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Abstract The neural coding of spatial location for memory function may involve grid cells in
the medial entorhinal cortex, but the mechanism of generating the spatial responses of grid cells
remains unclear. This review describes some current theories and experimental data concerning
the role of sensory input in generating the regular spatial firing patterns of grid cells, and changes
in grid cell firing fields with movement of environmental barriers. As described here, the influence
of visual features on spatial firing could involve either computations of self-motion based on optic
flow, or computations of absolute position based on the angle and distance of static visual cues.
Due to anatomical selectivity of retinotopic processing, the sensory features on the walls of an
environment may have a stronger effect on ventral grid cells that have wider spaced firing fields,
whereas the sensory features on the ground plane may influence the firing of dorsal grid cells with
narrower spacing between firing fields. These sensory influences could contribute to the potential
functional role of grid cells in guiding goal-directed navigation.
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Corresponding author M. E. Hasselmo: Centre for Systems Neuroscience, Center for Memory and Brain, Department
of Psychological and Brain Sciences and Graduate Program for Neuroscience, Boston University, 2 Cummington Mall,
Boston, MA 02215, USA. Email: hasselmo@bu.edu

Abstract figure legend This figure shows the activity pattern of a single grid cell recorded from the medial entorhinal
cortex of a rat as it forages in a circular environment with a boundary wall. The mean firing rate of the cell increases (red)
when the rat visits an array of locations within the environment corresponding to vertices of tightly packed equilateral
triangles. The location-specific firing could partly depend on computation of spatial location based on the angle of
visual stimuli the rat observes in its visual field, or based on optic flow of visual stimuli on the ground plane.

Abbreviations GABA, gamma-aminobutyric acid; mEC, medial entorhinal cortex.

Modelling the sensory influences on spatial firing
of entorhinal neurons

The behaviour of many different mammalian species
requires the accurate coding of spatial location in the
environment, ranging from the foraging behaviour of
rodents to the social interactions of humans. Research in
rodents and humans indicates that the neural mechanisms
for coding of space appear to include neuronal spiking
activity of place cells in the hippocampus (O’Keefe &
Dostrovsky, 1971; O’Keefe, 1976; O’Keefe & Nadel, 1978)
and grid cells in the medial entorhinal cortex (mEC) (Fyhn
et al. 2004; Hafting et al. 2005; Moser & Moser, 2008;
Jacobs et al. 2013). Place cells fire when an animal visits
specific individual spatial locations in an environment,
while grid cells in the mEC fire during visits to a regular
array of locations that fall on the vertices of a hexagonal
grid across an environment. These neuronal populations
are clearly not the only mechanism of spatial localization,
as humans with medial temporal lobe damage, such as the
patient known as H.M., can find their way around familiar
environments (Scoville & Milner, 1957; Milner et al. 1968).
Similarly, rats with hippocampal lesions are not impaired
in the use of reference memory to avoid unrewarded arms
in an eight-arm radial maze (Olton et al. 1979, 1986)
and can still navigate to a specific location, though their
learning is much slower (Morris et al. 1982). However,
these structures appear important for rapidly encoding

new spatial locations in unfamiliar, novel environments
(Olton et al. 1979, 1986; Morris et al. 1982), and hence
their accurate updating on the basis of sensory features
appears to be essential to memory-guided behaviour in
new environments.

This review will focus on models of the role of
sensory input during self-motion in determining the
firing properties of grid cells. This will draw on extensive
experimental data showing the response of neurons in
entorhinal cortex to manipulations of sensory features
in the environment. On a broad scale, location can
be computed in either relative or absolute coordinates.
Absolute coordinates would index Cartesian coordinates
for location relative to the same origin (0, 0) on multiple
visits to an environment. In contrast, relative coordinates
would update location based on some arbitrary starting
coordinate. For example, the relative coordinate shift of
(2, 3) on different visits would be the same for the trans-
ition from a first absolute starting location (1, 2) to
(3, 5) and for the transition from a second absolute starting
location (5, 11) to (7, 14). Absolute location can be coded
by reference to the static distance and angle of sensory
features (such as visual or auditory stimuli). Relative
location can be computed based on sensory features from
self-motion (including both proprioceptive feedback and
motor efference copy concerning generated movements,
as well as moving sensory features such as optic flow or
whisker input). The terms absolute and relative location
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will be discussed repeatedly in this review, and we will also
refer to static sensory features, moving sensory features,
proprioceptive feedback and efference copy of self-
motion.

