
Subtle In-Scanner Motion Biases Automated
Measurement of Brain Anatomy From

In Vivo MRI

Aaron Alexander-Bloch,1,2* Liv Clasen,1 Michael Stockman,1 Lisa Ronan,3

Francois Lalonde,1 Jay Giedd,4 and Armin Raznahan1

1Developmental Neurogenomics Unit, Child Psychiatry Branch, National Institute of Mental
Health, Bethesda, Maryland

2Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
3Brain Mapping Unit, University of Cambridge, Cambridge, United Kingdom

4Department of Psychiatry, UCSD, San Diego, California

r r

Abstract: While the potential for small amounts of motion in functional magnetic resonance imaging
(fMRI) scans to bias the results of functional neuroimaging studies is well appreciated, the impact of
in-scanner motion on morphological analysis of structural MRI is relatively under-studied. Even
among “good quality” structural scans, there may be systematic effects of motion on measures of brain
morphometry. In the present study, the subjects’ tendency to move during fMRI scans, acquired in the
same scanning sessions as their structural scans, yielded a reliable, continuous estimate of in-scanner
motion. Using this approach within a sample of 127 children, adolescents, and young adults, signifi-
cant relationships were found between this measure and estimates of cortical gray matter volume and
mean curvature, as well as trend-level relationships with cortical thickness. Specifically, cortical vol-
ume and thickness decreased with greater motion, and mean curvature increased. These effects of
subtle motion were anatomically heterogeneous, were present across different automated imaging
pipelines, showed convergent validity with effects of frank motion assessed in a separate sample of
274 scans, and could be demonstrated in both pediatric and adult populations. Thus, using different
motion assays in two large non-overlapping sets of structural MRI scans, convergent evidence showed
that in-scanner motion—even at levels which do not manifest in visible motion artifact—can lead to
systematic and regionally specific biases in anatomical estimation. These findings have special rele-
vance to structural neuroimaging in developmental and clinical datasets, and inform ongoing efforts to
optimize neuroanatomical analysis of existing and future structural MRI datasets in non-sedated
humans. Hum Brain Mapp 37:2385–2397, 2016. VC 2016 Wiley Periodicals, Inc.

Key words: functional neuroimaging; magnetic resonance imaging; motion; bias; cortical thickness;
cortical surface area; cortical curvature

r r

Additional Supporting Information may be found in the online
version of this article.

*Correspondence to: Armin Raznahan, M.D. Ph.D.; Developmental
Neurogenomics Unit, Child Psychiatry Branch, National Institute
of Mental Health, 10 Center Drive, Bldg 10, Room 4D18, Bethesda,
MD 20892-1600. E-mail: raznahana@mail.nih.gov

Received for publication 13 April 2015; Revised 29 February 2016;
Accepted 1 March 2016.

DOI: 10.1002/hbm.23180
Published online 23 March 2016 in Wiley Online Library (wileyon-
linelibrary.com).

r Human Brain Mapping 37:2385–2397 (2016) r

VC 2016 Wiley Periodicals, Inc.



INTRODUCTION

Substantial subject movement during brain magnetic
resonance imaging (MRI) acquisition decreases scan qual-
ity, leading to blurring of gray matter/white matter boun-
daries and difficulty in identifying crisp borders of brain
structures of interest. This issue is especially relevant for
pediatric neuroimaging studies given the inverse relation-
ship between in-scanner motion and age [Satterthwaite
et al., 2012]. Conventionally, scans demonstrating obvious
motion artifacts are not included in quantitative morphol-
ogy studies. However, scans that show a small amount of
motion artifact but can still be processed by automated
image analysis software are often included. If this “micro-
motion” is different between compared groups of interest
(e.g., young vs. old, male vs. female, and patient vs. con-
trol) it may confound neuroimaging findings attributed to
age, sex, or clinical status. Thus, it is important to ascertain
the effects of micro-motion on commonly quantified imag-
ing metrics such as gray and white matter volumes, corti-
cal thickness, and cortical surface area. Particularly
relevant is discerning the direction (i.e., increased or
decreased) and regional specificity of micro-motion
induced change.

The issue of subject motion has received recent focus for
functional neuroimaging methods more extensively than
for structural MRI (sMRI). In contrast to sMRI, the focus in
functional MRI (fMRI) is mostly on motion that occurs in
between acquired image volumes [Friston et al., 1996; Haj-
nal et al., 1994]. Subjects with high amounts of motion are
generally excluded from statistical analyses. In addition,
almost all fMRI analyses include a realignment step to cor-
rect for small movements taking place in the 1–3 seconds
between acquisitions [Cox and Jesmanowicz, 1999; Freire
et al., 2002; Friston et al., 1995; Jenkinson and Smith, 2001;
Oakes et al., 2005], and the parameters from this realign-
ment step are also commonly included as nuisance regres-
sors in the experimental model [Johnstone et al., 2006]. In
particular for resting state fMRI studies of functional con-
nectivity, differential motion can result in spatially hetero-
geneous differences between groups of subjects that
persist even after the above motion correction procedures
[Power et al., 2012; Satterthwaite et al., 2012; Van Dijk
et al., 2012], although these biases may be reduced or even
eliminated by the use of innovative MR sequences [Kundu
et al., 2013, 2014] or post-processing pipelines [Jo et al.,
2013; Patel et al., 2014].

