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Abstract Maintaining a sense of direction requires combining information from static
environmental landmarks with dynamic information about self-motion. This is accomplished by
the head direction system, whose neurons – head direction cells – encode specific head directions.
When the brain integrates information in sensory domains, this process is almost always
‘optimal’ – that is, inputs are weighted according to their reliability. Evidence suggests cue
combination by head direction cells may also be optimal. The simplicity of the head direction
signal, together with the detailed knowledge we have about the anatomy and physiology of the
underlying circuit, therefore makes this system a tractable model with which to discover how
optimal cue combination occurs at a neural level. In the head direction system, cue interactions
are thought to occur on an attractor network of interacting head direction neurons, but attractor
dynamics predict a winner-take-all decision between cues, rather than optimal combination.
However, optimal cue combination in an attractor could be achieved via plasticity in the feed-
forward connections from external sensory cues (i.e. the landmarks) onto the ring attractor.
Short-term plasticity would allow rapid re-weighting that adjusts the final state of the network in
accordance with cue reliability (reflected in the connection strengths), while longer term plasticity
would allow long-term learning about this reliability. Although these principles were derived to
model the head direction system, they could potentially serve to explain optimal cue combination
in other sensory systems more generally.
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Corresponding author K. J. Jeffery: Institute of Behavioural Neuroscience, Department of Experimental Psychology,
University College London, 26 Bedford Way, London WC1H 0AP, UK. Email: k.jeffery@ucl.ac.uk

Abstract figure legend Optimal cue combination using a ring attractor. (A) Hypothetical head direction cell ring
attractor being activated by two cues, one highly reliable (cue 1, red) and one less reliable (cue 2, pink). According
to classic attractor winner-take-all dynamics, cue 1 should capture activity in the ring. According to optimal cue
combination theory, the resultant activation should be between the two activations, and closer to the stronger one.
(B) The two scenarios could be reconciled if Gaussian inputs onto a ring attractor experience Hebbian plasticity in the
overlap region, causing re-weighting of the inputs, and a shift towards the other cue. (C) The final outcome of this
re-weighting process is that the strong cue captures activity in a winner-take-all fashion, but does so at a part of the ring
attractor that is close to the other cue, as predicted by optimal cue combination theory.

Abbreviations MEC, medial entorhinal cortex; PoS, postsubiculum; RSC, retrosplenial cortex.

Introduction

Self-localisation and navigation benefit from maintenance
of a stable sense of direction so that a navigator knows
which way he or she is facing, and therefore how to
interpret the field of view and plan movements through
the surrounding space. In the mammalian brain, this
sense is constructed and maintained by a network of
structures known collectively as the head direction system
(Taube et al. 1990; Taube, 2007). Cells in these areas,
called head direction cells, fire when an animal’s head
faces in a particular direction; they do this by combining
external, environment-based information with internally
generated, dynamic information about self-motion (Blair
& Sharp, 1996).

When an animal enters a new environment, the
head direction system first has to learn about the local
landmarks, which it uses to establish a frame of reference
relative to which head directions can thereafter be specified
(Taube & Burton, 1995). To do this, the animal has to

identify those environmental features that are directionally
useful, namely, features that are stable, and are thus part of
the static background (or allocentric) frame of reference.
Instability can take two forms – it can occur because the
objects themselves move, or it can occur because small
and nearby fixed objects, which can be walked around, also
change their apparent direction relative to the background
and so are less useful as directional landmarks. Deciding
which objects are distant and stable vs. nearby and/or
unstable poses something of a chicken-and-egg problem
because the purpose of stable landmark identification is to
establish the directional reference frame, but the reference
frame itself is used to decide whether a given landmark is
stable or not. Landmark-learning thus involves a process of
continual cue conflict resolution as the system constantly
judges, on balance of probabilities, whether its own signal
has accrued an error or whether a given landmark is
uninformative.

The question addressed by this article, then, is how –
at a neural level – the head direction system resolves
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conflicts between sets of incoming signals. Cue integration
and conflict resolution is an area that has had extensive
theoretical treatment in other domains, but the neural
basis of this process remains unknown. Understanding
cue combination by head direction cells, which form a
relatively simple sensory system, may shed light not just
on navigation computations but also on more general
principles of optimal cue combination.