Relative location from proprioceptive and efference
copy of self-motion signals

Many early models of grid cells focused on path integration
from the running velocity of the animal (the speed
and direction of movement) based on the integration
of the motor output. These early models did not
directly address the computation of speed and movement
direction. Instead, these models usually assumed that these
properties can be computed from proprioceptive feed-
back or efference copy of self-motion signals from motor
command centres, but as reviewed here they could also be
computed from moving sensory features.

Input about running velocity was used to drive the
majority of models of grid cells using attractor dynamics
(Fuhs & Touretzky, 2006; McNaughton et al. 2006;
Guanella et al. 2007; Burak & Fiete, 2009; Giocomo
et al. 2011; Pastoll et al. 2013). These models generate
the grid cell firing pattern across a wide population of
neurons, and then shift the current location coded by the
population based on velocity input provided by structured
connectivity of conjunctive grid-by-head-direction cells
(McNaughton et al. 2006; Burak & Fiete, 2009). In these
models, the population pattern of grid cell firing is driven
by circularly symmetric excitatory or inhibitory recurrent
synapses. This results in a major strength of these models
in accounting for experimental data on shared orientation
and spacing of firing fields (Sargolini et al. 2006; Stensola
et al. 2012), and the quantal nature of grid cell spacing in
different modules (Barry et al. 2007; Stensola et al. 2012).
These models are also supported by recent data supporting
circular symmetry of synaptic interactions between grid
cells (Heys et al. 2014). The use of velocity input in these
attractor models means that most existing simulations of
these models compute relative location. However, these
models could be modified to compute absolute location
based on direct associations between specific patterns of
sensory feature input indicating position and specific sub-
populations of neurons within the population as done in
a recent model (Bush & Burgess, 2014).

Velocity input was also used as input in a class of grid
cell models using oscillatory interference (Burgess et al.
2005, 2007; Blair et al. 2008; Burgess, 2008; Hasselmo,
2008; Welday et al. 2011). In these models, individual grid
cells are driven by input from multiple velocity-controlled
oscillators that change frequency based on current speed
and the current movement direction relative to the pre-
ferred direction angle of individual oscillators. These
oscillatory interference models effectively simulate the
theta rhythmic firing of grid cells (Hafting et al. 2008;

Jeewajee et al. 2008; Brandon et al. 2011; Koenig et al.
2011; Stensola et al. 2012), and the changes in rhythmic
firing frequency based on running speed and the spacing
between firing fields (Jeewajee et al. 2008; Stensola et al.
2012).

Because these oscillatory interference models arose
from models of theta phase precession in the hippocampus
(O’Keefe & Recce, 1993; Skaggs et al. 1996; Lengyel et al.
2003), these models effectively account for the theta phase
precession of grid cells (Hafting et al. 2008; Climer et al.
2013; Eggink et al. 2014) and the prominent theta in
the local field potential of entorhinal cortex (Mitchell &
Ranck, 1980; Mitchell et al. 1982; Alonso & Garcia-Austt,
1987; Jeffery et al. 1995). Models related to oscillatory
interference (Hasselmo & Shay, 2014) can also address
theta cycle skipping in the medial septum (King et al. 1998;
Varga et al. 2008) and mEC (Jeffery et al. 1995; Deshmukh
et al. 2010; Brandon et al. 2013) and firing of different
populations on opposite phases of theta (Mizuseki et al.
2009; Newman & Hasselmo, 2014). Attractor models have
only simulated phase precession during one-dimensional
movement (Navratilova et al. 2012).

