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ABSTRACT

Passage of the basement membrane (BM), which forms a barrier between the epithelium and the underlying lamina propria,
represents an important step in the early pathogenesis of different alphaherpesviruses. Rho GTPase signaling plays an important
role in transmigration of cells across the BM during physiological and pathological processes. We reported earlier that the US3
protein kinase of the alphaherpesvirus pseudorabies virus (PRV) interferes with Rho GTPase signaling and causes a reorganiza-
tion of the host cell cytoskeleton, which as a consequence, enhances viral cell-to-cell spread in epithelial cell cultures. Here, using
an ex vivo system of porcine nasal respiratory mucosa explants that allows to study PRV invasion through the BM, we found that
a PRV strain that lacks US3 expression (�US3 PRV) showed a reduced spread in mucosal epithelium and was virtually unable to
breach the BM, in contrast to isogenic wild-type (WT) or US3 rescue PRV strains. Interestingly, addition of IPA3, an inhibitor of
p21-activated kinases that blocks the effects of US3 on the cytoskeleton, suppressed the ability of WT PRV to spread across the
BM. In addition, artificial suppression of RhoA signaling using CPC3 (cell-permeable C3 transferase) to mimic the effects of US3
on Rho GTPase signaling, significantly increased passage of �US3 PRV through the BM, whereas it did not significantly affect
BM passage of WT or US3 rescue PRV. In conclusion, these data indicate that US3 plays an important role in PRV mucosal inva-
sion across the BM, which involves its interference with Rho GTPase signaling. This is the first report describing an alphaherpes-
virus protein that drives viral BM passage.

IMPORTANCE

Many viruses, including alphaherpesviruses, primarily replicate in epithelial cells of surface mucosae, such as the respiratory
mucosa. Some of these viruses breach the basement membrane underlying these epithelial cells to reach underlying connective
tissue and blood vessels and invade the host. Hence, epithelial spread and basement membrane passage represent crucial but still
poorly understood early steps in (alphaherpes)virus pathogenesis. Here, using ex vivo porcine respiratory mucosa explants, we
show that the conserved US3 protein of the porcine alphaherpesvirus pseudorabies virus (PRV) is critical for passage of PRV
across the basement membrane and contributes to efficient viral epithelial spread. In addition, we show that US3-mediated viral
epithelial spread and passage across the basement membrane depend at least in part on the ability of this viral protein to modu-
late cellular Rho GTPase signaling. This is the first report that identifies an alphaherpesvirus protein that drives viral basement
membrane passage.

Pseudorabies virus (PRV) is a porcine alphaherpesvirus that is
related to other animal alphaherpesviruses, like bovine her-

pesvirus 1 (BHV1) and equine herpesvirus 1 (EHV1), and the
human alphaherpesviruses herpes simplex virus (HSV) and vari-
cella-zoster virus (VZV). Primary replication of many alphaher-
pesviruses, including PRV, occurs in epithelial cells of the upper
respiratory tract. The basement membrane (BM) forms a physical
barrier between the epithelial cells and the underlying lamina pro-
pria. Several alphaherpesviruses—including PRV, HSV, BHV1,
and EHV1— have been shown to breach the BM, thereby reaching
the connective tissue (1–4). Passage across the BM may lead to
further dissemination of the virus throughout the body via blood
vessels and nerves (5–7). Despite representing a crucial step in
early pathogenesis, very little is known about the underlying
mechanism of herpesvirus passage across the BM. For PRV, tryp-
sin-like serine protease activity has been reported to be involved
(8), but no specific viral component has been identified to con-
tribute to BM passage.

BM breakdown and cellular passage of the BM are a well-stud-
ied subject in the fields of oncology and developmental biology.
Rho GTPase signaling plays an important role in several of these
processes. Rho GTPases can be roughly divided into two counter-

acting branches, with Cdc42/Rac1 signaling on the one hand and
RhoA signaling on the other (9). Proteases involved in BM break-
down have been reported to be upregulated by Cdc42 and Rac1
(and downregulated by RhoA) (10, 11). Furthermore, Rho
GTPase signaling is involved in invadopodium formation, which
can perforate the BM by efficiently coordinating the delivery of
proteases (12). In addition, RhoA has a significant role in main-
taining BM integrity, and suppression of RhoA activity has been
reported to trigger BM breakdown (13). In general, Cdc42/Rac1
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signaling appears to be associated with BM breakdown/passage,
while RhoA signaling is involved in BM stability.

