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Abstract

Background—Epigenetic factors, including DNA methylation, play an important role in the 

etiology of alcohol use disorders. Non-candidate based methylome-wide studies leveraging 

multiple tissue types are needed to identify a set of CpG targets that reliably differentiate alcohol 

use disorder (AUD) patients from controls and strongly correlate across brain tissue and more 

commonly collected tissue types (e.g., buccal cells).

Methods—Post-mortem precuneus brain tissue samples were collected from 49 alcohol 

dependent (AD) cases and 47 controls (sample I), and DNA was extracted from precuneus and 

putamen brain tissue and buccal cells in 24 post-mortem subjects (sample II). Methylation levels 

were analyzed at over 450,000 CpG sites in both samples. CpGs that demonstrated significant 

methylation differences between cases and controls were advanced for further analysis with the 

goal of identifying CpGs that also demonstrated consistent correlations across tissue type.

Results—In the primary analysis, 244 hypomethylated and 188 hypermethylated CpGs, met a 

priori criteria for both significant differences between cases and controls as well as significant 

correlation across brain and buccal cell tissue types, employing stringent Bonferroni p-value 

correction. Many of these CpGs were involved in gene networks related to lipid metabolism, 

immune response, inflammatory response/disease, and gastro intestinal disease.

Conclusions—More than four hundred CpGs demonstrated differences in methylation between 

AD cases and controls and showed significant correlation across tissue types. Several genes and 

pathways (e.g., inflammation and immune functioning) that have been previously associated with 

AUD were identified in the current analyses.
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Introduction

The pathogenesis of alcohol use disorder (AUD) is highly complex, including genetic, 

developmental, and cultural factors. In addition, mounting evidence also implicates 

epigenetic factors in the neurobiology of addiction (Nestler, 2014) and theoretical models 

have been revised to include epigenetic processes that may account for an important portion 

of the variance in the etiology of alcohol use disorders (Karoly et al., 2013). Epigenetics 

refer to molecular processes that alter gene expression without altering the DNA sequence 

itself (Nestler, 2014). Through these processes, the protein complex that organizes DNA 

(e.g. chromatin) is modified, which alters the accessibility of genes to transcription factors, 

the proteins that bind to specific DNA sequences and regulate gene transcription. 

Specifically, methylation is a particular epigenetic modification involving the addition of a 

methyl group to the fifth carbon of cytosine residues. Methylation is associated with 

downstream gene expression changes and has been shown to elicit long-lasting alterations to 

phenotypes, including those related to AUDs (Ponomarev et al., 2012).

Emerging evidence suggests that aberrant methylation patterns might be associated with 

heavy alcohol consumption and alcohol use disorders. For example, recent studies discussed 

below, have found methylation differences between AUD patients and controls. Broadly, 

AUD is associated with differential methylation patterns (e.g. Weng et al., 2014). Studies 

have demonstrated that CpG hypermethylation is associated with AUDs. Specifically, DNA 

methylation levels in promoter regions of several theoretically important genes have been 

associated with AUD, including the dopamine transporter gene (SLC6A3) (Hillemacher et 

al., 2009a), atrial natriuretic peptide (ANP) and vasopressin precursor genes (Hillemacher et 

al., 2009b), and the alpha synuclein gene (Bönsch et al., 2005). An analysis of 384 CpGs in 

the promoter regions of 82 candidate genes revealed that a number of CpGs, demonstrated 

significant hypermethylation between AUD cases and controls (Zhang et al., 2013a). 

Likewise a methylome-wide analysis demonstrated that 865 hypomethylated and 716 

hypermethylated CG sites differentiated AUD patients from controls (Zhao et al., 2013). 

However, a number of studies have reported no methylation differences between cases 

versus controls at specific gene sites (Muschler et al., 2010; Park et al., 2011; Philibert et al., 

2008).

Importantly, methylation is often cell type specific (Khavari, Sen & Rinn, 2010). Therefore, 

methylation patterns should ideally be measured in the tissue type that is most proximal to 

the phenotype of interest (Harlaar et al., 2013). Clearly, human brain tissue would be the 

most ideal tissue type by which to study methylation patterns in AUD. Unfortunately, 

practical constraints do not allow for brain tissue sampling from live human subjects. Thus, 

methodological approaches for examining methylation patterns are limited to peripheral 

tissue samples, such as blood and saliva and post mortem brain tissue samples. One reason 

for inconsistent results across studies to date may be that methylation at particular loci is 

consistent across tissue types while methylation at other loci is not.

