 

al, 2013] are all in the context of a disease trait. In this paper, we adopt the idea of 

combining useful information in the screening step that was developed for disease traits in 

the development of a quantitative trait. To our knowledge, ours is the first paper to propose a 

joint screening test for a quantitative trait.

Using these novel approaches applied to the CHS, we identified evidence of G × Hispanic-

ethnicity interaction for SNP rs1439945 at genomewide significance. In our analysis of G × 

Hispanic-ethnicity for FEV1 in the CHS, we identified the SNP rs1439945 at genomewide 

significance using both the rVar|G×E and Joint|G×E methods. This SNP has not been 

detected in previous marginal GWAS scans. Based on our simulations, finding this locus 

using the rVar|G×E and Joint|G×E approaches may suggest that this SNP also interacts with 

additional factors other than Hispanic-ethnicity to affect lung function. For example, 

previous studies in the CHS have shown that FEV1 in children is affected by many factors, 

including air pollution [Gauderman et al., 2004], the oxidative stress gene GSTM1 [Gilliland 

et al., 2002], and in-utero tobacco smoke [Breton et al., 2009]. The power to detect 

interaction of the rs1439945 SNP with Hispanic-ethnicity by either the rVar|G×E or Joint|

G×E approach would be increased if it also interacts with one of these additional factors, or 

some other factor, to affect lung function. Further interpretation of our finding will require 

additional study, including replication in other samples.

While we described our methods in the context of a binary environmental factor, we note 

that the “E” can be replaced by a continuous variable, or a pre-specified candidate gene. The 

Levene's test of variance heterogeneity can also be extended to imputed data (Supplemental 

materials). We have developed computationally efficient G×E analysis software (G×EScan, 

available at http://biostats.usc.edu/software) that implements all the methods described in 

this paper. G×EScan also implements a comprehensive collection of G×E analysis methods 

for a case-control sample [Gauderman et al, 2013].

It is widely accepted that the etiology of many complex traits involves not only genetic and 

environmental factors but also interactions between the two as well as G × G interactions. In 

this paper, we described two new methods for detecting interactions for a quantitative trait in 

a genomewide setting. Both methods use a novel test of variance heterogeneity that does not 

depend on the size of marginal G effect. These two new methods, Joint|G×E and rVar|G×E, 

have the potential to identify novel SNPs that have been missed from primary GWAS scans.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Power to detect G×E1 interaction in the presence of one interaction effect, with 6,000 

individuals. (A) Power is presented across a range of magnitudes for the marginal genetic 

effect (R2
G) with R2

GE1=0.4%. (B) Power is presented across a range of magnitudes for 

G×E1 interaction (R2
GE1) with R2

G=0.17%.
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Figure 2. 
Power to detect G×E1 interaction in the presence of two interaction effects, with 6,000 

individuals. (A) Power is presented across a range of magnitudes for the marginal genetic 

effect (R2
G) with R2

GE1=0.4%, R2
E2= R2

GE2=2%. (B) Power is presented across a range of 

magnitudes for G×E1 interaction (R2
GE1) with R2

G=0.17%, R2
E2= R2

GE2=2%. (C) Power is 

presented across a range of magnitudes for the marginal effect of E2 (R2
E2) with 

R2
G=0.17%, R2

GE1=0.4%, R2
GE2=2%. (D) Power is presented across a range of magnitudes 

for G×E2 interaction (R2
GE2) with R2

G=0.17%, R2
GE1=0.4%, R2

E2=2%.
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Table 1

Type 1 error rates for tests of G×E1 interaction when non-QTL SNPs have neither marginal G effect nor G×E1 

interaction effect

R2
E1

Method 0.00 0.02 0.04

Exhaustive

G×E

Scenario 1 0.046 0.046 0.048

Scenario 2 0.042 0.043 0.043

2-step

Var|G×E

Scenario 1 0.049 0.159 0.264

Scenario 2 0.048 0.134 0.218

YG|G×E

Scenario 1 0.054 0.054 0.054

Scenario 2 0.047 0.048 0.047

rVar|G×E

Scenario 1 0.053 0.053 0.050

Scenario 2 0.048 0.049 0.047

Joint|G×E

Scenario 1 0.053 0.053 0.048

Scenario 2 0.040 0.041 0.041

Scenario 1 involves E1 only.

Scenario 2 involves E1 and E2 with R2E2 and R2GE2 fixed at 2%.

Each estimate of Type 1 error is based on the proportion of 1,000 replicate data sets for which the indicated procedure identified at least one 
statistically significant result among 10,000 non-QTL SNPs, with Type 1 error rate set to be 0.05.

Weighted hypothesis testing is used for 2-step approaches.

Significantly inflated Type 1 error is indicated in bold
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Table 2

Top 10 SNPs from Joint|G×E analysis of 506,788 SNPs for G × Hispanic-ethnicity interaction of FEV1 in the 

Children's Health Study

SNP CHR Location Nearest Gene Step-1
P-value

Step-2
P-value

Significance Threshold

rs1439945 2 119535662 MARCO 5.4 × 10−2 6.4 × 10−8 8.0 × 10−7

rs12338838 9 218848 DOCK8 2.5 × 10−2 1.8 × 10−6 8.0 × 10−7

rs296513 1 199173096 MROH3P 4.7 × 10−2 1.3 × 10−5 8.0 × 10−7

rs4478805 13 115405425 TSPAN2 8.6 × 10−2 5.0 × 10−5 8.0 × 10−7

rs6063141 6 45779866 SULF2 5.8 × 10−2 6.0 × 10−5 8.0 × 10−7

rs6933322 12 53099317 GCM1 2.8 × 10−2 7.0 × 10−5 8.0 × 10−7

rs10173517 12 230737937 SP110 7.3 × 10−2 7.4 × 10−5 8.0 × 10−7

rs2146390 12 98040506 DNTT 7.4 × 10−2 8.6 × 10−5 8.0 × 10−7

rs11237700 15 78437535 TENM4 5.4 × 10−2 8.8 × 10−5 8.0 × 10−7

rs6780603 2 34222683 LOC101928114 4.8 × 10−2 1.0 × 10−4 8.0 × 10−7

rs12296349 9 99835504 ANO4 6.3 × 10−3 1.1 × 10−4 8.0 × 10−7
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