Oscillatory interference can be successfully merged
with attractor dynamics (Bush & Burgess, 2014). Such
a merger accounts for data showing depolarizations in
grid cell firing fields without changes in envelopes of
theta oscillations (Domnisoru et al. 2013; Schmidt-Hieber
& Hausser, 2013). Oscillatory interference models can
compute absolute location either through sensory input
to drive a subpopulation of cells (Bush & Burgess, 2014),
or by updating oscillation phase using visual features
(Burgess, 2008). Variants of these models generate the
periodicity in the firing of grid cells using ring oscillators
(Blair et al. 2008, 2014; Welday et al. 2011) or using
wave inputs (Hasselmo & Brandon, 2012; Hasselmo, 2014;
Hasselmo & Shay, 2014).

An additional class of models uses self-organization
of feedforward signals from place cells (Kropff & Treves,
2008; Mhatre et al. 2010; Si et al. 2012) providing coding
of absolute location in grid cells that depends upon
place cell firing. As an alternative, some attractor models
use global input to entorhinal cortex from place cells
in hippocampus to account for the loss of grid cell
firing during inactivation of the hippocampus (Bonnevie
et al. 2013).

The focus of many models on path integration with
a self-motion signal was partly due to data showing
that grid cells continue to show regular firing fields
in darkness (Hafting et al. 2005), suggesting that they
do not require visual sensory input. However, studies
have not analysed the dependence of grid cells on
other sensory input such as somatosensory input from
whisking or auditory localization input. The question
remains whether path integration based on proprio-
ceptive feedback and efference copy of motor signals for
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self-motion can generate grid cells in isolation from other
sensory influences. Studies in absolute darkness should be
combined with the use of sound attenuation chambers
and clipping of whiskers to remove these components
of sensory input so that the animal must solely rely on
proprioceptive, efference copy and vestibular self-motion
signals.

Head direction dominates over movement direction

As noted above, the self-motion signal could come
from either internal signals (proprioceptive feedback or
efference copy) or from sensory input. The use of a
proprioceptive self-motion signal must assume that the
grid cells in mEC have access to proprioceptive feed-
back or efference copy coding both translational speed
and movement direction to create a velocity signal. As
noted above, the use of velocity input is present in most
published attractor dynamic models (Fuhs & Touretzky,
2006; McNaughton et al. 2006; Guanella et al. 2007; Burak
& Fiete, 2009; Bonnevie et al. 2013; Couey et al. 2013;
Pastoll et al. 2013) as well as oscillatory interference models
(Burgess et al. 2007; Blair et al. 2008; Burgess, 2008;
Hasselmo, 2008; Zilli & Hasselmo, 2010). Thus, these
models use input of both speed and movement direction.

The requirement of a speed signal is supported by data
showing examples of linear and saturating exponential
relationships of firing rate to running speed in recordings
from hippocampus and mEC (O’Keefe et al. 1998; Wills
et al. 2012; Kemere et al. 2013; Kropff et al. 2015; Hinman
JR, Brandon MP, Chapman GW, Climer JR & Hasselmo
ME, submitted). The important role of speed in these
models is further supported by data on changes in the
frequency of spiking in the medial septum (King et al.
1998) or theta frequency field potentials in hippocampus
during changes in running speed (Hinman et al. 2011).
This indicates a potentially important role of the input
from the medial septum to the hippocampus. It is
possible that the impairments of spatial memory caused
by inactivation of the medial septum (Chrobak et al.
1989) are due to loss of a speed signal input from medial
septum. This is further supported by data showing the
loss of spatial periodicity of grid cells when network theta
rhythm oscillations are reduced by inactivation of the
medial septum (Brandon et al. 2011; Koenig et al. 2011).
It is not yet clear which cell population underlies this
effect, as the medial septum inactivation in those pre-
vious studies (Brandon et al. 2011; Koenig et al. 2011)
would involve simultaneous inactivation of cholinergic,
GABAergic and glutamatergic neurons. Recent data show
that phasic optogenetic activation at theta frequency of
glutamatergic neurons in the medial septum triggers
running by mice at speeds regulated by the frequency
of optogenetic stimulation (Fuhrmann et al. 2015). These

data on coding of translational speed by the medial septum
support models using translational speed as a component
of a velocity signal for grid cell generation.