The aims of the study were two-fold. The first aim was to conduct an exploratory 

methylome-wide investigation of DNA from post-mortem brain tissue, comparing 49 

alcohol dependent subjects to 47 age and gender matched controls in order to identify CpG 
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sites that differentiated cases and controls. The second aim was to examine the consistency 

of methylation across those CpGs in DNA extracted from post-mortem brain tissue and 

buccal cells in a separate sample. Therefore, this study is uniquely poised to identify 

methylated areas in the genome that are both implicated in AUD and consistent across brain 

and peripheral tissue types.

Materials and methods

Study Samples

The first sample set (sample set I) consisted of frozen precuneus brain tissue samples from 

the 49 cases that met a DSM-IV diagnosis of alcohol dependence and 47 controls. Precuneus 

brain tissue was chosen based on previous analyses done in our lab showing associations 

between precuneus activation and AUD phenotypes (Liu, Calhoun, Chen, Claus & 

Hutchison, 2013). The sample was predominantly Caucasian (97.9 % in AUD group; 87.2% 

in control group). The sample groups were matched on age and gender (see table 1). 

Samples were obtained from the New South Wales and Victorian Tissue Resource Centre. 

The clinical diagnosis of lifetime alcohol dependence was confirmed by physician 

interviews, review of hospital medical records, questionnaires to next-of-kin, and from 

pathology, radiology and neuropsychology reports. Cause of death was determined by 

medical records and given to us along with the samples by the New South Wales and 

Victorian Tissue Resource Centre. Information regarding cause of death by diagnosis 

category can be found in table 2.

To examine consistency across tissue type, postmortem brain samples were obtained through 

collaboration with The Office of the Medical Investigator (OMI) in Albuquerque, NM. 

Criteria for selection of descendants were as follows: age range 25 to 50 years old, post 

mortem interval less than 72 hours and no obvious trauma to the head or brain. As part of 

the normal autopsy process, bilateral precuneus and putamen tissues were dissected from 

brain slices and cheek cells were obtained using cytology brushes also at time of autopsy. 

The sample included 12 males and 12 females, and an ethnicity breakdown as follows: 18 

Caucasian, 5 Hispanic, 1 American Indian. Age ranged from 37 to 50 years (M= 41.38, 

SD=7.48). The average reported post mortem interval for this sample was 25.89 hours 

(SD=21.05).

DNA preparation and methylation assay

Tissue samples were stored frozen at −80°C until they were pulled for nucleic acid 

preparation. Genomic DNA was isolated from the brain tissue and cheek cell samples using 

Qiagen®’s Puregene DNA prep kit (Qiagen®, Venlo, Limburg). DNA yields were 

determined via PicoGreen® and fluorimetry (Qubit®, Life Technologies). Whole genome 

methylation interrogation was performed using The Illumina® Infinium® Assay Platform in 

conjunction with the Infinium HumanMethylation450 BeadChip. The array interrogates 

approximately 480,000 CpG sites and covers 99% of RefSeq genes. The array covers an 

average of 17 CpG sites per gene region distributed across the promoter, 5'UTR, first exon, 

gene body, and 3'UTR. Given the exploratory nature of our study, we included all 

interrogated sites in our analyses. 600 ng of genomic DNA was treated with sodium bisulfite 
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using the Zymo EZ DNA Methylation Kit to convert unmethylated cytosines to uracil, while 

methylated cytosines remain unchanged. The DNA was then purified and quantified by 

measuring absorbance at 260 nm in preparation for whole genome amplification, followed 

by fragmentation and ethanol precipitation. The DNA was then resuspended in hybridization 

buffer and applied to the bead chip array for an overnight incubation. Following 

hybridization, the arrays were washed to eliminate un-hybridized and non-specifically 

hybridized DNA. The samples then underwent single base extension and staining followed 

by more washing. The arrays were allowed to dry and then scanned using the Illumina iScan 

system.

