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Abstract

The little Grothendieck problem consists of maximizing Σij Cijxixj for a positive semidef-inite 

matrix C, over binary variables xi ∈ {±1}. In this paper we focus on a natural generalization of this 

problem, the little Grothendieck problem over the orthogonal group. Given C ∈ ℝdn × dn a positive 

semidefinite matrix, the objective is to maximize  restricting Oi to take values in 

the group of orthogonal matrices , where Cij denotes the (ij)-th d × d block of C.

We propose an approximation algorithm, which we refer to as Orthogonal-Cut, to solve the little 

Grothendieck problem over the group of orthogonal matrices  and show a constant 

approximation ratio. Our method is based on semidefinite programming. For a given d ≥ 1, we 

show a constant approximation ratio of αℝ(d)2, where αℝ(d) is the expected average singular 

value of a d × d matrix with random Gaussian  i.i.d. entries. For d = 1 we recover the 

known αℝ(1)2 = 2/π approximation guarantee for the classical little Grothendieck problem. Our 

algorithm and analysis naturally extends to the complex valued case also providing a constant 

approximation ratio for the analogous little Grothendieck problem over the Unitary Group .

Orthogonal-Cut also serves as an approximation algorithm for several applications, including the 

Procrustes problem where it improves over the best previously known approximation ratio of 

. The little Grothendieck problem falls under the larger class of problems approximated by a 

recent algorithm proposed in the context of the non-commutative Grothendieck inequality. 

Nonetheless, our approach is simpler and provides better approximation with matching integrality 

gaps.

Most of this work was done while ASB was at Princeton University.
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Finally, we also provide an improved approximation algorithm for the more general little 

Grothendieck problem over the orthogonal (or unitary) group with rank constraints, recovering, 

when d = 1, the sharp, known ratios.

Keywords

Approximation algorithms; Procrustes problem; Semidefinite programming

1 Introduction

The little Grothendieck problem [AN04] in combinatorial optimization is written as

(1)

where C is a n × n positive semidefinite matrix real matrix.

Problem (1) is known to be NP-hard. In fact, if C is a Laplacian matrix of a graph then (1) is 

equivalent to the Max-Cut problem. In a seminal paper in the context of the Max-Cut 

problem, Goemans and Williamson [GW95] provide a semidefinite relaxation for (1):

(2)

It is clear that in (2), one can take m = n. Furthermore, (2) is equivalent to a semidefinite 

program and can be solved, to arbitrary precision, in polynomial time [VB96]. In the same 

paper [GW95] it is shown that a simple rounding technique is guaranteed to produce a 

solution whose objective value is, in expectation, at least a multiplicative factor 

 of the optimum.

A few years later, Nesterov [Nes98] showed an approximation ratio of  for the general case 

of an arbitrary positive semidefinite C ⪰ 0 using the same relaxation as [GW95]. This 

implies, in particular, that the value of (1) can never be smaller than  times the value of (2). 

Interestingly, such an inequality was already known from the influential work of 

Grothendieck on norms of tensor products of Banach spaces [Gro96] (see [Pis11] for a 

survey on this).

Several more applications have since been found for the Grothendieck problem (and 

variants), and its semidefinite relaxation. Alon and Naor [AN04] showed applications to 

estimating the cut-norm of a matrix; Ben-Tal and Nemirovski [BTN02] showed applications 

to control theory; Briet, Buhrman, and Toner [BBT11] explored connections with quantum 
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non-locality. For many more applications, see for example [AMMN05] (and references 

therein).

In this paper, we focus on a natural generalization of problem (1), the little Grothendieck 

problem over the orthogonal group, where the variables are now elements of the orthogonal 

group , instead of {±1}. More precisely, given C ∈ ℝdn × dn a positive semidefinite 

matrix, we consider the problem

(3)

where Cij denotes the (i, j)-th d × d block of C, and  is the group of d × d orthogonal 

matrices (i.e.,  if and only if OOT = OT O = Id×d).

We will also consider the unitary group variant, where the variables are now elements of the 

unitary group  (i.e.,  if and only if UUH = UH U = Id×d). More precisely, given C ∈ 
ℂdn×dn a complex valued positive semidefinite matrix, we consider the problem

(4)

Since C is Hermitian positive semidefinite, the value of the objective function in (4) is 

always real. Note also that when d = 1, (3) reduces to (1). Also, since  is the multiplicative 

group of the complex numbers with unit norm, (4) recovers the classical complex case of the 

little Grothendieck problem. In fact, the work of Nesterov was extended [SZY07] to the 

complex plane (corresponding to , or equivalently, the special orthogonal group ) with 

an approximation ratio of  for C ⪰ 0. As we will see later, the analysis of our algorithm 

shares many ideas with the proofs of both [Nes98] and [SZY07] and recovers both results.