Interestingly, we have found that the PRV protein kinase US3,
which is conserved across alphaherpesviruses, interferes with Rho
GTPase signaling. PRV US3 activates the Cdc42/Rac1 branch of
Rho GTPase signaling by activating the Cdc42/Rac1 effector
group I p21-activated kinases (PAK) (14) and at the same time
suppresses RhoA signaling by triggering RhoA phosphorylation
(15). This modulation of Rho GTPase signaling leads to profound
rearrangements of the actin cytoskeleton in cell culture and is
associated with enhanced viral cell-to-cell spread in epithelial cell
cultures (14–16).

Although �US3 PRV strains show only slightly reduced growth
in cell cultures compared to wild-type (WT) PRV (17, 18), US3 is
an important virulence factor in vivo. Reduced virulence of a US3
null PRV is particularly evident in the natural host, the pig (19–
21). Indeed, intranasal infection of pigs with �US3 PRV resulted
in very mild symptoms, such as a slight fever, barely any respira-
tory signs, and very mild neurological signs compared to severe
signs of Aujeszky’s disease—including such severe neurological
signs as itching, ataxia, and paralysis and a significant mortality
rate—in pigs infected with WT PRV (19, 20).

In the present study, we aimed to investigate whether US3 is
involved in epithelial spread and BM passage of PRV ex vivo in
porcine respiratory mucosa explants and, if so, whether this cor-
relates with the ability of US3 to modulate Rho GTPase signaling.

MATERIALS AND METHODS
Animals. Four-week-old piglets (Belgian Landrace) were transferred
from a high-health-status PRV-free farm in Belgium to the Faculty of
Veterinary Medicine, Ghent University, where they were kept in an exper-
imental unit. Upon arrival, they were treated daily for 3 days intramuscu-
larly with antibiotics (6.25 mg/kg body weight enrofloxacin [Baytril;
Bayer]) and 6.25 mg/kg body weight lincomycin with 12.5 mg/kg body
weight spectinomycin (Linco-Spectin; Zoetis). Piglets were given ad libi-
tum access to food and water. The animals were euthanized at the Faculty
of Veterinary Medicine, Ghent University, according to Federation of
European Laboratory Animal Science Associations (FELASA) guidelines,
as approved by the Ethical Committee of the Faculty of Veterinary Med-
icine of Ghent University.

Isolation and cultivation of porcine nasal mucosa explants. Porcine
nasal mucosa explants were isolated and cultured as described earlier (22).
Briefly, 8-week-old piglets were euthanized by intravenous injection of
12.5 mg/kg body weight pentobarbital (Nembutal; Sanofi) and subse-
quent exsanguination. The nose was removed, and nasal explants were
carefully stripped from the ventral conchea and septum. Pieces of respi-
ratory mucosa were cultured at an air-liquid interface containing serum-
free medium (50% RPMI (Life Technologies)–50% Dulbecco’s modified
Eagle’s medium (DMEM; Life Technologies) supplemented with glu-
tamine (0.3 mg/ml) and antibiotics (100 U/ml penicillin, 0.1 mg/ml strep-
tomycin, and 1 �g/ml gentamicin; Life Technologies). Ciliary beating was
checked on a daily basis.

Infection and inhibitor treatment. Mucosa explants were cultivated
for 16 h prior to inoculation with 600 �l medium containing 107 tissue
culture infective doses (TCID50) of PRV. To investigate the effect of US3
on viral spread in mucosa explants, explants were inoculated with earlier-
described wild-type PRV (NiA3 WT), an isogenic US3-negative mutant
(NiA3 �US3; M118; carrying a premature stop codon at the 5= end of the
open reading frame), or an isogenic US3 rescue strain (NiA3 US3R; M120
[the M118 virus in which the original US3 sequence is restored]) (19, 23,
24). Explants were washed three times with serum-free medium 1 h post-
inoculation and subsequently submerged for 1 h in serum-free medium
with or without inhibitor. After 1 h, explants were placed back at the

air-liquid interface—again with or without inhibitor— and incubated for
another 22 or 46 h, depending on the experiment, as specified in the text.
IPA3, a selective inhibitor for group I p21-activated kinases (PAK) (25),
was used to counteract US3-mediated PAK activation, while the selective
RhoA inhibitor CPC3 (cell-permeable C3 transferase, cytoskeleton) was
used to mimic the RhoA activity-suppressing effect of US3.