Methylation interrogation was accomplished via two probe types. Type I probes 

incorporated florescent labels for detection at allele-specific single base extensions. Type II 

probes employed green and red dye colors in order to detect M and U signals, respectively, 

using one probe per CpG locus. Illumina’s GenomeStudio software was used to quantify 

results and annotate each site (e.g. transcription site proximity, gene name, and presence of a 

single nucleotide polymorphism (SNP)). Summaries of the probe interrogations yield 

average signals for methylated (M) and unmethylated (U) alleles at each CpG site, which are 

used to compute a β-value, such that:

For example, a β-value of 0 would indicate an unmethylated CpG site, while a β-value of 1 

indicates a fully methylated site. These methylation β values were based on precuneus tissue 

samples for sample set I. In sample set II, methylation β values were calculated from the 

brain tissue from sample set II, and a separate estimate was given for buccal cells.

Using sample set I, differential methylation between the case and control groups was 

calculated for each CpG (DiffScore). In order to quantify significant methylation differences 

between cases and controls across CpGs, the DiffScores were converted to p values 

(Illumina Genome Studio Support, 2015). For a more detailed explanation of the equations 

used to make these calculations, see the GenomeStudio Methylation Module v1.8 User 

Guide by Illumina.

Analysis Plan

The aims of the present study were twofold: 1) to identify CpGs methylome-wide for which 

methylation at the CpG level is significantly different between cases versus controls, 2) to 

use a separate sample to determine whether these phenotypically relevant CpGs demonstrate 

consistent levels of methylation across tissue types (e.g. brain tissue and buccal cells). The 

analyses followed the outline provided below (also see figure 1 for a flow chart of the 

primary analysis).

Phase I—The objective of phase I was to detect CpGs for which their case difference score 

demonstrated a meaningful difference of degree of methylation between cases and controls. 

The a priori p-value threshold was set at 1×10−7, corresponding to a case difference score of 

|70|.
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Phase II—For the significantly hypomethylated and hypermethylated CpG sites in cases vs. 

controls, phase II examined the correlation of methylation β values between buccal cells and 

the methylation β value from the brain tissue at each CpG site in sample set II. The objective 

of this phase was to identify the remaining hypomethylated and hypermethylated CpGs that 

demonstrated significant correlation across tissue type. That is, hypomethylated and 

hypermethylated CpGs that advanced through phase I were tested in phase II against an a 

priori cross tissue type correlation threshold, stringently corrected for multiple tests. The p-

value threshold for the hypomethylated and hypermethylated CpG sets was set at a 

Bonferroni corrected alpha based on the number of significantly hypomethylated and 

hypermethylated CpGs identified in phase 1.

The Australian samples are meant to provide insight into methylation differences relative to 

the AUD phenotype, and the NM samples are meant to provide insight into within-subject 

methylation consistency across tissue types and are not related to the AUD phenotype (e.g. 

neither classified as cases nor controls). Therefore, we would not necessarily expect 

consistent methylation measurements between the Australian samples and the New Mexico 

samples. For this reason, testing the methylation consistency across the two sample sets is 

not relevant to our study aims.

In order to understand how the genes identified by inferential statistics in phases I and II are 

functionally relevant and interrelated, functional network analyses were executed using 

Ingenuity Pathways Analysis tools (Ingenuity Systems, Mountain View, CA), a web-

delivered application that enables the discovery, visualization, and exploration of 

interactional networks in genetic data. The CpG sites identified using phases I and II of the 

analysis were uploaded into the Ingenuity pathway analysis. Each CpG site was mapped to 

its corresponding gene symbol location and derivative molecule in the Ingenuity pathway 

knowledge base. These genes were then used as a starting point for generating biological 

networks, where genes from our CpG lists were combined based on their interconnectedness 

with each other relative to all genes and derivative molecules within the Ingenuity 

Knowledge base. A score was then computed for each network according to the degree of fit 

or connectedness of the identified gene set. This score reflects the negative logarithm of the 