However, the requirement of models for movement
direction is more problematic, despite the fact that many
papers cite head direction responses of mEC as the
evidence for a movement direction signal. Head direction
cells are one of the most dramatic neural responses to
spatial dimensions found in the brain. Head direction
cells were initially discovered in the dorsal presubiculum
(Ranck, 1984; Taube et al. 1990a,b) and subsequently
described in the anterior thalamus (Taube, 1995) and
mEC (Sargolini et al. 2006). Head direction cells clearly
depend upon input from the vestibular system coding
angular velocity (the turning speed of the head), but
also show dependence upon visual cues (Taube et al.
1996; Taube & Bassett, 2003). Many attractor models
use grid-by-head-direction cells to shift the grid cell
population activity during movement (McNaughton et al.
2006; Burak & Fiete, 2009; Couey et al. 2013), and equate
head direction with movement direction.

However, an analysis of behavioural data shows that the
head direction signal does not match movement direction
(Fig. 1A). Because of this, when behavioural data on head
direction is used as input to attractor models or oscillatory
interference models in place of a behavioural movement
direction signal, the models do not generate accurate grid
cell firing (Raudies et al. 2015) as shown in Fig. 1E and
F. This occurs because the integration of velocity in those
models is distorted by the use of head direction instead
of movement direction. Further analysis of experimental
data on the firing properties of a large population of medial
entorhinal neurons during periods when head direction
does not match movement direction shows little evidence
for neurons coding a movement direction signal (Raudies
et al. 2015). In the data, numerous neurons clearly code
head direction alone, but only a few neurons code both
head direction and movement direction and no neurons
respond on the basis of movement direction alone (Fig. 1C
and D). One possibility is that the movement direction
signal is present in other regions and may drive the
mechanisms of the firing of grid cells in other networks
such as the pre- or parasubiculum (Boccara et al. 2010)
without being evident in medial entorhinal cortex. As
an alternative hypothesis, this stronger coding of head
direction and relative lack of a movement direction signal
suggests that a self-motion signal might rely less on inter-
nal signals of movement direction and instead may depend
on a representation of the head direction for coding
sensory input. The coding of the head direction angle
would allow the computation of the absolute angle of
visual, auditory and somatosensory input because these
sensory inputs are initially detected in terms of their angle
relative to coordinates centred on current head direction.

C© 2016 The Authors. The Journal of Physiology C© 2016 The Physiological Society
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Figure 1. Analysis of single cell recording data from entorhinal cortex for head direction (HD) and
movement direction (MD) along with a model simulation of grid cells using HD or MD as input
A, we infer the head direction through the orientation given by the two LEDs, 1 and 2, and the movement direction
taking the temporal advancement of the mid-point between LED 1 and 2. B, a sketched sequence for the temporal
succession of the positional sample points of LED 1 and 2 to illustrate the definition of HD, MD and the angular
difference between HD and MD. C, the Watson U² for the population of 305 cells from the Hasselmo laboratory.
D, the Watson U² for the population of 453 cells from the Moser laboratory. Plotted points of the Watson U2 for
MD tuning versus Watson U² for HD tuning are from the same cell. Axes are log-scaled as are the grey values
that represent the firing rate of each cell in hertz. Cells whose Watson U² pair is below the diagonal primarily
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Optic flow can drive grid cells and boundary vector
cells

The dominant coding of head direction by cells in the
mEC supports the importance of sensory input in coding
of grid cells. The influence of sensory input on grid
cells has not been explicitly discussed as extensively as
path integration based on proprioceptive self-motion.
However, a modelling study showed how optic flow of
visual features could be used to compute a velocity signal
to drive grid cell models using attractor dynamics or
oscillatory interference (Raudies et al. 2012). This model
used template matching of optic flow to estimate velocity,
and then used the estimated velocity to compute the
relative location in a grid cell model (Fig. 2D). Note that
this model did not compute absolute location.