Immunofluorescence. Explants were embedded in Methocel (Fluka)
and frozen at �70°C. Twenty-micrometer cryosections were made, fixed
in methanol (�20°C), and stained as previously described (22). Basement
membrane and lamina propria were visualized by primary goat anti-col-
lagen IV antibodies (Southern Biotech), secondary biotinylated rabbit
anti-goat antibodies (Sigma-Aldrich), and tertiary streptavidin-Texas
Red antibodies (Molecular Probes). PRV antigens were visualized using
fluorescein isothiocyanate (FITC)-labeled porcine polyclonal anti-PRV
antibodies (26). Serial images (of 10 individual plaques per condition per
pig) were acquired using an Olympus IX81 fluorescence microscope.
Plaque width and BM passage were subsequently determined using the
software imaging system ImageJ (27). Representative illustrative confocal
micrographs were acquired using a Leica SPE confocal microscope.

Statistical analysis. Data were analyzed by analysis of variance
(ANOVA) at the 5% significance level. Post hoc comparisons between
different conditions were performed by Tukey’s range test. Statistical
analysis was performed on 10 plaques from 3 different pigs (thus, 3 � 10
plaques) per condition, using S-PLUS (TIBCO Software, Inc.).

RESULTS
Role of US3 in epithelial spread. Although US3 has been shown to
contribute to cell-to-cell spread in epithelial cell cultures in vitro,
this had not yet been investigated in epithelial tissue. Therefore, ex
vivo porcine nasal mucosa explants were inoculated with either
WT PRV, �US3 PRV, or US3R PRV. Samples were collected at 24
or 48 h postinfection (hpi) and analyzed by fluorescence and con-
focal laser scanning microscopy. Plaque width at 24 and 48 hpi was
quantified, and mean values and standard deviations (SD) from
three independent experiments are shown in Fig. 1G and 2G (24
and 48 hpi, respectively). At 24 hpi (Fig. 1G, blue bars), lack of US3
expression resulted in a mild but statistically nonsignificant (P �
0.092) reduction in plaque width, compared to WT or US3R PRV.
However, at 48 hpi (Fig. 2G, blue bars), the plaque width of �US3
PRV was significantly (P � 0.001) reduced compared to that of the
WT (41.9% � 3.3% reduction) and US3R (42.7% � 12.3% reduc-
tion) PRV. This confirms earlier in vitro experiments that US3
contributes to, but is not essential for, viral spread in epithelial cell
layers.

The critical role of US3 protein kinase in BM breakdown. In
addition to the analysis of epithelial plaque width, the ability of the
different virus strains to breach the BM was analyzed at 24 and 48
hpi (Fig. 1H and 2H, respectively, and arrows in Fig. 1A to C and
2A to C). As described earlier in ex vivo explants (1) and in line
with in vivo findings in pigs (28), WT PRV and US3R PRV very
efficiently breached the BM already at 24 hpi, with 100% (30 out of
30) of plaques showing BM passage at either time point. Viral
passage across the BM mainly presented as clusters of infected cells
at 24 hpi and as fully infected zones underneath the BM at 48 hpi.
Remarkably, �US3 PRV was very strongly and significantly (P �
0.001) impaired in breaching the BM compared to WT or US3R
PRV, both at 24 hpi, when only 2 out of 30 analyzed plaques
(93.3% � 4.7% reduction) were able to breach the BM, and at 48
hpi, when only 9 out of 30 analyzed plaques transgressed the BM
(78.6% � 6.5% reduction) (Fig. 1H and 2H, blue bars). These
results show that US3 plays a critical role in efficient invasion of
PRV across the BM.
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US3-mediated viral passage across the BM depends on Rho
GTPase signaling. US3 has been reported to activate group I PAK
signaling (14) and to inhibit RhoA signaling (15). To investigate
whether these signaling pathways contribute to the observed ef-
fects of US3 in viral spread and invasion in mucosa explants, we
used drugs that specifically target group I PAK and RhoA signal-
ing. IPA3 is a specific inhibitor of group I PAK (25) and thereby
counteracts US3-mediated activation of group I PAK (14). CPC3
is a cell-permeable derivative of Clostridium botulinum coenzyme
3 that inhibits RhoA (29), thereby mimicking the ability of US3 to
suppress RhoA signaling (15). CPC3 could be used in 24-h infec-
tion assays (not in 48-h infection assays since it caused mild tox-
icity at that time point), whereas IPA3 did not cause any toxicity
and could be used in 48-h assays. Data obtained with CPC3 are
shown in Fig. 1 (Fig. 1G and H, red bars, and Fig. 1D to F). Data
obtained with IPA3 are shown in Fig. 2 (Fig. 2G and H, red bars,
and Fig. 2D to F). Mimicking US3-mediated suppression of RhoA
activity using CPC3 led to a marked and significant increase (P �
0.003) in passage of �US3 virus through the BM at 24 hpi (11 out
of 30 plaques that breached the BM compared to 2 out of 30
plaques without treatment) (Fig. 1H, compare blue with red bars
and arrows in Fig. 1D to F), although it did not fully restore BM
passage to WT PRV levels. Representative images are shown in Fig.
1D to F.