Optimal sensory integration

Sensory integration in the nervous system is often
optimised (Ernst & Banks, 2002), such that better or
more reliable information is given a stronger role in the
final sensory decision. Several experiments have shown
that subjects are able to combine sensory information
in a way that gives more weight to the more reliable
cue: for example, Ernst and Banks found that subjects
judging the texture of a surface using both vision and
touch benefitted from use of both senses, and tended to
weight the lower-variance visual stimulus more strongly.
Similar findings have arisen from studies investigating the
combining of stereo cues and texture cues to estimate
surface slant (Knill & Saunders, 2003), and combining
of vision and sound to estimate speaking direction (the
so-called ‘ventriloquist effect’: Alais & Burr, 2004) or
temporal order (Shams et al. 2005).

Cue combination has been well described by maximum
likelihood estimation (Ernst & Banks, 2002), in which each
parameter (e.g. a visual stimulus and a tactile stimulus)
is modelled by a Gaussian curve, which depicts the
probability of the stimulus location in parameter space (for
example, the probability that a surface has a given texture,
given its visual appearance). The height of these Gaussian
curves is proportional, and width inversely proportional,
to the reliability of the estimate (Fig. 1), so that a tall
narrow curve reflects a more accurate estimate, and a
lower broader one a more diffuse or uncertain estimate.
The process has been formulated in Bayesian terms (Knill
& Pouget, 2004), in which the height and width of the
Gaussian probability density estimates reflect the prior
information present in the system about each cue. For
example, if a subject has learned that tactile cues are less
reliable (let’s say they are wearing gloves, and have learned
from experience that gloves reduce tactile accuracy), then
the shape of the tactile Gaussian probability distribution
will change to reflect the lower informativeness, and
so tactile cues should have less impact on the final
decision. Given two such distributions, corresponding to
two sets of cues, cue combination in theory simply involves
multiplication of these probabilities. It is a property of
Gaussians that the product of two curves is itself a Gaussian
curve, located between the originals and closer to the taller
narrower one, producing optimal cue combination exactly
as required.

Cue combination and prior-informed sensory
processing are highly relevant to spatial processing
(Cheng et al. 2007), including directional estimation.
Cue combination could occur when head direction cells
are faced with more than one indicator of direction and
have to decide how best to exploit these. Examples of
multiple directional cues include self-motion cues from
the vestibular and motor systems vs. static landmarks in
the environment, both of which can vary in reliability:
animals can become internally disoriented, or landmarks
can be unstable. Studies in which landmark stability
and/or internal cues have been manipulated have found
a re-weighting of the relative influence of these cues,
both in behavioural and physiological observations.
Behaviourally, one of the first experiments, by Biegler
and Morris, found that rats would only use landmarks as
a guide to food location if the landmarks were spatially
stable (Biegler & Morris, 1993). Physiologically, Knierim
et al. found that place and head direction cells of rats
would not use landmarks to reset their firing directions
if the landmarks were not consistently aligned with the
rats’ sense of direction (Knierim et al. 1997). Similarly,
hippocampal place cells would not use landmarks to
orient their firing if the landmarks had been experienced
by the rats as spatially unstable (Jeffery & O’Keefe, 1999;
Fig. 2A). This latter experiment also found that weighting
could shift progressively from one cue to another: if rats
were deprived of vision for only short periods of time,
so that the internal sense of direction had had less time
to drift and lose accuracy, cells followed the internal
cues more and the cue card less: with longer periods of
visual deprivation the balance reversed, and cells were

Weak cue

Combination

Strong cue

Figure 1. Cue conflict by combination of Gaussian activations
The x-axis refers to some quantifiable parameter distributed across a
sensory network such as size, optical slant, spatial location, heading
direction, etc., and the y-axis reflects intensity of the sensory drive.
The Gaussian curves depict the distribution of drive across the
parameter space: the red curve denotes a strong (tall) and reliable
(narrow) cue, and the pink curve a weaker and less reliable one. The
blue curve reflects the outcome of a decision process that has taken
both cues into account and derived a weighted average, in which
the more reliable cue has exerted a stronger positioning effect.
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more likely to be ‘reset’ by the landmark (Fig. 2B). Thus,
it seems that the weighting of cues can be adjusted by
experience of their relative reliability.

If optimal cue combination involves reliability-
weighted integration, then how might this occur at a neural
level? As yet, there currently exists no generally accepted
neural-level model of how these Gaussian likelihood
estimations might be accomplished by real neurons,
although some investigators have started to tackle this issue
(Ma et al. 2006; Fetsch et al. 2012). The head direction
system may offer some new insights: it could be that
the same mechanism that head direction cells use for
optimal landmark use might be employed for optimal cue
combination in other sensory systems too.