As shown in Fig. 2, optic flow can also be used as sensory
input to model the generation of boundary cells (Raudies
& Hasselmo, 2012). Boundary cells in mEC and subiculum
show robust spiking responses dependent on the distance
and angle of environmental boundaries (Burgess et al.
2000; Barry et al. 2006; Savelli et al. 2008; Solstad et al.
2008; Lever et al. 2009). For example, they might respond
when an environmental boundary is to the north of an
animal at a specific distance. In an important theoretical
model, these boundary cells were predicted (Burgess et al.
2000; Hartley et al. 2000) based on the response of place
cells to manipulations of environmental barriers (O’Keefe
& Burgess, 1996). For example, if the east–west distance
between boundaries of an environment is expanded, then
the size of a place field may expand in the east–west
dimension, or the cell may split into two firing fields. These
properties of place cells were modelled using boundary
vector cells with properties that were extensively analysed
in computational work (Burgess et al. 2000; Hartley et al.
2000).

The explicit predictions of these models were then
supported by the later experimental discovery of these
cells (Barry et al. 2006; Savelli et al. 2008; Solstad
et al. 2008; Lever et al. 2009). Boundary cells allow for
analysing the absolute distance and angle of environmental
boundaries from the current position of an animal. As
shown in Fig. 2A–C, optic flow was used to model the
firing of boundary cells (Fig. 2E) through detection of a
discontinuity in the optic flow at the border between a
wall and the ground plane of the environment (Raudies

& Hasselmo, 2012). Note that though this model uses
optic flow, because it detects the distance and angle of
a boundary, it is computing absolute location in the
environment and could be used to drive the absolute
location of grid cell firing or place cell firing, as proposed
in the initial models of boundary vector cells (Burgess et al.
2000; Hartley et al. 2000).

Absolute location from static sensory features

Experimental data on grid cells indicate the influence of
sensory input on their firing properties. For example,
grid cells fire in the same spatial location in a specific
experimental environment even after the animal has been
removed from the room and returned to the room (Hafting
et al. 2005; Fyhn et al. 2007), indicating that grid cells not
only track location relative to the initial position, but are
able to reinstate the appropriate location activity based
on sensory cues when reintroduced to a previously visited
environment. The sensory cues regulating the location of
grid cell firing include visual cues in the environment.
Rotation of the position of a white cue card on the wall
of an environment between recording sessions will cause
grid cells to rotate according to the rotation of the cue
card (Hafting et al. 2005). In addition, shifting the position
of the walls of the environment between sessions causes
compression or expansion of the spacing and size of grid
cell firing fields temporarily (Barry et al. 2007). After
adaptation to the alteration in the environment the grid
cell firing fields return to their previous hexagonal firing
pattern. Further experimental studies showed that this
shift in the position of the walls affects grid cells with large
spacing between firing fields more so than cells with small
spacing (Stensola et al. 2012).

These effects of boundary movement could partly
be due to close somatosensory interactions with the
boundaries, as the firing accuracy of grid cells depends
upon the recency of interaction with boundaries in the
environment (Hardcastle et al. 2015). A recent model has
shown that the influence of boundary cells could alter
the positioning of grid cell firing fields based on different
shapes of environments (Krupic et al. 2014), correctly pre-
dicting that an environment with trapezoid walls would
have distorted firing field location as supported by recent
data from grid cells (Krupic et al. 2015).

encode HD, whereas those above the diagonal primarily encode MD. The distribution of cells is predominantly
biased toward statistical encoding of HD rather than MD. Numbers denote cell indices. Dashed lines mark the
threshold of 5 for the U²s that we used to categorize HD and MD cells. Plotted squares around points indicate HD
coding and plotted triangles around points indicate combined HD and MD coding. E, simulations of the velocity
controlled oscillator (VCO) model (top row) and attractor model (bottom row) with MD or HD as directional input.
The speed input was that of the measured trajectory. Different panels show the simulated cell firing for the HD
or MD while integrating over a 0, 4 or 16 s time window. Whenever HD is provided as input no grid cell firing
appears (last three columns in E and F). In contrast, the direct input of MD (0 s time window) produces grid cell
firing (first column in E and F). Adapted from Raudies et al. (2015).
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As shown in Fig. 3, recent modelling work has shown
that differential sensitivity to boundary movement could
arise from differences in the nature of simulated location
computation by different grid cell modules (Raudies &
Hasselmo, 2015). The term module refers to populations
of grid cells that have been shown to share firing field
properties such as orientation and spacing between fields
(Barry et al. 2007; Stensola et al. 2012). Modelling shows
that modules sensitive to static visual features on the walls
of the environment (Fig. 3A–F) would be particularly
sensitive to the shift of the visual features with wall
movement (Raudies & Hasselmo, 2015), as shown in