As we will see in Section 2, several problems can be written in the forms (3) and (4), such as 

the Procrustes problem [Sch66, Nem07, So11] and Global Registration [CKS15]. Moreover, 

the approximation ratio we obtain for (3) and (4) translates into the same approximation 

ratio for these applications, improving over the best previously known approximation ratio 

of  in the real case and  in the complex case, given by [NRV13] for these problems.

Problem (3) belongs to a wider class of problems considered by Nemirovski [Nem07] called 

QO-OC (Quadratic Optimization under Orthogonality Constraints), which itself is a subclass 

of QC-QP (Quadratically Constrainted Quadratic Programs). Please refer to Section 2 for a 

more detailed comparison with the results of Nemirovski [Nem07]. More recently, Naor et 

al. [NRV13] proposed an efficient rounding scheme for the non commutative Grothendieck 

inequality that provides an approximation algorithm for a vast set of problems involving 
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orthogonality constraints, including problems of the form of (3) and (4). We refer to Section 

1.2 for a comparison between this approach and ours.

Similarly to (2) we formulate a semidefinite relaxation we name the Orthogonal-Cut SDP:

(5)

Analogously, in the unitary case, we consider the relaxation

(6)

Since C is Hermitian positive semidefinite, the value of the objective function in (6) is 

guaranteed to be real. Note also that we can take m = dn as the Gram matrix  does 

not have a rank constraint for this value of m. In fact, both problems (5) and (6) are 

equivalent to the semidefinite program

(7)

for  respectively ℝ and ℂ, which are generally known to be computationally tractable1 

[VB96, Nes04, AHO98]. At first glance, one could think of problem (5) as having d2n 
variables and that we would have to take m = d2n for (5) to be tractable (in fact, this is the 

size of the SDP considered by Nemirovski [Nem07]). The savings in size (corresponding to 

number of variables) of our proposed SDP relaxation come from the group structure of 

(or ).

One of the main contributions of this paper is showing that Algorithm 3 (Section 1.1) gives a 

constant factor approximation to (3), and its unitary analog (4), with an optimal 

approximation ratio for our relaxation (Section 6). It consists of a simple generalization of 

the rounding in [GW95] applied to (5), or (4).

Theorem 1

Let C ⪰ 0 and real. Let  be the (random) output of the orthogonal version of 

Algorithm 3. Then

1We also note that these semidefinite programs satisfy Slater’s condition as the identity matrix is a feasible point. This ensures strong 
duality, which can be exploited by many semidefinite programming solvers.
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where αℝ(d) is the constant defined below.

Analogously, in the unitary case, if  are the (random) output of the unitary 

version of Algorithm 3, then for C ⪰ 0 and complex,

where αℂ(d) is defined below.

Definition 2

Let Gℝ ∈ ℝd×d and Gℂ ∈ ℂd×d be, respectively, a Gaussian random matrix with i.i.d real 

valued entries  and a Gaussian random matrix with i.i.d complex valued entries 

. We define

where σj(G) is the jth singular value of G.

Although we do not have a complete understanding of the behavior of αℝ(d) and αℂ(d) as 

functions of d, we can, for each d separately, compute a closed form expression (see Section 

4). For d = 1 we recover the sharp  and  results of, respectively, 

Nesterov [Nes98] and So et al. [SZY07]. One can also show that , 

for both  and . Curiously,

Our computations strongly suggest that αℝ(d) is monotonically increasing while its complex 

analog αℂ(d) is monotonically decreasing. We find the fact that the approximation ratio 

seems to get, as the dimension increases, better in the real case and worse in the complex 

case quite intriguing. One might naively think that the problem for a specific d can be 

formulated as a degenerate problem for a larger d, however this does not seem to be true, as 

evidenced by the fact that  is increasing. Another interesting point is that αℝ(2) ≠ 
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αℂ(1) which suggests that the little Grothendieck problem over  is quite different from the 

analog in  (which is isomorphic to ). Unfortunately, we were unable to provide a 

proof for the monotonicity of  (Conjecture 8). Nevertheless, we can show lower bounds 

for both  and  that have the right asymptotics (see Section 4). In particular, we 

can show that our approximation ratios are uniformly bounded below by the approximation 

ratio given in [NRV13].