P that indicates the likelihood of the focus genes in a network being found together due to 

random chance and was calculated with the right-tailed Fisher's Exact Test. Significance was 

then assigned to each network by determining a P for the enrichment of the genes in the 

network for such functions compared with the whole Ingenuity pathway knowledge base as 

a reference set. As an example, suppose that a network of 35 genes has a Fisher Exact Test 

result of 1×10−6. The network’s Score = −log(Fisher's Exact test result) = 6. In other words, 

there is a 1 in a million chance of getting a network containing at least the same number of 

connected genes by chance when randomly picking 35 genes that can be in networks from 

the Ingenuity Knowledge Base (Ingenuity Systems, Mountain View, CA). Using a 99% 

confidence level, scores of >3 were considered significant.
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Results

Phase I

The goal of phase 1 was to identify hypermethylated and hypomethylated sites that were 

significantly different between cases and controls. Using the a priori threshold of p < 1×10−7 

to differentiate between cases and controls, 561 hypomethylated CpGs and 485 

hypermethylated CpGs were identified that demonstrated significant methylation differences 

between alcohol dependent cases and controls.

Phase II

Of the 561 hypomethylated CpGs, 436 were also available for analysis in sample set II, and 

377 of the 485 hypermethylated CpGs were available for analysis. These hypomethylated 

and hypermethylated CpG sites identified in phase I were then separately examined for 

significant correlations among the average methylation β from the brain tissue and 

methylation β from buccal cells at the corresponding CpG site. The Rho value is a rank 

order correlation measurement. That is, the Rho represents the degree to which the 

methylation beta value of a CpG site in the brain tissue is correlated with the methylation 

beta value in the buccal cells. We used the p-value associated with the Rho in order to 

determine for which CpG sites methylation beta values were significantly correlated. The 

Bonferroni corrected alpha threshold for cross-tissue type correlation in the hypomethylated 

CpG set was .000115 (.05/436), and the corrected alpha threshold cross-tissue type 

correlation in the hypermethylated CpG set was .000133 (.05/377). Based on these 

respective thresholds, a total of 244 hypomethylated CpGs (see supplementary table 1) and 

188 hypermethylated CpGs (see supplementary table 2) that had been identified in phase 1, 

also met the criteria for significant correlation across both peripheral and neural tissues in 

phase II. That is to say, data converged from two independent samples (e.g. sample set I and 

II) to suggest that 432 total CpG sites (244 hypomethylated and 188 hypermethylated) 

demonstrated significant methylation differences between cases and controls as well as 

significant cross tissue type correlation between brain tissue and buccal cells. Tables 

containing the resulting hypomethylated and hypermethylated CpGs, can be found in the 

supplementary materials. Within these supplementary tables, readers will find a 

comprehensive information on each CpG marker, including: the location of the SNP (if 

applicable), gene name corresponding to the CpG marker, the distance to the transcription 

site (measured in base pairs), and the chromosome and coordinate information. Additionally, 

these supplementary tables contain the average methylation β values for AD cases and 

controls, the methylation difference score, the corresponding difference score p-value, the 

correlation of methylation across tissue types, and the corresponding p-value.

Functional network analysis

To understand how the CpG sites identified through phases I and II may be functionally 

relevant and interrelated, the hyper- and hypo- methylated CpG sets from the primary 

analysis were then placed in the context of present knowledge about gene networks and 

molecular interactions, using the Ingenuity knowledge base. Based on the computed network 

scores from the primary analysis, several functional networks were found to be significant in 

the hyper- and hypo- methylated gene sets at significance level ranging from P = 17–51 (see 
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table 3). The ability to rank the networks based on their functional connectedness over and 

above random chance allowed for rapid prioritization of networks with highest empirical 

relevance. Across the hyper- and hypo- methylated sets that emerged from the primary 

analysis, the top-ranking functional networks were most commonly related to 

neurodevelopment and neurobehavior, lipid metabolism, and inflammatory immune 

responses.

Discussion

Due to the exploratory nature of the present study, it is important to first acknowledge the 

strengths and limitations of our study design and samples. One limitation of the current 

study is that the investigation is limited to the sites that are interrogated on the 450K array. It 

is therefore important to acknowledge that a truly methylome-wide approach would require 

approaches such as whole genome bisulfite sequencing (WGBS). Additionally, the current 

study was not able to look at cell-specific methylation in brain tissue. Importantly, some 

studies have shown that brain cellular heterogeneity may bias DNA methylation patterns 

(e.g. Guintivano, Aryee & Kaminsky, 2013). It is also worth noting that bisulfite conversion 

precludes testing multiple forms of DNA methylation (e.g., hydroxymethylation). Finally, 

only limited clinical information was available on the subjects who provided the tissue 

samples. Additional information regarding the severity/duration of alcohol use and 

additional information about substance use, disease states, and psychopathology would 

provide a more comprehensive picture of these samples and lend additional justification for 

case vs. control classification. However, information regarding the Australian brain samples 

is limited to that collected and compiled by the New South Wales Tissue Resource Centre 

(NSW TRC).