experimental data (Barry et al. 2007; Stensola et al. 2012).
In contrast, modelling shows that modules responding
to visual features on the ground plane near the rat
would be less sensitive to wall movement (Fig. 3G–I),
particularly if the firing location is driven by integration
of a moving feature signal from the ground plane near
the rat (Raudies & Hasselmo, 2015). This could explain
the lack of compression of firing fields for grid cells with
smaller spacing (Stensola et al. 2012). Cells with smaller
spacing between firing fields tend to occur in more dorsal
anatomical locations that might be more sensitive to the
ventral visual field.
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Figure 2. Modelled firing patterns of
simulated grid cells and boundary
vector cells using optic flow as input
A, a rat in a circular box with a depiction of
its distance to the wall. B, simulated box
environment for boundary vector cells. The
coordinate system (red, blue and green
arrows) indicates the initial position and
orientation of the simulated visual field of
the rat. C, an optic flow field for a spherical
camera with its segmentation into ground
plane (green dots) and wall (blue dots). This
optic flow field is used to estimate the
linear and rotational velocity of the rat as
well as the distance of the wall in
ego-centric space and the orientation of
the wall in allo-centric space. Adapted from
Raudies & Hasselmo (2012). D, simulated
grid cell firing using the oscillatory
interference model while superimposing
independent, additive Gaussian noise onto
the optic flow components with a standard
deviation σ of 13, 15, 23, 25 and
35 deg frame−1. The simulated grid cell
firing vanishes above a standard deviation
of σ � 23 deg frame−1. The simulation
uses the trajectory ‘Hafting_Fig2C_Trial1’
from Hafting et al. (2005). The box has a
diameter of 100 cm with a 15 cm annulus
added to provide visual features beyond the
limits of locomotion. Adapted from
(Raudies et al. 2012). E, the rate map of our
model for boundary vector cells when
estimating distance and direction of walls
from optic flow. The box has a diameter of
79 cm and the height of the wall is 50 cm.
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The selective effect on individual modules suggests
differences in the anatomical pathways of visual feature
processing reaching different portions of mEC. In the
rodent visual system, some regions (e.g. area AM) respond
more strongly to grating stimuli with high temporal
frequency (movement) and low spatial frequency, other
regions (e.g. area PM) respond more to low temporal
frequency (more static stimuli) with higher spatial
frequency, and yet other regions respond to a mixture
(area LM) (Andermann et al. 2011; Wang et al. 2011,
2012; Glickfeld et al. 2014). These responses might
indicate differential processing in the rodent similar to