Within-volume motion is a particular problem for high-
resolution structural scans, which may require minutes
rather than seconds to collect whole brain images. The
physics of distortions caused by motion within the acquisi-
tion of a single image have been well documented [Morelli
et al., 2011; Wood and Henkelman, 1985]. Motion can
result in blurring and/or ghosting artifacts, a series of dis-
placed image repetitions usually in the phase-encoded
direction, depending on the location of the motion in K-
space. These types of artifacts have been demonstrated to

impair the diagnostic quality of clinically acquired MRI
[Dantendorfer et al., 1997; Morelli et al., 2011; Wood and
Henkelman, 1985]. In addition, simulated motion has been
predicted to affect automated measures of brain atrophy
[Camara-Rey et al., 2006; Preboske et al., 2006]. Previously,
we showed that estimates of gray matter volume are
reduced in categorically low quality scans [Blumenthal
et al., 2002]. This motion-related bias in gray matter esti-
mation was recently replicated by a study using surface-
based morphometry to analyze cortical volume (CV) in
scans from participants performing an in-scanner motion
task [Reuter et al., 2015].

The present study seeks to refine our understanding of
motion-related biases in morphometric analyses of neuroi-
maging data by extending previous work in several ways.
First, to model the effects of naturalistic rather than con-
sciously produced motion, we use motion estimated from
fMRI scans acquired serially with structural scans to esti-
mate subjects’ extent of motion during scanning sessions.
This methodology could readily be used as a post hoc
quality control measure in many previously published and
ongoing studies. Second, to better specify the mechanism
for motion effects on cortical volume estimation, we quan-
tified relationships between motion and distinct sub-
components of cortical volume—cortical thickness and sur-
face area—in addition to cortical curvature [Desikan et al.,
2006; Fischl et al., 2004b], which may reflect differential
cortical expansion during development [Ronan and
Fletcher, 2014]. Third, we assess the stability of motion-
related biases in anatomical estimation across two distinct
image-processing platforms and developmental windows.
Fourth, we assess the convergent validity of two different
assays of motion effect, (i) variation in the fMRI proxy
described above amongst scans without visible motion
artifact, and (ii) an independent contrast between two
groups with qualitatively different motion ratings based
on visual inspection of raw scans. Fifth, given the observa-
tion that motion induces regionally heterogeneous biases
in anatomical estimation, we provide a cortex-wide map
of the relationship between local brain displacement and
overall motion. Finally, we harness the wide age-range of
our sample to place observed motion effects on anatomy
in the context of age-related anatomical variation. This
comparison is critical given the special importance of
motion effects for developmental neuroimaging studies
seeking to map maturational changes in brain anatomy.

METHODS

Participants

All scans included in this study were gathered as part
of the National Institute of Mental Health Intramural
Research Program Study of Pediatric Brain Development
{Giedd:2015kp}. Analyses relating interindividual differen-
ces in micro-motion to anatomy conducted in a sample of
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127 unrelated typically developing individuals with raw
scans that did not have any visible signs of motion artifact
(age 6–33 years, 64 female subjects). A subanalysis of these
data was also performed excluding pediatric subjects
(n 5 51, age 18–33, 23 female subjects). In an independent
analysis, anatomical comparisons of groups with categori-
cally distinct quality ratings (based on visual inspection of
raw scans) were conducted in a sample of 274 scans of
unrelated individuals aged 5–34 years (Table I).

Image Acquisition

All MRI scans were acquired using a 1.5 T General Elec-
tric Signa MRI at the NIH Clinical Center (Bethesda, MD).
Structural scanning consisted of a T1-weighted spoiled
gradient echo sequence: echo time (TE) 5 ms; relaxation
time (TR) 24 ms; flip angle 458; matrix 256 3 256 3 124;
FOV 24 cm. During the same scanning session, two 3-
minute echoplanar imaging (EPI) scans were acquired
with participants lying quietly with eyes closed: TR 2.3 s;
TE 40 ms; voxel 3.75 3 3.75 3 5 mm; matrix size 64 3 64;
FOV 240 3 240 mm; 27 interleaved slices. The order of
acquisition was the same for all participants in the study,
with the acquisition of the structural scan always preced-
ing the acquisition of the EPI scans. The EPI scans took
place approximately 5–10 minutes following the structural
scans. In addition to being counseled extensively on the
importance of remaining still in the scanner, all of the sub-
jects were partially restrained with the use of foam pads
to the left and to the right of the head.

Morphological Analysis

Each scan was processed using two well validated,
commonly used automated routines for MRI analysis:
the Montreal Neurological Institute’s CIVET pipeline
(version 1.1.10) and FreeSurfer (version 5.1). For the
CIVET analysis, images were registered into a standar-
dized stereotaxic space by means of a linear transfor-
mation and corrected for intensity non-uniformities
[Collins et al., 1994; Sled et al., 1998]. A neural net clas-
sifier segmented the spatially transformed and cor-
rected volumes into white matter, GM, cerebrospinal
fluid, and background [Tohka et al., 2004]. Inner and

outer cortical surfaces were modeled using triangular
meshes generated by a constrained Laplacian algo-
rithm (CLASP) [Kim et al., 2005]. In order to estimate
cortical structure in native space, we applied an
inverse transformation matrix to the cortical surfaces
[Im et al., 2006]. Automated parcellation of the cortical
surface was performed to extract lobar estimates [Im
et al., 2008] of gray matter volume, cortical thickness
and surface area.