An additional limitation of our study was the fact that two separate samples were used to 

accomplish both aims of the study. First, the Australian brain samples were used in order to 

determine which CpG sites differentiated AD cases from controls (i.e. which CpG sites were 

phenotypically relevant). A separate sample was used to determine which CpG sites 

demonstrated consistent methylation beta values across brain and peripheral tissue types. We 

did not have both brain and peripheral tissue samples available to us through the NSW TRC, 

and thus, were limited by practical constraints of the samples that were available. DNA 

methylation differs across populations (Fraser, Lam, Neumann, Kobor, 2012) and our two 

sample sets are racially and ethnically divergent. However, there is no evidence to date to 

suggest that the consistency of DNA methylation across tissue types differs dramatically 

across populations. In any case, our approach should be seen as a preliminary proof of 

concept. Future studies may collect DNA from multiple tissues in the same sample to 

evaluate both the effect of the methylation on the phenotype as well as the consistency 

across tissue types.

One strength of the present study is that type I error was controlled with conservative p 

values. Although there have been very few studies of this nature published to date, two 

studies published using similar methodologies and designs incorporated less conservative 

thresholds than those employed here. For example, a recent methylome-wide study analyzed 

differences between cases and controls at the CpG evaluated 27,578 CpGs using a p value 
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threshold of < .005 (Zhang et al., 2013b). Similarly, another methylome-wide study 

interrogated over 450,000 CpGs using an absolute value DiffScore of less than 20 as the 

threshold to differentiate between cases and controls, which correspondes to a p-value 

threshold of < .01 (Zhao et al. 2013). In contrast to these studies, the present study employed 

a more conservative approach of a threshold of abs(DiffScore) greater than 70 and a p-value 

of 1×10−7. Given the limited sample size and statistical power combined with conservative p 

values, the primary limitation of the current study is a high probability of a Type II error 

where the analyses failed to identify a number of CpGs that may differentiate alcohol cases 

from controls. Keeping in mind our exploratory study objectives and the current lack of 

statistical threshold consensus within this emerging literature, we acknowledge this 

limitation to our approach and look to future studies to replicate and probe further into our 

findings.

Findings and Impressions

Using two independent samples, the present study was designed to identify CpGs that 1) 

demonstrate methylation differences between alcohol dependent cases and controls and 2) to 

determine which of these phenotypically relevant CpGs demonstrate significant correlation 

across tissue type. The results of the primary analysis identified a total of 432 CpGs that 

passed rigorous statistical thresholds. Of these CpGs, 244 were classified as hypomethylated 

and 188 were classified as hypermethylated in cases as compared to controls and were 

significantly correlated across brain and buccal cell tissue types. Gene network analyses 

were used to identify the functional relevance of our identified gene sets from the primary 

analysis. These results suggested that the top-ranking functional networks were most 

commonly related to inflammation, immune system regulation, lipid metabolism, and 

gastrointestinal disease. These pathways and diseases have been previously associated with 

AUDs in the extant literature (Goral, Karavitiss & Kovacs, 2008; Cook, 1998; Baraona & 

Lieber, 1979; Schuckit, 2009), which adds credibility to the results of these exploratory 

analyses.

A number of the individual genes that emerged in the analyses have also been previously 

linked with AUDs in previous genetic and epigenetic studies, including dopamine receptor 

D4 (DRD4), dopamine beta hydroxylase (DBH), dopamine transporter (SLC6A3), 

cytochrome P450 2E1(CYP2E1) and toll-like receptor 4 (TLR4). DRD4, DBH, and 

SLC6A3 represent three genes from this list that fell within the top hypermethylated results. 