The head direction ring attractor

To begin with we will examine the basic principles
of landmark processing by the head direction system,
before turning to the question of how the network
might achieve cue combination. The basis of the head
direction signal, generated in the brainstem (Clark &
Taube, 2012), is thought to comprise a ring attractor
(Skaggs et al. 1995; Zhang, 1996), in which excitatory
interconnections between neurons of similar preferred
directions (e.g. two ‘north’ neurons both firing when
the animal faces north) cooperate with inhibitory inter-
connections between neurons with dissimilar preferences
(‘north’ vs. ‘south’, etc.) to restrict activity to just one
part of the imaginary ring of neurons (Fig. 3A). Activity
can be moved from one part of the ring to another,
either by the animal’s own movements or by detection
of familiar landmarks which adjust the signal to correct
errors (Fig. 3B). Note that in mammals, these neurons are
not arranged in an actual physical ring (Fig. 3C), although
recent evidence suggests that in insects they might be

(Seelig & Jayaraman, 2015). While the generative and
updating parts of this process are intrinsic and may even
operate in the absence of visual landmark information (in
the dark, or – in infant rats – pre-eye-opening (Bjerknes
et al. 2015; Tan et al. 2015), the landmark-based setting
and resetting depend on learned information about the
environment and about which elements of it are stable
and thus useful as directional indicators. Since excitatory
interconnections have not been observed in the known
head direction areas, variants of the basic attractor model
have been proposed that use inhibitory interconnections
to achieve the same result (Song & Wang, 2005). The lack of
excitatory interconnections may be due to the deleterious
effect these are predicted to have on the speed of updating
during movement (Page et al. 2015).

The attractor model in its simplest form predicts that
sensory cue integration should be not Bayesian but rather
‘winner take all’, with the strongest cue dominating over
all the others, because the sensory cue with the strongest
inputs to the attractor would continue to preferentially
drive activity in that part of the ring until the activity moves
there (Touretzky, 2005). Thus, when there are conflicting
information sources onto head direction cells (Fig. 3D),
one source should always win out. However, numerous
experiments over many years show that when there is
a conflict between a landmark and the current state of
the network (‘current state’ being the animal’s current
estimate of its directional heading) then the landmark’s
correction of the error is incomplete (see Knight et al.
(2014) for a compilation of these studies). This incomplete
correction is manifested as an under-rotation of the head
direction cell’s firing direction relative to the cue rotation,
and indicates that the strongest cues – the landmarks –
do not always capture the network completely. The degree
to which the system compromises between the two cue
sets – the cues that supported the initial firing direction,
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Figure 2. Re-weighting of internal vs. external directional cue use by hippocampal place cells
Place field rotation was assessed in rats exposed to a combination of landmark cue-card rotation and self-rotation:
rats either saw the cue card move, or did not. A, for those that saw the cue card move, cells stopped rotating
with (‘following’) it (left) and started rotating with the rat’s internal direction sense (right). B, the longer the rats
were deprived of visual cues, the less likely they were to rotate with the rat and the more likely they were to rotate
with the cue card. This suggests that the propensity to follow one or other cue type was a function of its reliability
(longer visual deprivation = less reliability of internal direction sense). Adapted from Jeffery & O’Keefe (1999).
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and the now-rotated landmarks that drive the new
one – can be a function of experience (Knight et al.
2014) suggesting that head direction cells can also perform
weighted cue integration.

How could a ring attractor perform weighted cue
integration, in light of the capture dynamics discussed
above? Given the two basic premises, (i) that weighted cue
integration requires the resulting final activation on the
ring attractor to be located between the two initial external
(cue-driven) inputs, but closer to the stronger one, and
(ii) that activation of a ring attractor will always settle to
a stable state centred at the location of the strongest drive
onto the ring attractor, then logically, there is only one
solution, which is to dynamically rewire the connections so
that the incoming afferents shift their drive onto the ring to
the desired intermediate location. In other words, for cue
integration, inputs should be adjusted so that the strongest
drive onto the attractor is the location corresponding to
the integrated decision. For this shift to occur, there needs
to be plasticity that alters the pattern of incoming synaptic