In the FreeSurfer analysis, raw images were corrected for
intensity nonuniformities [Sled et al., 1998] and skull-
stripped to remove non-brain tissue using a watershed/sur-
face deformation procedure [S�egonne et al., 2004].White
matter and subcortical gray matter were segmented [Fischl
et al., 2002, 2004a] and the gray/white and gray/CSF surfa-
ces were modeled using a procedure that includes auto-
mated topology correction [Fischl et al., 2001; S�egonne et al.,
2007] and surface deformation following intensity gradients
to define sharp boundaries between tissue classes [Dale
et al., 1999; Fischl et al., 1999]. Automated parcellation of
the cortical surface into 33 gyral regions per hemisphere
were combined to yield lobar estimates of gray matter
volume, mean cortical thickness, surface area, and mean/
Gaussian curvature [Desikan et al., 2006; Fischl et al., 2004b]
as detailed in Supporting Information Table 2.

None of our image processing steps involved manual
intervention. This decision was made to ensure technical
reproducibility of our study as criteria for training, imple-
mentation and monitoring of manual interventions can
vary between and within laboratories.

Quantifying Subject Motion

The EPI scans were used to classify subjects according
to how much they tended to move during the scanning
session. AFNI [Cox, 1996] and FSL [Jenkinson and Smith,
2001; Jenkinson et al., 2002] were used for image process-
ing. The first four EPI volumes were discarded, and the
scans were skull-stripped and motion corrected with a
series of rigid body transforms, using the mean across the
time series as the reference volume. As a summary mea-
sure of motion we used the “framewise displacement”
(FD) based on the six parameters from this motion correc-
tion procedure [Power et al., 2012]:

TABLE I. Demographic information

High quality
sMRI with fMRI in

same scanning session

Categorically lower quality sMRI scans, and matching high quality
sample

Tier 1 Tier 2 P value

N 127 136 136
Age (years) Mean 5 16.8

SD 5 6.9
Range 5 6–34

Mean 5 10.7
sd 5 5.6

range 5 5–30

Mean 5 10.7
sd 5 5.6

range 5 5–30

�1

Gender 63 Female 64 female 64 female �1
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Figure 1.

Example of 1st tier scans and 2nd tier scans (less micro-motion, more micro-motion and frank

motion) along with their cortical surface models as generated by CIVET. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 2.

This figure illustrates the consistency of motion across fMRI

scans within the same scanning session, and the association

of motion with age and gender. Motion was estimated as the

average frame-to-frame displacement, calculated using a

series of 6-degrees-of-freedom linear transformations. Fol-

lowing (Power et al., 2012), we used the formula,

FDi 5 |Ddix| 1 |Ddiy| 1 |Ddiz| 1 |Dai| 1 |Dbi| 1 |Dgi|, where

Ddix 5 d(i 2 1)x 2 dix. Rotational displacements were converted

from degrees to millimeters by calculating displacement on the

surface of a sphere of radius 50 mm. (A) The average frame-to-

frame displacement for two fMRI scans within the same scanning

session. (B, C) The frame-to-frame displacement of the two scans

were averaged to show the relationship with age and gender.

N 5 436 fMRI scans, 218 scanning sessions, 200 individual subjects

(107 female), 127 families; mean age5 15.9 years, sd 5 6.2,

range 5 5–34.
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FDi 5 jDdixj1 jDdiyj1jDdizj1jDaij1jDbij1 jDgij

where Ddix 5 d(i 2 1)x 2 dix. Rotational displacements were
converted from degrees to millimeters by calculating dis-
placement on the surface of a sphere of radius 50 mm.

This procedure yielded a single continuous estimate of
“micro-motion” for each participant in Tier 1.

We also performed a voxel-specific estimate of displace-
ment. The series of affine transformations from the motion
correction was applied to each voxel separately, and the
average displacement was calculated as the average frame-
to-frame Euclidean distance travelled by each voxel. These
values were transformed into MNI stereotactic standard
space via a two-step process: from each functional scan to
that subject’s structural scan using 6 degrees of freedom
transformation, and from each structural scan to MNI space
using 12 degrees of freedom transformation [Jenkinson and

Smith, 2001; Jenkinson et al., 2002]. These subject maps
were averaged to yield a population map, which was fil-
tered to include only voxels within gray matter regions in
FSL’s Harvard–Oxford cortical probabilistic atlas, using a
25% threshold. Finally, for visualization the voxel values
were projected on the CIVET triangular mesh using
nearest-neighbor interpolation.

Statistical Analysis

All structural scans in the NIH study of normal devel-
opment are rated on an ordinal 1–4 scale by an expert
rater [Blumenthal et al., 2002]. Our analysis of the effect of
small amounts of in-scanner motion consisted only of sub-
jects with 1st tier structural scans who also received fMRI
during the same scanning session (for demographic infor-
mation see Table I). For each brain region and

TABLE II. Effect of micro-motion on estimates of cortical gray matter volume, surface area, cortical thickness and

surface area (CIVET pipeline and FreeSurfer pipeline)

Anatomical
metric

CIVET processing pipeline FreeSurfer processing pipeline

Change per
0.1 mm framewise

motion (95% CI)
t

statistic
P

(FDR-corrected)

Change per
0.1 mm framewise

motion (95% CI)
t

statistic
P

(FDR-corrected)

Total volumes

Whole brain 241.4 cm3 (283.4, 0.5) 21.94 0.055 240.7 cm3 (278.7, 227.2) 22.1 0.038
Gray matter 234.6 cm3 (260.5, 28.8) 22.63 0.0096 224.0 cm3 (244.8, 23.3) 22.27 0.024
White matter 27.6 cm3 (27.6, 12.3) 20.75 0.45 215.2 cm3 (234.4, 4.0) 21.54 0.12
CSF 0.8 cm3 (28.0, 9.5) 0.17 0.86 21.5 cm3 (23.9, 1.0) 21.15 0.25
Lobar volume