Previous studies suggest that these genes are all involved in the neurobiology of reward 

response. SLC6A3 functions as the dopamine transporter gene and is responsible for the 

reuptake of extracellular synaptic dopamine into presynaptic neurons, and therefore governs 

termination of dopaminergic transmission (Giros et al., 1992). Thus, it follows that different 

levels of SLC6A3 expression may have a significant impact on dopaminergic reward circuits 

(Drgon et al., 2006). Additionally, Hillemacher et al. (2009a) demonstrated that compared to 

healthy controls, the dopamine transporter (SLC6A3) promoter was significantly 

hypermethylated in alcohol dependent patients, and hypermethylation of SLC6A3 was 

associated with obsessive alcohol craving. Thus, the fact that a CpG within the SLC6A3 
gene was identified as a top hypermethylated site with a high level of consistency across 
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neural and peripheral tissues in our samples, lends evidence regarding the potential 

importance of epigenetic regulation of this gene.

Additionally, several studies suggest that the DBH gene is associated with AUD (Kato et al., 

1979; Schuckit et al., 1981; Bagdy & Arató, 1987; Köhnke et al., 2006), and ethanol induced 

regulation of DBH has been observed (Hassan et al., 2003). In contrast to our 

hypermethylated finding, hypomethylation of the DBH gene was found to be higher in 

discordant twins who exhibited alcohol-dependent tendencies (Zhao et al., 2013). DBH is 

responsible for catalyzing the conversion of dopamine into to noradrenaline or 

norepinephrine (Joh & Hwang, 1987); thus, hypomethylation of DBH resulting from chronic 

alcohol exposure is suggested to contribute to alcohol tolerance by way of dampening the 

dopaminergic reward response (Zhao et al., 2013). Interestingly, a CpG within the DBH 
gene emerged in the hypermethylated final list of our primary results. These conflicting 

results suggest the potential importance of the DBH gene and highlight the complexity of 

methylation in the context of AUD, and implore the need for future replication studies. 

Finally, analysis of DNA from peripheral blood revealed that a CpG site in the DRD4 gene 

was significantly hypermethylated in cases compared with controls (Zhang et al., 2013a). 

This finding is consistent with the present results, and future studies might investigate how 

methylation of the DRD4 gene contributes to networks and disease pathways associated with 

AUD.

Consistent with our findings implicating inflammatory and immune networks, both animal 

and human research in recent years have empirically demonstrated the association between 

heavy alcohol exposure and the activation of key neuroinflammatory mediators in the brain. 

In our primary analysis, TLR4 emerged as a hypermethylated site. Previous studies indicate 

that alcohol exposure can trigger neuroinflammatory signaling cascades through the 

activation of the toll-like receptor-4 (TLR4) pathway (Guerri & Pascual, 2013; Crews et al., 

2015). Evidence suggests that activation of this pathway results in prolonged microglial 

activation and the downstream production of additional proinflammatory cytokine 

mediators, which impact neuroimmue functioning. These neuroinflammatory processes lead 

to deleterious neurotoxic effects, including neurodegeneration (Fernandez-Lizarbe et al., 

2009). Consistent with theoretical models of alcohol dependence, inflammation-induced 

neurotoxicity is a potential mechanism by which the control network becomes weaker 

throughout the course of disease progression, resulting in increased consumption and 

reduced inhibitions (Karoly, Harlaar & Hutchison, 2013). Given the prominent role of TLR4 
in the neuroinflammatory response to alcohol, our results suggesting hypermethylation 

within TLR4 may be a promising target in terms of elucidating the epigenetic mechanisms 

underlying neuroadaptations in AUD.

The CYP2E1 gene, a significantly hypermethylated CpG site in the network associated with 

humoral immune response, protein synthesis, and cell morphology, demonstrates high cross 

tissue correlation in the current study, and has also garnered interest in the alcohol literature. 