In some applications, such as the Common Lines problem [SS11] (see Section 5), one is 

interested in a more general version of (3) where the variables take values in the Stiefel 

manifold , the set of matrices O ∈ ℝd×r such that OOT = Id×d. This motivates 

considering a generalized version of (3) formulated as, for r ≥ d,

(8)

for C ⪰ 0. The special case d = 1 was formulated and studied in [BBT11] and [BFV10] in 

the context of quantum non-locality and quantum XOR games. Note that in the special case r 
= nd, (8) reduces to (5) and is equivalent to a semidefinite program.

We propose an adaption of Algorithm 3, Algorithm 9, and show an approximation ratio of 

αℝ(d, r)2, where αℝ(d, r) is also defined as the average singular value of a Gaussian matrix 

(see Section 5). For d = 1 we recover the sharp results of Briet el al. [BFV10] giving a 

simple interpretation for the approximation ratios, as α(1, r) is simply the mean of a 

normalized chi-distribution with r degrees of freedom. As before, the techniques are easily 

extended to the complex valued case.

In order to understand the optimality of the approximation ratios αℝ(d)2 and αℂ(d)2 we 

provide an integrality gap for the relaxations (5) and (6) that matches these ratios, showing 

that they are tight. Our construction of an instance having this gap is an adaption of the 

classical construction for the d = 1 case (see, e.g., [AN04]). As it will become clear later (see 

Section 6), there is an extra difficulty in the d > 1 orthogonal case which can be dealt with 

using the Lowner-Heinz Theorem on operator convexity (see Theorem 13 and the notes 

[Car09]).

Besides the monotonicity of  (Conjecture 8), there are several interesting questions 

raised from this work, including the hardness of approximation of the problems considered 

in this paper (see Section 7 for a discussion on these and other directions for future work).

Organization of the paper—The paper is organized as follows. In Section 1.1 below we 

present the approximation algorithm for (3) and (4). In Section 1.2, we compare our results 

with the ones in [NRV13]. We then describe a few applications in Section 2 and show the 

analysis for the approximation ratio guarantee in Section 3. In Section 4 we analyze the 

value of the approximation ratio constants. Section 5 is devoted to a more general, rank 

constrained, version of (4). We give an integrality gap for our relaxation in Section 6 and 
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discuss open problems and future work in Section 7. Finally, we present supporting technical 

results in the Appendix.

1.1 Algorithm

We now present the (randomized) approximation algorithm we propose to solve (3) and (4).

Algorithm 3—Compute X1, …, Xn ∈ ℝd×nd (or Y1, …, Yn ∈ ℂd×nd) a solution to (5) (or 

(6)). Let R be a nd × d Gaussian random matrix whose entries are real (or complex) i.i.d. 

. The approximate solution for (3) (or (4)) is now computed as

where , for any X ∈ 

ℝd×d (or Y ∈ ℂd×d) and  is the Frobenius norm.

Note that (5) and (6) can be solved with arbitrary precision in polynomial time [VB96] as 

they are equivalent to a semidefinite program (followed by a Cholesky decomposition) with 

a, respectively real and complex valued, matrix variable of size dn × dn, and d2n linear 

constraints. In fact, this semidefinite program has a very similar structure to the classical 

Max-Cut SDP. This may allow one to adapt specific methods designed to solve the Max-Cut 

SDP such as, for example, the row-by-row method [WGS12] (see Section 2.4 of [Ban15]).

Moreover, given X a d × d matrix (real or complex), the polar component  is the 

orthogonal (or unitary) matrix part of the polar decomposition, that can be easily computed 

via the singular value decomposition of X = UΣVH as  (see [FH55, Kel75, 

Hig86]), rendering Algorithm 3 efficient. The polar component  is the analog 

in high dimensions of the sign in  and the angle in  and can also be written as 

.

1.2 Relation to non-commutative Grothendieck inequality

The approximation algorithm proposed in [NRV13] can also be used to approximate 

problems (3) and (4). In fact, the method in [NRV13] deals with problems of the form

(9)

where M is a N × N × N × N real valued 4-tensor.

Problem (3) can be encoded in the form of (9) by taking N = dn and having the d × d block 

of M, obtained by having the first two indices range from (i − 1)d + 1 to id and the last two 

from (j − 1)d + 1 to jd, equal to Cij, and the rest of the tensor equal to zero [NRV13]. More 

explicitly, the nonzero entries of M are given by M(i−1)d+r,(i−1)d+r,(j−1)d+s,(j−1)d+s = [Cij]rs, for 
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each i, j and r, s = 1, …, d. Since C is positive semidefinite, the supremum in (9) is attained 

at a pair (X, Y) such that X = Y.