Frontal 211.1 cm3 (219.6, 22.7) 22.60 0.032 210.1 cm3 (217.7, 22.6) 22.64 0.038
Parietal 22.9 cm3 (27.3, 1.6) 21.29 0.201 25.5 cm3 (210.8, 20.1) 22.02 0.06
Temporal 27.9 cm3 (214.4, 21.4) 22.39 0.032 25.0 cm3 (29.4, 20.7) 22.29 0.048
Occipital 23.7cm3 (26.9, 20.5) 22.29 0.032 21.6 cm3 (24.0, 0.7) 21.35 0.18
Lobar surface area

Frontal 221.7 cm2 (240.1, 23.3) 22.31 0.091 226.8 cm2 (250.2, 23.5) 22.25 0.09
Parietal 25.5 cm2 (217.4, 6.4) 20.90 0.370 217.5 cm2 (235.0,0.1) 21.95 0.09
Temporal 28.6 cm2 (219.2, 2.0) 21.58 0.231 211.3 cm2 (223.2, 0.6) 21.87 0.09
Occipital 25.8 cm2 (214.7, 3.0) 21.29 0.267 24.7 cm2 (213.6, 4.2) 21.04 0.30
Lobar cortical thickness

Frontal 20.069 mm (20.13, 20.005) 22.10 0.053 20.017 mm (20.0580, 0.0241) 20.81 0.84
Parietal 20.031 mm (20.087, 0.026) 21.07 0.288 0.002 mm (20.0418, 0.0448) 0.07 0.94
Temporal 20.070 mm (20.13, 20.011) 22.31 0.053 20.038 mm (20.0810, 0.0050) 21.73 0.34
Occipital 20.065 mm (20.13, 20.004) 22.08 0.053 20.009 mm (20.0456, 0.0282) 20.46 0.86
Lobar mean curvature

Frontal 0.0026 mm21 (0.0007, 0.0046) 2.68 0.034
Parietal 0.0012 mm21 (20.0012, 0.0036) 1.02 0.62
Temporal 0.0006 mm21 (20.0022, 0.0033) 0.39 0.70
Occipital 0.0010 mm21 (20.0025, 0.0046) 0.57 0.70
Lobar Gaussian curvature

Frontal 20.0088 mm22 (20.0316, 0.014) 20.76 0.60
Parietal 0.0019 mm22 (20.0366, 0.0405) 0.10 0.92
Temporal 0.0406 mm22 (20.0153, 0.0964) 1.42 0.60
Occipital 20.0108 mm22 (20.0334, 0.0119) 20.93 0.60

Statistical association with micro-motion for CIVET and FreeSurfer output. Linear models were fit in R with age and gender as covari-
ates. N 5 127 subjects (63 females); mean age 5 16.8 (sd 5 6.9, range 5 6–34); average framewise motion 5 0.08 mm (sd 5 0.04,
range 5 0.03–0.27); one scan per family.
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morphological property, a linear model was fit using the
continuous estimates of micro-motion derived from the
fMRI scans as the independent variable and age and gen-
der as covariates [R Core Team, 2012]. In other words, we
tested the hypothesis that inter-subject estimates of
regional morphological properties, for example, frontal
lobe gray matter volume, are affected by intersubject vari-
ability in in-scanner motion.

In an additional analysis, we explored the effect of
grossly observable motion artifact (henceforth “frank
motion”), using a sample of 136 subjects with categorically
lower quality (2nd tier) structural scans (see Table I for
demographic information). These 2nd tier scans were age-
and gender-matched to another sample of subjects with
1st tier scans, and paired t-tests were used to compare the
output of the morphological analysis. Statistical tests were
corrected for multiple comparisons using FDR-adjusted P
values [Benjamini et al., 2006].

Figure 1 provides examples of 1st (both low and high
average motion estimates) and 2nd tier scans, along with
examples of the cortical surfaces generated for these scans.

This study used the high-performance computational
capabilities of the NIH Biowulf Linux cluster (http://
biowulf.nih.gov).

RESULTS

Micro-Motion Within Tier 1 Scans

During the same scanning session, motion during one
resting-state EPI scan was highly correlated with motion
in a second EPI scan (Pearson’s r 5 0.66, P< 1.0e-15), sug-
gesting that this is a reliable estimate of motion during the
scanning session (Fig. 2A). The inverse relationship
between age and fMRI motion did not reach statistical signif-
icance in this data (r 5 20.06, P 5 0.5), although larger

TABLE III. Effect of micro-motion on estimates of cortical gray matter volume, surface area, cortical thickness and

surface curvature (CIVET pipeline and FreeSurfer pipeline) for adult sample only

Anatomical
metric

CIVET processing pipeline FreeSurfer processing pipeline

Change per
0.1 mm framewise

motion (95% CI)
t

statistic
P

(FDR-corrected)

Change per
0.1 mm framewise

motion (95% CI)
t

statistic

P

(FDR-corrected)

Total brain volume

Gray matter 247.1 cm3 (292.7, 21.5) 22.02 0.049 242.8 cm3 (276.6, 29.0) 22.48 0.016
White matter 222.3 cm3 (254.7, 10.1) 21.35 0.184 233.5 cm3 (267.3, 0.3) 21.95 0.057
CSF 26.8 cm3 (223.2, 9.6) 20.82 0.429 22.08 cm3 (26.8, 2.7) 20.86 0.39
Lobar volume