CYP2E1 appears to be involved in the metabolism of exogenous compounds, including 

alcohol and is regulated by various transcriptional and post-transcriptional factors (Jones et 

al., 1992). Evidence suggests that ethanol induces CYP2E1, which in turn catalyzes ethanol 

oxidation and results in the formation of acetaldehyde. Increased CYP2E1 leads to 
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accelerated metabolism, which might be partially responsible for developing tolerance to 

alcohol and other drugs (Lieber, 1997). In support of this theory, one study demonstrated 

that human alcoholics had elevated levels of CYP2E1 in particular brain regions, which may 

be partially responsible for the neurotoxic effects and metabolic tolerance that are 

characteristic of chronic alcohol exposure (Howard et al., 2003). Although it does not appear 

that CYP2E1 has emerged in the results of other methylome studies on alcohol dependence, 

our results suggest that future methylation studies should interrogate CpGs within this gene. 

Future research might explore how involvement in the network that emerged from our 

results might be associated with more downstream mechanisms associated with AUD.

Additionally, we examined whether or not the CpGs sites that emerged from our analyses 

reflected patterns that were present across multiple CpGs within that genetic region, further 

supporting their importance as candidates for targeted replication in future studies. To this 

end, we examined whether there were additional CpGs within 2000 base pairs of 

transcription start sites of the genes that emerged from our analyses (i.e. supplementary 

tables 1 and 2) and used a relaxed DiffScore threshold (DiffScore > |40|) in order to detect 

regions were there were more than one CpG site differentially methylated between AD cases 

and controls. Within our hypomethylated results (see notion in supplementary table 1), 

several sites fell within these differentially methylated regions of interest, including 

VTRNA2-1, LHX8, and KLHL35. Several sites within our hypermethylated results (see 

notation supplementary table 2) fell within differentially methylated regions of interest, 

including, FAM59B, OR2L13, PM20D1, SEPT7L, and WRB. Future studies may be useful 

for follow-up on these specific genes.

Given the budding evidence base for epigenetic mechanisms in the genesis and progression 

of alcohol use disorders, our results can be used by scientists to inform future study designs 

and hypotheses. Future studies could use the derived lists of CpGs in order to test and 

replicate these findings in other independent samples of AUD cases with greater power. In 

addition, future studies should seek to understand whether methylation of DNA isolated 

from buccal cells performs as well as DNA from blood. These efforts would provide more 

evidence surrounding the open question of tissue type specificity in the context of 

methylation and AUD. Alternatively, the biological pathways that emerged from the current 

study might similarly inform the continued refinement of theoretical models and 

understanding of the underlying mechanisms of AUD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flow chart outlining the objectives, samples, statistical thresholds, and number of CpGs 

tested at each phase of the primary analysis.
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Table 1

Matched Characteristics of Sample Set I

AD (n=49) Control (n=47) Test P

Age M= 47.76
SD=7.78

M= 48.43
SD= 8.38

t(92.8)=.41 .69

Sex n female = 11
n male = 38

n female = 12
n male = 35

χ2(1, N=96) =
.013

.91

PMI M= 34.58
SD= 11.05

M= 27.98
SD=13.98

t(90.7)= −2.57 .01

Sample Set I consists of frozen precuneus brain tissue samples from 49 alcohol dependent cases and 47 neurologically-normal controls obtained 
from the New South Wales and Victorian Tissue Resource Centre; AD, alcohol dependent cases; PMI, post mortem interval in hours; M, mean; SD, 

standard deviation; p, p-values obtained from Welch’s t-test/Pearson’s χ2.
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Table 3

Functional network analyses of hypermethylated and hypomethlyated gene sets derived from the primary 

analysis

ID Genes Related to the Identified Network Score Number of Genes Top Diseases and Functions

Hypermethylated-related networks

1 AHSP, BOC, CBX7, CCND1, DBH, DHX9, MBD5, MMP17, NCR2, 
PCGF3,
PNLIPRP2, PPP1R16B, PSMD13, SMAD6, SMYD2, TMEM165, 
TP53INP2

34 18 Cellular Function and
Maintenance,

Neurodevelopmental Disorder,
Hereditary Disorder

2 DAP, DOCK5, ELOVL5, INPP5A, IRS1, KLF4, LRAT, MYO15A, 
NDFIP1, PAH,
PDGFA, RRAGC, SCD, SLC6A3, THBS2

30 16 Lipid Metabolism, Molecular
Transport, Small Molecule

Biochemistry

3 ACOT1, CPAMD8, FAM101B, FARS2, FCHO1, KCNH5, MICAL3, 
MYEOV,
NTPCR, PLEKHG4B, REEP3, SEC24D, TM9SF1, TSPAN10, 
TUBAL3, XXYLT1