In line with this, inhibition of US3-mediated modulation of
Rho GTPase signaling using the group I PAK inhibitor IPA3
strongly reduced the passage of the WT and US3R across the
BM (14 out of 30 plaques that breached the BM, compared to
30 out of 30 plaques without treatment; P � 0.001), whereas it
did not affect the (limited) BM passage of �US3 PRV (Fig. 2H).
Also, IPA3 substantially reduced the epithelial plaque width of
WT and US3R PRV without affecting the plaque width of �US3
PRV (Fig. 2G).

In conclusion, US3-mediated viral passage of the BM and its
contribution to epithelial cell-to-cell spread ex vivo at least in
part depend on the ability of US3 to modulate Rho GTPase
signaling.

DISCUSSION

In the present study, we found that the US3 protein kinase of PRV
plays a crucial role in viral passage across the BM during infection
of porcine respiratory mucosa explants and also contributes to
epithelial spread in these explants. This is the first description of
an alphaherpesvirus protein that drives viral passage across the
BM. In addition, we found that US3-mediated spread and inva-
sion in mucosa explants at least in part depend on its ability to
modulate Rho GTPase signaling.

These ex vivo experiments support a role for US3 in epithe-

FIG 1 �US3 PRV is impaired in viral passage across the basement membrane (BM) at 24 hpi, and inhibition of RhoA signaling increases BM passage of �US3
PRV. Porcine respiratory mucosa explants were inoculated with WT, �US3, or US3R PRV in the absence or presence of the RhoA inhibitor CPC3. At 24 hpi,
plaque width and viral passage across the BM were analyzed by fluorescence microscopy. (A to F) Representative confocal micrographs showing viral antigens
(green) and collagen IV (red) for the three different virus strains in the absence (A to C) or presence (D to F) of CPC3. The dashed line indicates localization of
the BM, and arrows indicate viral passage across the BM. Scale bar, 100 �m. (G and H) Quantification of plaque width (G) and the percentage of plaques with
viral passage across the BM (H) for the three virus strains in the absence (blue bars) or presence (red bars) of CPC3. Data represent means 	 SD from triplicate
independent biological replicates. Different letters indicate statistically significant differences between conditions.
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lial spread, in line with the established role of US3 in viral
spread in epithelial cell culture (16). In cell cultures, US3-me-
diated spread was associated with profound cytoskeletal rear-
rangements, consisting of actin stress fiber disassembly and the
formation of long cellular projections. Resolution of confocal
analysis of the explants did not allow us to determine whether
cell projections are formed under these circumstances. How-
ever, in line with the in vitro results (14), US3-mediated spread
in respiratory mucosa epithelial cells could be suppressed using
the group I PAK inhibitor IPA3, indicating a similar underlying
mechanism.

Although epithelial spread of �US3 PRV and IPA3-treated
WT PRV was reduced, it was not inhibited. This indicates that
epithelial cell-to-cell spread of PRV likely involves additional
mechanisms, which may include polarized viral transport via
tight junctions as has been described for HSV (30). In addition,
cell-free spread of PRV via exocytosis of the virus followed by
entry in noninfected neighboring cells may also contribute to
viral spread, particularly since ex vivo explants may lack com-
ponents of the immune system that may limit cell-free virus
spread.