the distinction between the ‘where’ and ‘what’ pathways
described extensively for the dorsal and ventral streams of
the primate cortex (Ungerleider & Mishkin, 1982). Note
that the primate extrastriate visual cortex contains regions
that explicitly respond to the self-motion indicated by
optic flow (Rodman & Albright, 1987; Graziano et al. 1994;
Duffy & Wurtz, 1995). These pathways might correspond
to differential visual processing inputs, with optic flow
signals entering the dorsal mEC versus the landmark
signals entering the ventral mEC. Alternately, these might
reflect the differential influence of input from different
portions of the visual field, with dorsal mEC responding
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Figure 3. A model of compression effects that occur in grid cells from modules that map to the ventral
visual field but not in grid cells from modules that map to the dorsal visual field
A, the visual cortex processes optic flow and visual features. Optic flow is strongly present on the ground plane in
the ventral visual field whereas distal visual features in the dorsal visual field make good landmarks. B, via multiple
processing stages, optic flow and visual features influence hippocampal activity, giving rise to a place-specific firing
in a 2D environment. C, in the entorhinal cortex this 2D place information is translated into the firing of grid
cells. Our model has two modules, one that estimates location from optic flow on the ground plane and one that
estimates location from static visual features on the walls through triangulation. The anatomical projections from
visual cortex to entorhinal cortex are not currently used in our model as shown by the dashed line. D, E, G and
H, in configuration A the box is square (D and G) and in configuration B the box is rectangular (E and H) after
pushing two opponent walls closer together (when the rat is outside of the box). For the moving feature system
responding to the ground plane in the ventral visual field this compression of walls left the firing pattern of a
simulated dorsal entorhinal cell unchanged (see D vs. E), while for the static feature system responding to distal
features in the dorsal visual field this led to a compression of the firing pattern of a simulated ventral entorhinal
cell (see G vs. H). F, for the firing pattern of the simulated dorsal entorhinal cell correlation values for different
compressions of B relative to A, there is a peak correlation at �3.1% compression. I, for the firing pattern of the
simulated ventral entorhinal cell, correlation values peak at �95.5% (or about 50 cm) compression of B relative
to A.
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to features on the ground plane whereas ventral mEC
responds to features on distal walls.

Computing location from full visual images

The model described above simulated differential effects
on grid cell firing field spacing used the relative angle
of pre-defined visual features, but there are also models
that have addressed the use of more detailed visual images
in driving spatial responses of grid cells. For example,
a paper used a ray-tracing algorithm to create images
of a rat environment to drive the firing responses of
oriented Gabor filters that could drive an attractor model
of grid cells (Sheynikhovich et al. 2009). This explicit
simulation of visual input is rare, but other models assume
that sensory input can provide a position signal to peri-
odically correct the firing location of grid cells (Burgess
et al. 2007; Pastoll et al. 2013; Bush & Burgess, 2014) or
use slow feature extraction to drive grid cells (Franzius
et al. 2007). Recent work in our laboratory addresses
the mechanism for generating a position signal from
visual input based on previous robotics work by Michael
Milford (Milford, 2008; Milford & Wyeth, 2008, 2010;
Milford et al. 2010; Chen et al. 2014). The effectiveness of
the visual input depends upon an appropriate Gaussian
tuning width for detection of visual features that allows
generalization between adjacent locations without over-
generalizing. In a recent model shown in Fig. 4 (F. Raudies
and M. E. Hasselmo, unpublished), this position signal
was used as input to different models of grid cells,
and the sensitivity of the models to external position
noise was evaluated. A similar analysis of sensitivity to
external position noise was evaluated recently (Towse
et al. 2014).

Note that the external position noise used in the
model in Fig. 4 and the Towse paper differs from most
previous noise evaluations in grid cell models, in that
external noise rather than internal noise and position
noise rather than velocity noise were used. Internal
noise causes problems for oscillatory interference models
(Burgess et al. 2007; Zilli et al. 2009), but can be over-
come by attractor dynamics (Burak & Fiete, 2009; Bush
& Burgess, 2014). In contrast, both attractor dynamic
models and oscillatory interference models have difficulty
in overcoming the external noise in a velocity signal
because attractor dynamics overcome the noise of inter-
nal dynamics but not the noise on an input signal. The
problem of external noise is somewhat less severe when
the noise affects a position signal based on sensory input
rather than a velocity signal from self-motion because the
integration of a velocity signal by the model results in
integration of the noise over time, whereas noise on a
position signal is not integrated. In the simulations shown
here, visual input is used to create a position signal that
is provided as input to models of grid cells. Noise is then

added to this position signal to determine its impact on
different grid cell models.