Frontal 217.0 cm3 (231.0, 23.1) 22.39 0.027 213.3 cm3 (224.4, 22.3) 22.38 0.042
Parietal 23.0 cm3 (210.7, 4.8) 20.75 0.458 23.9 cm3 (212.7, 4.9) 20.86 0.10
Temporal 214.5 cm3 (226.0, 23099) 22.49 0.027 28.4 cm3 (214.9, 21.9) 22.53 0.042
Occipital 27.0 cm3 (212.4, 21.6) 22.55 0.027 23.6 cm3 (27.2, 0.1) 21.92 0.08
Lobar surface area

Frontal 237.2 cm2 (268.1, 26.4) 22.36 0.056 242.4 cm2 (279.3, 25.5) 22.26 0.11
Parietal 25.6 cm2 (228.1, 16.8) 20.49 0.626 215.8 cm2 (245.3, 13.8) 21.05 0.30
Temporal 221.1 cm2 (239.3, 22.8) 22.26 0.056 216.9 cm2 (235.5, 21.7) 21.78 0.16
Occipital 29.7 cm2 (222.5, 3.1) 21.49 0.190 29.4 cm2 (223.4, 4.6) 21.32 0.26
Lobar cortical thickness

Frontal 20.077 mm (2.187, 0.033) 21.37 0.237 20.011 mm (20.081, 0.059) 20.30 0.93
Parietal 20.0568 mm (20.154, 0.041) 21.14 0.258 0.003 mm (20.0071, 0.079) 0.09 0.93
Temporal 20.111 mm (20.215, 20.007) 22.09 0.082 20.084 mm (20.154, 0.013) 22.33 0.09
Occipital 20.113 mm (20.24, 20.0257) 22.43 0.074 20.027 mm (20.081, 0.027) 20.99 0.66
Lobar mean curvature

Frontal 0.0041 mm21 (0.0010, 0.0072) 2.61 0.02
Parietal 0.0037 mm21 (0.0007, 0.0066) 2.42 0.03
Temporal 0.0049 mm21 (0.0017, 0.0080) 3.06 0.01
Occipital 0.0040 mm21 (20.0007, 0.0089) 1.64 0.11
Lobar Gaussian curvature

Frontal 0.097 mm22 (20.067, 0.26) 1.16 0.33
Parietal 0.014 mm22 (20.005, 0.033) 1.47 0.29
Temporal 0.019 mm22 (0.002, 0.036) 2.16 0.14
Occipital 20.011 mm22 (20.043, 0.022) 20.64 0.52

Statistical association with micro-motion for CIVET and FreeSurfer output, for subjects 18 years or over only. Linear models were fit in
R with age and gender as covariates. N 5 58 subjects (27 females); mean age 5 23.4 (sd 5 3.8, range 5 18–34); average framewise
motion 5 0.08 mm (sd 5 0.04, range 5 0.02–0.27); one scan per family
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studies have previously demonstrated that such a relation-
ship does exist on average [Satterthwaite et al., 2012]. There
was a positive effect for gender such that male subjects on
average moved more than female subjects (male mean
motion 5 0.09 mm, sd 5 0.05, n 5 64; female mean
motion 5 0.07 mm, sd 5 0.04, n 5 63; t 5 22.27, P 5 0.02).
There was no evidence for an interaction between age and
gender.

Micro-Motion and Lobar Anatomy

There were significant relationships between micro-
motion and lobar estimates of gray matter volume for both
CIVET and FreeSurfer within the frontal and temporal

lobe, and for CIVET in the occipital lobe (P< 0.05; see
Table II). For both pipelines, micro-motion was inversely
correlated with volume, such that increased motion
resulted in evidently smaller cortical regions. The inverse
relationship between subject motion and parietal lobe vol-
ume did not reach statistical significance in either pipeline.

For CIVET, there was some evidence that the inverse
relationship between micro-motion and gray matter vol-
ume was due to an association with estimates of cortical
thickness but not estimates of cortical surface area. In par-
ticular, there was a trend toward an inverse relationship
between micro-motion and estimates of cortical thickness
in the frontal lobe, occipital lobe and temporal lobe (FDR-
corrected P 5 0.053; see Table II), the same regions with
significant relationships with motion and volume.

Micro-motion also showed a negative relationship with
estimates of lobar cortical thickness in FreeSurfer, but
these associations did not approach statistical significance.
Analysis of lobar curvature estimates in FreeSurfer
revealed a statistically significant positive association
between micro-motion and mean curvature of the frontal
lobe (FDR-corrected P 5 0.03; see Table II). In contrast,
relationships between micro-motion and Gaussian curva-
ture in FreeSurfer were not significant.

We next reanalyzed the lobar measures including only
the 58 adult subjects greater than 18 years old. This was to
assess whether our initial findings could have been driven
by children, who previous evidence suggests both move
more then and are morphologically different from adults. A
we had statistically controlled for linear effects of age in
analyses combing all ages, it is possible that residual nonlin-
ear effects could have driven some of our results. However,
our adult-only analyses replicated findings of possible
motion bias discovered in the larger sample (Table III).

Micro-Motion and Lobar Anatomy in the

Context of Age

It is notable that the effects of age were robust to co-
varying for the effect of micro-motion on estimates of mor-
phological properties. Indeed, compared with the impact
of micro-motion on morphological properties, the impact
of age was substantially larger in terms of both statistical
significance and effect size. For example, in terms of the
estimated effect of a standard deviation change in age or a
standard deviation change in micro-motion, the estimated
effect of age on morphology was on average approxi-
mately three times that of the effect size of micro-motion
(sample mean age 5 16.8 years, sd 5 6.9 years; mean
micro-motion 5 0.08 mm, sd 5 0.04 mm; for details see
Table IV).