A

D

B C

Winner-take-all

Cue combination

Cue 2 Cue 1

Figure 3. Hypothetical ring attractor structure for neurons in
the rodent head direction system
The diagram shows neurons arranged according to their preferred
firing direction. A, when the animal faces a landmark, neurons
corresponding to that facing direction become activated (shown in
red). B, when the animal turns to face a new landmark, the
combination of internally generated self-motion information
together with the sight of the new landmark now drives activity in
the part of the network corresponding to the animal’s new facing
direction. C, the physical arrangement of the neurons is thought to
be random in mammals. D, when two cues simultaneously try to
drive activity in different parts of the network (for example, due to
conflict between the rat’s current directional estimate and the
relevant landmark), theory makes one of two predictions. In a
winner-take-all scenario, the strongest cue dominates, and activity
moves to the appropriate part of the network. In cue combination,
both cues influence the final outcome to a degree proportional to
their intensity and/or reliability, with the final result being a
compromise.

weights. This plasticity would have to occur rapidly and
dynamically as the attractor is processing the cues, so
that the strongest cue comes to drive activation at a new
location predicted by a weighted combination of the two
original contributing cues.

In a recent modelling study we have found that Hebbian
long-term potentiation (LTP) based on co-activation
of pre- and postsynaptic neurons, combined with
long-term depression (LTD) due to synaptic weight
vector renormalisation, can in principle accomplish this
re-weighting, in the direction and by the amount required
(Page et al. 2013). To see how this could occur, this
re-weighting process is shown using a linearised attractor
in Fig. 4. The pattern of drive from the two cue sets,
one broad/weak (corresponding to the activation of the
network from self-motion – ‘idiothetic’ – cues, and
corresponding to current head direction estimate) and one
narrow/strong (corresponding to a landmark), is shown
by the two Gaussian curves, whose ‘reach’ far exceeds
the zone of actual cell spiking (shown as red cells in
the figure). Because of an additive co-activation effect
in the overlap zone between the weak and strong cues,
plasticity occurs in the connections onto those cells within
reach of both of the activations. This has the effect of
selectively strengthening those connections only, such that
the distribution of synaptic weights now becomes shifted
in the direction of the weaker cue, although still remaining
close to the strong one. As this process iterates, activation
eventually comes to settle in in the intermediate portion

Sum of activations

Left-shift of 
activation peak

Firing 
threshold

Plasticity

Weak cue Strong cue

Figure 4. Shift of activation in a ring attractor network from a
strong cue towards a weaker one
The attractor is shown linearised for convenience; the Gaussian
curves depict the external drive (from sensory cues; idiothetic for the
weak cue and landmark-based for the strong one) onto the
network. Because of the overlap of this drive, an asymmetry of
activation occurs, with greater activation in the zone between the
two cues. For the stronger cue, which is able to drive neurons to
their activation threshold, this asymmetry results in asymmetric
synaptic strengthening (dashed line), which will result in a shift of
the activation peak in the direction of overlap, with the final result as
shown in Fig. 1.
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of the ring, between the two cues but closer to the stronger
one, exactly as required.

Landmark-learning and dynamic re-weighting

Dynamic re-weighting can in principle explain within-
trial cue integration; it can account for the online
adjustment of the head direction signal when there
is a transient mismatch. However, a second important
function of cue conflict resolution is to produce long-term
learning about relevant and irrelevant landmarks. If a
landmark is unstable, for example, then it may fail
to acquire the ability to influence, or ‘reset’, the head
direction network (Knierim et al. 1997; Jeffery, 1998).
Even if a landmark is spatially stable, its proximal location
relative to an exploring animal may mean that it is located
at many different directions relative to the animal and
hence is not useful as a directional cue (Zugaro et al.
2001). In such cases, it is necessary to disconnect the
irrelevant (i.e. unstable) landmarks from the network so
that they can no longer drive head direction cell activity
(Fig. 5A), and also necessary to strengthen the relevant
ones so that they can reorient the head direction network
in future. How does this occur?

For this, we need to recruit longer term plasticity, that
lasting days or more. Using a Hebb–Stent rule in which
connections become stronger with repeated agreement,

while with repeated conflicts then the connections become
weaker (Fig. 5B), the system could become strongly
attached to stable landmarks (those that constantly agree
with the attractor state) while disconnecting from unstable
ones. In this way the system is able to assimilate long-term
learning about landmark reliability, and in so doing
establish a stable reference frame which can be used in
short-term correction of a drifted ring attractor network.