30 16 Lipid Metabolism, Nucleic
Acid Metabolism, Small
Molecule Biochemistry

4 AHRR, ARID3A, BATF, CCR6, CYB561, CYP2E1, HS6ST1, IRF8, 
MAP2K3,
NOX4, TLR4, TLR6, TRIM29, ZBP1

27 15 Humoral Immune Response,
Protein Synthesis, Cell

Morphology

5 B3GALT1, BAHD1, CYBRD1, DPF3, DTX2, FTCD, HCG4, HHLA2, 
RGPD4
(includes others), SLC26A1, SNORA70, UBL4B, WRB

23 13 Lipid Metabolism, Small
Molecule Biochemistry, Cell

Morphology

6 ABR, CDK18, CHST8, DRD4, GABRB3, GALNT9, GPR123, 
KCNN1, MSRA,
NUDT1, PFDN4, RHPN1, SSTR5, STK25

22 14 Behavior, Developmental
Disorder

7 ATCAY, CLEC4F, FADS3, FAM120B, FAM173B, GRAMD4, HLA-
DPA1, LMF1,
NEGR1, OR2L13, UMODL1

19 12 Cell-To-Cell Signaling and
Interaction, Inflammatory

Response

8 EPHA10, FEM1B, HOOK2, LRRK1, MICALL2, MRGPRX2, 
MYT1L, RP1L1,
SDK1

17 11 Cell-To-Cell Signaling and
Interaction, Nervous System
Development and Function

Hypomethylated-related networks

1 AKR7A2, AP2A2, B4GALT6, calpain, CAPN8, DGKZ, DUSP5, 
GYPA, HMGCS1,
HSPG2, HTATIP2, MAP2, Mek, MUC2, NCOA5, OCA2, OVGP1, 
PCSK9,
PDGFRA, RFTN1, SCN1A, SCN4B, SORL1, SPRY1, SPTBN4, 
SULF2, TPO,

51 25 Cancer, Gastrointestinal
Disease, Hepatic System

Disease

2 AGPAT1, ATXN7L1, B3GNT7, C1orf109, CLSTN2, FMN2, GBX2, 
HAAO, ITIH3,
KCNK17, LHX8, LRRN4, PDE11A, TAS1R2, ZNF607

30 17 Cellular Development,
Embryonic Development,
Organismal Development

3 BAK1, BRDT, COX4I1, FANCA, FHIT, GALNT1, GLRX3, HIPK2, 
HISTONE,
HLA-DQA1, HLA-DQB1, HLA-DRA, HLA-DRB5, HLA-L, 
NFATC1, REL,
SDHB, SKP2

29 18 Inflammatory Response,
Endocrine System Disorders

4 ACSF3, ATP5G1, DYNC2H1, HERC6, KIF26B, MRTO4, MYOM2, 
NUPL1,
PGRMC2, PHC1, SDK1, TRIM31, UBTD1, WDR41

24 14 Energy Production, Nucleic
Acid Metabolism, Small
Molecule Biochemistry

5 EAPP, FGF22, KIAA1804, KRT82, MXRA7, SLC35E2, SLC39A8, 
SLC6A13,
SOX11, SPATA18, TRIML2, VTRNA2-1, WDR60

22 14 Organ Morphology, Cancer,
Cell Cycle

6 CCDC57, DFNA5, FAM213B, FEM1B, GDAP2, KIAA0319, 
LRRC20, PYROXD1,
RAB20, SLC12A8, SLC25A46, THUMPD1, TMEM9, TMEM100

21 13 Neurodevelopmental Disorder,
Neurological Disease

Alcohol Clin Exp Res. Author manuscript; available in PMC 2017 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hagerty et al. Page 18

Network connections – Functional network analysis results based on hypo- and hyper-methylated gene sets remaining after phases I and II of the 
primary analysis; ID, identification number of significant gene networks; Score, computed network score based on the Ingenuity knowledge base, 
used to rank the networks based on their functional connectedness over and above random chance; Number of Genes, number of genes in each 
network; Top Diseases and Functions, the top diseases and functions associated with each network based on the Ingenuity knowledge base.
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