Micro-Motion and Vertex-Based Properties

At the vertex level across approximately 80,000 vertices
output by the CIVET pipeline and the approximately

TABLE IV. Comparison of effect sizes (standardized

regression coefficients, b) for age and for micro-motion

on estimates of cortical gray matter volume, surface

area, cortical thickness and surface curvature (CIVET

pipeline and FreeSurfer pipeline)

Anatomical
metric

Civet processing
pipeline

FreeSurfer processing
pipeline

b age b motion b age b motion

Lobar volume

Frontal 20.55 20.18 20.54 20.18
Parietal 20.57 20.08 20.61 20.10
Temporal 20.40 20.17 20.30 20.18
Occipital 20.42 20.16 20.41 20.10
Lobar surface area

Frontal 20.39 20.18 20.12 20.19
Parietal 20.40 20.06 20.23 20.14
Temporal 20.33 20.12 20.09 20.16
Occipital 20.27 20.10 20.16 20.09
Lobar cortical thickness

Frontal 20.59 20.15 20.64 20.03
Parietal 20.64 20.07 20.68 0.04
Temporal 20.50 20.18 20.28 20.14
Occipital 20.43 20.16 20.57 20.01
Lobar mean curvature

Frontal 20.27 0.24
Parietal 20.38 0.11
Temporal 20.59 0.05
Occipital 20.34 0.05
Lobar Gaussian curvature

Frontal 0.12 0.07
Parietal 20.17 0.01
Temporal 20.25 0.13
Occipital 20.22 20.08

Standardized regression coefficients, b, are normalized by the stand-
ard deviation of the independent and dependent variables, to facili-
tate comparison between effect sizes. Each coefficient reflects the
number of standard deviations the dependent variable is estimated
to change per standard deviation of the independent variable. All
models were fit in R. N 5 127 subjects (63 females); mean age 5 16.8
(sd 5 6.9, range5 6–34); average framewise motion 5 0.08 mm
(sd 5 0.04, range5 0.03–0.27); one scan per family.
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330,000 vertices output by the FreeSurfer pipeline, the
strongest relationship between cortical thickness and
micro-motion occurred in medial frontal, lateral occipital,
anterior temporal, orbitofrontal, and dorsolateral prefron-
tal regions of cortex (Fig. 3). In contrast, there was not a
significant relationship observed between estimates of cort-
ical surface area and micro-motion.

Frank Motion and Cortical Anatomy

The effect of micro-motion within high quality scans con-
verged overall with the categorical result of comparing
lower and higher quality scans, although these frank
motion effects were more strongly significant. Across the
approximately 80,000 CIVET vertices and the approximately
330,000 FreeSurfer vertices, the most affected brain regions
included medial frontal, lateral occipital/inferior parietal,
anterior temporal, orbital/inferior frontal, and dorsolateral
prefrontal regions of cortex (Fig. 4). In all of these areas,
lower quality scans were associated with thinner cortical
surfaces. The exception to the convergence between the
processing pipelines was in the area of calcarine fissure for

the FreeSurfer pipeline only, where scans with frank motion
were estimated by the pipeline as having increased cortical
thickness. This points’ to the possibility of some pipeline by

scan quality interaction effects in terms of the bias inflicted
by frank motion if not micro-motion. Lobar averages of
morphological properties calculated with the CIVET pipe-
line and the FreeSurfer pipeline similarly converged overall
with the continuous effects described above, although effect
sizes were larger for frank motion (Table V).

Heterogeneity of Motion Across the Cortex

One possible reason for anatomical heterogeneity in
motion-related artifact is that in-scanner motion itself is
not uniform about the brain. Displacement of an object in
three-dimensional (3D) space can be described as a set
of three translations and three rotations. Although transla-
tions affect all voxels equally, the impact of a rotation
depends on the distance from the voxel to the axis of rota-
tion. Due to cushioning on either side of the head during
scanning sessions, pitch rotations (nodding) are more com-
mon than yaw or roll rotations. As shown by the voxel-

Figure 3.

The relationship between micro-motion and cortical thickness.

Subject motion was estimated using the average frame-to-frame

displacement from an fMRI scan acquired in the same scanning

session as the structural scan (Power et al., 2012). (A) Cortical

thickness was estimated at vertices across the brain using the

CIVET pipeline (left) and the FreeSurfer pipeline (right). The

correlation coefficient between motion and thickness was calcu-

lated for the residuals of a linear model that included age and

gender as covariates. No vertices remained statistically signifi-

cant after FDR-correction for multiple comparisons. N 5 127

subjects (63 females); mean age 5 16.8 (sd 5 6.9, range 5 6–34);

one scan per family. (B) Sample vertices from within the left

temporal lobe and the right motor cortex (CIVET pipeline) illus-

trate the relationship between micro-motion and cortical

thickness.
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wise estimates of framewise displacement, this results in
greater average motion in anterior portions of the brain
(Fig. 5). In fact, there is a partial but incomplete overlap
between areas of the brain that move the most, and areas
of the brain that appear to be most susceptible to motion-
related artifact (Figs. 3 and 4).

DISCUSSION

Our findings clarify motion effects on morphometric
analyses of brain sMRI data in several important ways.
We demonstrate that in-scanner “micro-motion,” measured
using serially acquired fMRI scans, is associated with

Figure 4.

The relationship between frank motion and cortical thickness.