More striking than the contribution of US3 to epithelial spread

was the observed critical role for US3 in viral crossing of the BM.
Indeed, at 24 hpi, �US3 PRV showed a virtually abolished BM
passage. Even at 48 hpi, �US3 PRV was still unable to efficiently
initiate BM passage. Like the US3-mediated contribution to epi-
thelial spread, the ability of US3 to drive viral passage across the
BM depended at least in part on its ability to modulate Rho
GTPase signaling. We reported earlier that US3 triggers the
Cdc42/Rac1 branch of Rho GTPase signaling by activation of
group I PAK and at the same time suppresses RhoA signaling in
epithelial cells (14, 15). Suppressing US3-mediated activation of
PAK reduced the invasive capacity of WT PRV, whereas mimick-
ing US3-mediated inhibition of RhoA increased BM passage of
�US3 PRV. Nevertheless, inhibition of PAK did not completely
reduce WT PRV passage across the BM to the level of �US3 PRV,
and inhibition of RhoA did not restore BM passage of �US3 PRV
to the level of WT PRV. These may have different causes. One
explanation may be that the inhibitors used do not completely
inhibit/mimic the effects of US3. Indeed, US3 activates PAK and at
the same time suppresses RhoA activity (15). IPA3 only blocks the
ability of US3 to activate PAK, and CPC3 only mimics the ability
of US3 to suppress RhoA activity. Another explanation may be the
involvement of other US3-affected cellular signaling pathways.

FIG 2 �US3 PRV shows reduced epithelial spread and viral passage across the basement membrane (BM) at 48 hpi, and inhibition of PAK activity reduces
epithelial spread and BM passage of WT PRV. Porcine respiratory mucosa explants were inoculated with WT, �US3, or US3R PRV in the absence or presence of
the PAK inhibitor IPA3. At 48 hpi, plaque width and viral passage across the BM were analyzed by fluorescence microscopy. (A to F) Representative confocal
micrographs showing viral antigens (green) and collagen IV (red) for the three different virus strains in the absence (A to C) or presence (D to F) of IPA3.
The dashed line indicates localization of the BM, and arrows indicate viral passage across the BM. Scale bar, 250 �m. (G and H) Quantification of plaque
width (G) and the percentage of plaques with viral passage across the BM (H) for the three virus strains in the absence (blue bars) or presence (red bars)
of IPA3. Data represent means 	 SD from triplicate independent biological replicates. Different letters indicate statistically significant differences
between conditions.
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For example, US3 of HSV-1 has been reported to display Akt-
like activity (31). Since Akt has been reported to contribute to
BM passage— e.g., of mesenchymal stem cells (32)— it will be
interesting in future research to investigate whether PRV US3
also displays Akt-like activity and, if so, whether this contrib-
utes to US3-mediated viral BM passage. Furthermore, since it
has been shown before that different wild-type PRV strains
may display somewhat different efficiencies in passage across
the BM (1), it might be interesting to analyze potential differ-
ences in the sequence, expression, and functionality of US3 of
these PRV strains.

How does US3 interference with Rho GTPase signaling con-
tribute to BM passage? Several hypotheses can be put forward,
based on the role of Rho GTPase signaling in breaching the BM
during metastasis, embryogenesis, and angiogenesis. First, during
embryogenesis, disturbed cytoskeletal integrity in epithelial cells
by suppressed RhoA activity has been reported to negatively affect
structural integrity of the BM (9, 13). This may be in line with our
previous findings that PRV US3 suppresses RhoA activity and
substantially disturbs normal cytoskeletal structure in epithelial
cells (15, 16). Second, formation of cellular protrusions, particu-
larly invadopodia, may penetrate the BM and may play a vital role
in metastasis of cancer cells (12). Interestingly, the US3-mediated
cell projections described in cell culture show substantial homol-
ogy with invadopodia: both types of cell projections contain both
actin and microtubules, both depend on modulation of PAK and
RhoA activity for formation, and formation of both also depends
on the actin-regulating molecule cofilin (12, 14–16, 33–35). Nev-
ertheless, our confocal analyses and earlier electron microscopy
studies (36) did not indicate evidence for invadopodium forma-
tion during PRV passage across the BM.

Earlier research showed that PRV makes use of a trypsin-like
serine protease to penetrate the BM (8). Trypsin-like serine
proteases may be upregulated by activation of Cdc42/Rac sig-
naling (37) and inhibition of RhoA (38). Since US3 similarly
affects these signaling pathways, it will be interesting to inves-
tigate which proteases are involved in BM passage of PRV and
whether US3 expression modulates expression or activity of
these proteases.

In conclusion, the present article shows that US3 is critically
involved in passage of PRV across the BM and contributes to ep-
ithelial spread in porcine respiratory mucosal explants. These
US3-mediated effects at least in part depend on the ability of US3
to interfere with Rho GTPase signaling. The present findings shed
new light on the role of US3 as an alphaherpesvirus virulence
factor and may contribute to the rational design of attenuated
alphaherpesvirus vaccines that elicit mucosal immune responses
but are impaired in host invasion.
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