In order to describe the relaxation one needs to first define the space of vector-valued 

orthogonal matrices  where XXT and XTX 

are N × N matrices defined as  and 

.

The relaxation proposed in [NRV13] (which is equivalent to our relaxation when M is 

specified as above) is given by

(10)

and there exists a rounding procedure [NRV13] that achieves an approximation ratio of 

. Analogously, in the unitary case, the relaxation is essentially the same and the 

approximation ratio is . We can show (see Section 4) that the approximation ratios we 

obtain are larger than these for all d ≥ 1. Interestingly, the approximation ratio of , for the 

complex case in [NRV13], is tight in the full generality of the problem considered in 

[NRV13], nevertheless αℂ(d)2 is larger than this for all dimensions d.

Note also that to approximate (3) with this approach one needs to have N = dn in (10). This 

means that a naïve implementation of this relaxation would result in a semidefinite program 

with a matrix variable of size d2n2 × d2n2, while our approach is based on semidefinite 

programs with matrix variables of size dn × dn. It is however conceivable that when 

restricted to problems of the type of (3), the SDP relaxation (10) may enjoy certain 

symmetries or other properties that facilitate its solution.

2 Applications

Problem (3) can describe several problems of interest. As examples, we describe below how 

it encodes a complementary version of the orthogonal Procrustes problem and the problem 

of Global Registration over Euclidean Transforms. Later, in Section 5, we briefly discuss yet 

another problem, the Common Lines problem, that is encoded by a more general rank 

constrained version of (3).

2.1 Orthogonal Procrustes

Given n point clouds in ℝd of k points each, the orthogonal Procrustes problem [Sch66] 

consists of finding n orthogonal transformations that best simultaneously align the point 

clouds. If the points are represented as the columns of matrices A1, …, An, where Ai ∈ ℝd×k 

then the orthogonal Procrustes problem consists of solving
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(11)

Since , (11) has the same 

solution as the complementary version of the problem

(12)

Since C ∈ ℝdn×dn given by  is positive semidefinite, problem (12) is encoded by 

(3) and Algorithm 3 provides a solution with an approximation ratio guaranteed (Theorem 1) 

to be at least αℝ(d)2.

The algorithm proposed in Naor et al. [NRV13] gives an approximation ratio of , 

smaller than αℝ(d)2, for (12). As discussed above, the approach in [NRV13] is based on a 

semidefinite relaxation with a matrix variable of size d2n2 × d2n2 instead of dn × dn as in (5) 

(see Section 1.2 for more details).

Nemirovski [Nem07] proposed a different semidefinite relaxation (with a matrix variable of 

size d2n × d2n instead of dn × dn as in (5)) for the orthogonal Procrustes problem. In fact, 

his algorithm approximates the slightly different problem

(13)

which is an additive constant (independent of O1, …, On) smaller than (12). The best known 

approximation ratio for this semidefinite relaxation, due to So [So11], is . 

Although an approximation to (13) would technically be stronger than an approximation to 

(12), the two quantities are essentially the same provided that the point clouds are indeed 

perturbations of orthogonal transformations of the same original point cloud, as is the case in 

most applications (see [NRV13] for a more thorough discussion on the differences between 

formulations (12) and (13)).

Another important instance of this problem is when the transformations are elements of 

(the special orthogonal group of dimension 2, corresponding to rotations of the plane). Since 

 is isomorphic to  we can encode it as an instance of problem (4), in this case we 

recover the previously known optimal approximation ratio of  [SZY07].
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Note that, since all instances of problem (3) can be written as an instance of orthogonal 

Procrustes, the integrality gap we show (Theorem 14) guarantees that our approximation 

ratio is optimal for the natural semidefinite relaxation we consider for the problem.

2.2 Global Registration over Euclidean Transforms

The problem of global registration over Euclidean rigid motions is an extension of 

orthogonal Procrustes. In global registration, one is required to estimate the positions x1, …, 

xk of k points in ℝd and the unknown rigid transforms of n local coordinate systems given 

(perhaps noisy) measurements of the local coordinates of each point in some (though not 

necessarily all) of the local coordinate systems. The problem differs from orthogonal 

Procrustes in two aspects: First, for each local coordinate system, we need to estimate not 

only an orthogonal transformation but also a translation in ℝd. Second, each point may 

appear in only a subset of the coordinate systems. Despite those differences, it is shown in 

[CKS15] that global registration can also be reduced to the form (3) with a matrix C that is 

positive semidefinite.