(A) 136 scans visually ranked as Tier 1 (frank motion absent)

were gender- and age-matched with 136 scans ranked as Tier 2

(frank motion present) (average age difference between matched

scans 5�1 week). Paired t-tests were calculated between

matched samples, comparing cortical thickness estimated at ver-

tices across the brain the CIVET pipeline (left) and FreeSurfer

pipeline (right). (B) Anatomical regions whose relationship with

scan quality was statistically significant after FDR-correction for

multiple comparisons. (C) Sample vertices from within the left

dorsolateral frontal cortex (CIVET pipeline) and right calcarine

sulcus (FreeSurfer pipeline) illustrate the relationship between

frank motion and cortical thickness.
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reduced sMRI estimates of gray matter volume. Further, we
demonstrate that in-scanner micro-motion may also bias
estimates of cortical thickness and the curvature of the cort-
ical surface. We demonstrate consistency in these motion
effects across image-processing pipelines, developmental
windows, and motion assays. Finally, we demonstrate that
there is partial though incomplete overlap between the
areas of the brain that undergo greater displacement due to
rotational head movements and the areas of the brain that
appear to be more susceptible to motion-induced artifact,
particularly frontal and temporal areas with a relative spar-
ing of the parietal lobe. Taken together, these results add
weight to the mounting notion that in-scanner motion is
not just a source of error in sMRI analysis but can bias
results in an anatomically heterogeneous and “biologically
plausible” fashion.

The motion-related biases we report have a number of
consequences for structural neuroimaging research, espe-

cially studies concerned with age, sex, and clinical effects.
In many experimental contexts it is probable that children
move more than adults, boys move more than girls, and
patients move more than healthy individuals. Although
the effect sizes found in the present study are smaller than
those reported by many clinical and developmental stud-
ies, it is possible that some reportedly morphological dif-
ferences could actually be due to motion-related
confounds, and conversely that genuine biological differ-
ences could be masked by artifacts. Notably, the effects of
age do appear to outweigh those of subtle in-scanner
motion, suggesting that previous reports of the develop-
mental trajectories of morphological properties during
childhood and adolescence are unlikely to be due entirely
to spurious motion effects [Raznahan et al., 2011]. How-
ever, the precise impact of motion on previous reported
studies is difficult to assess. For example, if in-scanner
motion, cortical thickness, and surface area all vary with

TABLE V. Frank motion and measures of lobar anatomy from CIVET and FreeSurfer: Scan Quality Tier 1 (absence

of frank motion) vs Scan Quality Tier 2 (presence of frank motion)

Anatomical
metric

CIVET pipeline FreeSurfer pipeline

Mean difference
(95% CI)

t
statistic

P value
(FDR-adjusted)

Mean difference
(95% CI)

t
statistic

P value
(FDR-adjusted)

Total brain volume

Gray matter 223.7 cm3 (240.3, 27.1) 22.82 0.005 229.2 cm3 (243.4, 214.9) 24.03 9.3E205
White matter 23.2 cm3 (11.5, 34.9) 3.92 0.0001 0.5 cm3 (210.8, 11.8) 0.09 0.92
CSF 10.7 cm3 (5.1, 16.4) 3.73 0.0002 20.6 cm3 (21.8, 0.7) 20.87 0.38
Lobar volume

Frontal 28.7 cm3 (213.9, 23.6) 23.35 0.004 212.3 cm3 (217.4, 27.3) 24.81 1.7E205
Parietal 22.2 cm3 (25.2, 0.8) 21.43 0.15 25.8 cm3 (29.5, 22.0) 23.01 0.004
Temporal 25.3 cm3 (29.5, 21.1) 22.52 0.03 26.4 cm3 (29.5, 23.3) 24.09 2.0E24
Occipital 21.6 cm3 (23.7, 0.6) 21.45 0.15 20.4 cm3 (21.9, 1.0) 20.61 0.54
Lobar surface area

Frontal 25.9 cm2 (21.74, 5.6) 21.02 0.59 211.1 cm2 (225.8, 3.5) 21.50 0.18
Parietal 1.8 cm2 (27.0, 10.7) 0.41 0.68 23.0 cm2 (215.4, 9.4) 20.47 0.64
Temporal 23.4 cm2 (210.6, 3.7) 20.95 0.59 27.9 cm2 (21.7, 0.8) 21.80 0.14
Occipital 22.1 cm2 (27.4, 3.3) 20.77 0.59 27.6 cm2 (214.0, 21.3) 22.37 0.08
Lobar thickness

Frontal 20.13 mm (20.18, 20.09) 26.30 1.58E208 20.13 mm (20.16, 20.10) 27.93 3.3E212
Parietal 20.09 mm (20.13, 20.05) 24.46 2.31E205 20.09 mm (20.13, 20.06) 25.94 4.8E208
Temporal 20.1 mm (20.14, 20.06) 24.69 1.35E205 20.10 mm (20.14, 20.07) 25.5 2.3E207
Occipital 20.06 mm (20.10, 20.02) 22.77 0.006 0.03 mm (20.01, 0.06) 1.67 0.10
Lobar mean curvature

Frontal 0.0079 mm21 (0.0054, 0.0103) 6.26 2.0E208
Parietal 0.0079 mm21 (0.0051, 0.0107) 5.60 2.5E207
Temporal 0.0069 mm21 (0.0042, 0.0096) 5.07 1.7E206
Occipital 0.0054 mm21 (0.0026, 0.0081) 3.81 2.0E204
Lobar Gaussian curvature

Frontal 0.0306 mm22 0.0036, 0.0577) 2.24 0.054
Parietal 0.0420 mm22 (0.0226, 0.0614) 4.29 1.0E204
Temporal 0.0759 mm22 (20.0093, 0.1610) 1.76 0.080
Occipital 0.0374 mm22 (20.0009, 0.0756) 1.93 0.073

Statistical association with categorical, visually-ranked scan quality (absence of frank motion [Tier 1] vs presence of frank motion [Tier
2]), for CIVET output and for FreeSurfer output. 136 scans visually ranked as quality 2 out of 4 were gender- and age-matched with 136
scans ranked as quality 1 (average age difference between matched scans 5�1 week). Paired t tests were calculated between matched
samples. See Supporting Information Table 1 for non-paired P values calculated from the same sample
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age—with developmentally varying contributions of thick-
ness and surface area to changes in volume [Raznahan
et al., 2011]—then the effect of motion on estimates of cort-
ical volume is likely to represent a complex interaction of
all of these factors. Of note a recent article suggests that
motion artifact in structural scans of younger children
does have the potential to alter estimated developmental
trajectories of cortical thickness [Ducharme et al., 2015].