In the model shown in Fig. 4 (Raudies and Hasselmo,
unpublished model), the generation of synthesized rat
trajectories provides the position signals for our renderer
that generates images for each position. Such memorized
images are then used to retrieve position through
normalized cross-correlation, which in turn is fed into
our proposed wave model. This wave model resembles
previous oscillatory interference models (Burgess et al.
2007) and ring oscillator models (Blair et al. 2008). The
wave model generates grid cell firing across a population
with waves representing medial septal input that are
summed to compute grid cell firing (Hasselmo & Brandon,
2012; Hasselmo & Shay, 2014). Feedback from the grid
cells to the wave input results in self-organization that
selectively strengthens input from sets of waves with
specific head direction orientations at 60 degree inter-
vals. In a separate analysis performed for comparison
with the wave model, the position signal is temporally
differentiated to define a velocity signal that is then fed into
an attractor model or oscillatory interference model. Our
results present properties of the wave model and compare
our wave model using position input from visual stimuli
to the attractor model or oscillatory interference model
using self-motion velocity input. The use of position input
based on visual stimuli can tolerate more noise than the
use of self-motion velocity input even when equating
the signal-to-noise ratio of the noise in the velocity with
the noise in the position signal.

Models of goal-directed navigation using grid cells
and place cells

Behavioural data indicate that humans and animals do not
need the hippocampus and entorhinal cortex to navigate
in a familiar environment. The mechanisms of navigation
in highly familiar environments appears to depend upon
neocortical regions such as the parietal cortex (Byrne et al.
2007). However, entorhinal cortex and hippocampus may
be essential for the formation of spatial representations
and goal-directed navigation within novel environments
(Milford et al. 2010; Erdem et al. 2015), to allow
behaviours such as forward planning of trajectories to goal
locations (Erdem & Hasselmo, 2012, 2014; Erdem et al.
2015). In these models, the current head direction can be
used to trigger forward replay of a trajectory through the
environment, to allow for the selection of a trajectory
that will overlap with a desired goal location. In this
framework, the coding of visual stimuli (Milford et al.
2010) allows for the correction of position errors that could
distort goal-directed navigation (Erdem et al. 2015). A
similar framework can be used to model episodic memory
(Hasselmo, 2009, 2012), in which specific locations and
head direction along a spatiotemporal trajectory can be
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Figure 4. The simulation of grid cells using a wave model that is driven by the position signal that in
turn is retrieved from visual views
A, enclosure used in the simulation with ground (downward triangle), side walls (square, circle, diamond and star
symbols), and ceiling (upward triangle) – in the actual simulation the lines were not present. Black symbols show
the positions of features before random displacement on their associated surface (i.e. ground, walls or ceiling).
Scattered features are drawn as grey symbols. All features were identical for the actual generation of an image.
B, exemplar image for the camera position indicated in A by the direction (Dir) vector and upward vector (Up).
Bright regions indicate the overlay of 2D Gaussian blobs generated by features. C, stored images for 50,000 sample
points and 11 pixel × 5 pixel or 55 total pixel values. Grey values for pixels in the image are flattened along the
vertical dimension. D, position errors for retrieval in the horizontal direction are fitted by a normal distribution with
zero mean and a standard deviation of 2.79 cm. E, position errors in the vertical direction are fitted by a normal
distribution with zero mean and a standard deviation of 3.10 cm. F, population responses and firing pattern of
the central cell for images generated by 2D Gaussians with σ h = 64° and σ v = 32° (fist column), σ h = 16° and
σ v = 8° (second column), and σ h = 4° and σ v = 2° (third column). The population response at a single time
step in F shows that the wave model always generates a hexagonal grid pattern at individual time steps. Bright
encodes a high activation and dark a low activation of cells. G, firing patterns of the central cell in the population
were recorded over 50,000 sample steps. This shows how accurately the population activity is shifted over time
by the estimate of position based on visual input, in order to allow a single cell to fire like a grid cell during the full
trajectory. Bright indicates a high firing rate and dark indicates a low firing rate. The GSs are −0.37, 1.91 and 0.93
for the first, second and third column, respectively, indicating best performance with the intermediate Gaussian
widths that allow best generalization of visual images over nearby positions.
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associated with sensory input features via modifications
of synaptic connections. During replay or recollection, a
retrieval cue activating a specific segment of the trajectory
can trigger retrieval of other segments and the associated
sensory input features. Models of this type could address
the physiological data on replay of previously encoded
sequences of place cells observed in behaving rats (Johnson
& Redish, 2007; Mehta, 2007; Davidson et al. 2009; Jadhav
et al. 2012).
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