Future directions

How could cue combination in the head direction system
be investigated further? The first task is to identify where,
in the head direction network, such plasticity (both short-
and long-term) between landmarks and the ring attractor
might occur. Likely candidate areas are the cortical head
direction areas, including retrosplenial cortex (RSC), post-
subiculum (PoS) and medial entorhinal cortex (MEC;
Yoder et al. 2011), because of their proximity to the
incoming sensory signals pertaining to landmarks. RSC
and PoS cortices both have direct connections with
primary visual areas (Vogt & Miller, 1983), and it seems
likely that these two areas perform different functions that
may be related to visual landmark processing, although
what these might be remains a mystery. Interestingly,
evidence from human neuroimaging suggests a function
for RSC in learning about landmark stability, both in

A B
Stable cue Unstable cue

Sensory network

Head direction cell
Attractor network

Connection
weakens

Landmark
has moved

Trial 1

Trial 2

Trial 3

Figure 5. Disconnection (‘re-weighting’) of spatially unstable sensory cues from the head direction cell
attractor network
A, top, landmarks become associated with activation of the HD ring attractor by Hebbian re-weighting, forming
strong connections (red arrows). Bottom, when a landmark moves, the existing connection with the ring attractor
weakens (dotted arrow). B, how unstable landmarks could become disconnected by Hebbian re-weighting. When
a given set of sensory neurons has activity reliably associated with the same set of head direction neurons (left-hand
panels), connections become stronger by Hebbian associativity. If the cues are spatially unstable (right-hand panels)
and are associated with different parts of the attractor network on different trials, the connections will weaken by
an anti-Hebbian mechanism (Hebb–Stent rule) and connections will lose strength.
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processing familiar landmarks (Auger et al. 2012) and in
learning about novel ones (Auger et al. 2015). Humans also
show RSC activation guided by local environmental cues
rather than by global directional ones (Marchette et al.
2014). In further support of a role for RSC in landmark
processing, we have recently found neurons in dysgranular
RSC that respond to environmental directional cues in
preference to the main head direction signal (Jacob et al.
2016), suggesting that this region might indeed be the
interface between landmarks and the head direction ring
attractor. The cortical head direction areas also show
plasticity (Garden et al. 2009; Dumont et al. 2012; Shires
et al. 2013). Little is yet known about the interactions
between these three cortical structures, nor of how such
interactions may adapt with experience, but it seems likely
that this would be the place to start looking for such cue
combination processes.

Having identified the locus of plasticity, the next step
is to determine what happens when a cue is moved. The
first prediction of our model is that blocking synaptic
plasticity should abolish the undershoot of head direction
cells in response to a shifted landmark. Although the
mechanisms of synaptic plasticity in this system have not
yet been identified, a good place to start would be the
NMDA receptor, since these receptors have been widely
implicated in plasticity in a wide range of brain systems
(Sweatt, 2016). Ultimately, however, imaging of dendritic
networks will be necessary to determine how the pattern
of incoming landmark projections alters with learning.

The third task is to find out where in the system
the putative attractor dynamics occur. The attractor
hypothesis, well established though it is, still lacks strong
experimental support (Knierim & Zhang, 2012) but it
remains a compelling idea, and one that has applicability
to other brain systems (Hopfield, 1982; Lansner, 2009).
If so, then perhaps the ideas about cue combination pre-
sented here have general utility: in any attractor system
we can apply the notion of short-term dynamic plasticity
acting to ‘drag’ the network state as it tries to move towards
one cue and away from another, together with long-term
plasticity acting to re-weight the cues, and in doing so
yield a potential mechanism for cue combination in these
other domains too.

Conclusion

This review has examined optimal cue combination, a
widely studied form of perceptual decision-making and
learning, in the context of landmark learning by the
head direction network. Understanding this network is
important in understanding spatial cognition, but more
than that, it is a simple perceptual/cognitive system that
provides a useful model system with which to study the
neural basis of sensory processing. We have reviewed the
proposal that the head direction system might undertake

optimal cue combination by re-weighting the incoming
inputs from landmarks, as a function of experience of their
stability. This re-weighting achieves, in practical terms, the
same reliability-weighted cue combination that has been
seen experimentally in a variety of settings, and modelled
mathematically by maximum likelihood estimation. We
suggest that such synaptic plasticity might subserve cue
combination in other sensory domains too.
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