Our findings combine with prior reports [Reuter et al.,
2015] to suggest that motion-related biases are likely to be
largely stable across machines and image-processing pipe-
lines. Other factors do have the potential to interact with
subject motion to adversely affect estimates of anatomical
metrics, include noise of the electronics of the MRI system,
subject’s physiological noise, partial volume effects, imag-
ing gradient non-linearities, and spatial magnetic inhomo-
geneities. Variations in the placement of a subject’s head
in reference to the isocenter, together with gradient non-
linearities, reduce the reliability of anatomical metrics
[Jovicich et al., 2006]. Although rigorous image quality
control is critical for all structural brain imaging studies,
motion-related bias does appear to be robust to standard
quality control procedures [Reuter et al., 2015]. It would
be valuable to quantify potential mitigating and exacerbat-
ing influences in future work.

Our results identify several similarities between the
effects of micro-motion and frank motion on automated
measures of brain anatomy (e.g., spatial and directional

overlap of effects on cortical thickness in medial/superior
prefrontal and lateral temporal cortices), but also some dif-
ferences (e.g., effects of frank motion, but not micro-
motion on cortical thickness at the temporo-occipital junc-
tion). Also, with respect to micro-motion, there is an
imperfect correspondence between the spatial distribution
of mean local displacement at the group level, and the sur-
face distribution of correlations between inter-individual
differences in local displacement and inter-individual dif-
ferences in local cortical thickness. These observations
highlight the need for further studies to clarify how differ-
ent species of in-scanner motion impact image processing.
An integral part of this effort will be comparing and con-
trasting different candidate assays [Magnotta et al., 2006;
Mortamet et al., 2009] for each dimension of motion which
emerges as having a distinct impact on image processing.

Looking forward, there are a number of approaches that
could be taken to assess and to address motion-related
artifacts in sMRI studies. First, our use of fMRI motion
proxy lends itself easily to the reanalysis of previously
acquired datasets to test for potential motion-related bias,
without the need for intervention at the level of image
acquisition. But even though fMRI motion is likely to be
highly predictive of sMRI motion, its use as a proxy has
limitations as any dataset will include outliers for whom
this proxy measure is inaccurate. Moreover, it is intuitive
that the consistency in motion between portions of a scan
may decrease with time. In the present study for example,
because the EPI scans were on average closer together in
time than the EPI scans were to the structural scan, it is
possible that the consistency of motion between the struc-
tural scans and the EPI scans was less than consistency of
motion between the two EPI acquisitions.

A number of research groups have developed innova-
tive scanning and image processing techniques that have
the potential to limit, and in the future possibly even elim-
inate, motion-related artifacts in sMRI. Most simply,
shorter imaging sequences make it easier for subjects to
remain still throughout a scan. Some retrospective correc-
tion procedures also use “navigator” sequences that
acquire additional data during scans to extract information
about subject motion [Ehman and Felmlee, 1989; Korin
et al., 1990]. Alternately, “autofocusing” methods use a
trial-and-error approach during k-space reconstruction to
account for possible motion displacement [Atkinson et al.,
1997, 1999; Manduca et al., 2000; McGee et al., 2000].
External sensors have the potential to provide information
about in-scanner motion independent of the MR imaging
process [Zaitsev et al., 2006; Ooi et al., 2009; Qin et al.,
2009]. Prospective motion correction procedures modify
the pulse sequence during image acquisition in response
to subject-motion [Kuperman et al., 2011; Norris, 2001; van
der Kouwe et al., 2006; Weih et al., 2004; Welch et al.,
2002; White et al., 2010]. But despite these encouraging
technological developments, it is not yet possible to elimi-
nate motion artifact, and the vast majority of studies do

Figure 5.

Micro-motion on a voxel-by-voxel basis. The affine transforma-

tion from volumetric motion correction were applied to each

voxel separately to estimate the frame-to-frame displacement

for each voxel. For each voxel this value was averaged across

the scan, to yield subject-level maps. These maps were trans-

formed into MNI standard space and averaged across subjects.

For illustrative purposes, voxel values were projected onto the

CIVET triangular mesh using nearest-neighbor interpolation.
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not employ these corrective procedures. At the extreme,
the benefits of scanning under sedation likely outweigh
the risks/costs in some experimental contexts.

In summary, this work supports the conclusion that in-
scanner motion is a source of bias in sMRI studies.
Although it is unlikely that alterations in estimates of
brain anatomy previously attributed to age or gender are
due entirely to motion artifact, this possible source of bias
in between-group studies of brain anatomy should be
given consideration in future studies analogously to efforts
to reduce motion artifact in fMRI studies. A range of cur-
rently implemented image processing pipelines and qual-
ity control procedures appear to be insufficient to entirely
mitigate these effects, although new methodologies offer
hope for future improvements. In the meantime, using
fMRI motion as a proxy measure for in-scanner motion
enables a reasonable, preliminary quantification of the
potential for motion-related bias.
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