More precisely, denoting by Pi the subset of points that belong to the i-th local coordinate 

system (i = 1 … n), and given the local coordinates

of point xl ∈ Pi (where Oi denotes an unknown orthogonal transformation, ti an unknown 

translation and ξil a noise term). The goal is to estimate the global coordinates xl. The idea is 

to minimize the function

over xl, ti ∈ ℝd, . It is not difficult to see that the optimal  and  can be written in 

terms of O1, …, On. Substituting them back into ε, the authors in [CKS15] reduce the 

previous optimization to solving

(14)

where L is a certain (n + k) × (n + k) Laplacian matrix, L† is its pseudo inverse, and B is a 

(dn) × (n + k) matrix (see [CKS15]). This means that BL†BT ⪰ 0, and (14) is of the form of 

(3).

3 Analysis of the approximation algorithm

In this Section we prove Theorem 1. As (5) and (6) are relaxations of, respectively, problem 

(3) and problem (4) their maximums are necessarily at least as large as the ones of, 
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respectively, (3) and (4). This means that Theorem 1 is a direct consequence of the following 

theorem.

Theorem 4

Let C ⪰ 0 and real. Let X1, …, Xn be a feasible solution to (5). Let  be the 

output of the (random) rounding procedure described in Algorithm 3. Then

where αℝ(d) is the constant in Definition 2. Analogously, if C ⪰ 0 and complex and Y1, …, 

Yn is a feasible solution of (6) and  the output of the (random) rounding 

procedure described in Algorithm 3. Then

where αℂ(d) is the constant in Definition 2.

In Section 6 we show that these ratios are optimal (Theorem 14).

Before proving Theorem 4 we present a sketch of the proof for the case d = 1 (and real). The 

argument is known as the Rietz method (See [AN04])2:

Let X1, …, Xn ∈ ℝ1×n be a feasible solution to (5), meaning that . Let R ∈ ℝn×1 be 

a random matrix with i.i.d. standard Gaussian entries. Our objective is to compare 

 with . The main observation is that although 

 is not a linear function of , the expectation  is. 

In fact  — which follows readily by thinking of 

Xi and Xj as vectors in the two dimensional plane that they span. We use this fact (together 

with the positiveness of C) to show our result. The idea is to build the matrix S ⪰ 0,

Since both C and S are PSD, tr(CS) ≥ 0, which means that

2These ideas also play a major role in the unidimensional complex case treated by So et al [SZY07].
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Combining this with the observation above and the fact that , we have

Proof—[of Theorem 4] For the sake of brevity we restrict the presentation of the proof to 

the real case. Nevertheless, it is easy to see that all the arguments trivially adapt to the 

complex case by, essentially, replacing all transposes with Hermitian adjoints and αℝ(d) 

with αℂ(d).

Let R ∈ ℝnd×d be a Gaussian random matrix with i.i.d entries . We want to provide 

a lower bound for

Similarly to the d = 1 case, one of the main ingredients of the proof is the fact given by the 

lemma below.

Lemma 5

Let r ≥ d. Let M, N ∈ ℝd×nd such that MMT = NNT = Id×d. Let R ∈ ℝnd×d be a Gaussian 

random matrix with real valued i.i.d entries . Then

where αℝ(d) is constant in Definition 2.

Analogously, if M, N ∈ ℂd×nd such that MMH = NNH = Id×d, and R ∈ ℂnd×r is a Gaussian 

random matrix with complex valued i.i.d entries , then

where αℂ(d) is constant in Definition 2.

Before proving Lemma 5 we use it to finish the proof of Theorem 4.
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Just as above, we define the positive semidefinite matrix S ∈ ℝdn×dn whose (i, j)-th block is 

given by

We have  =

By construction S ⪰ 0. Since C ⪰ 0, tr(CS) ≥ 0, which means that

Thus,

      □

We now present and prove an auxiliary lemma, needed for the proof of Lemma 5.

Lemma 6

Let G be a d × d Gaussian random matrix with real valued i.i.d.  entries and let 

αℝ(d) as defined in Definition 2. Then,

Furthermore, if G is a d × d Gaussian random matrix with complex valued i.i.d. 

entries and αℂ(d) the analogous constant (Definition 2), then

Proof—We restrict the presentation to the real case. All the arguments are equivalent to the 

complex case, replacing all transposes with Hermitian adjoints and αℝ(d) with αℂ(d).
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Let G = UΣVT be the singular value decomposition of G. Since GGT = UΣ2UT is a Wishart 

matrix, it is well known that its eigenvalues and eigenvectors are independent and U is 

distributed according to the Haar measure in  (see e.g. Lemma 2.6 in [TV04]). To resolve 

ambiguities, we consider Σ ordered such that Σ11 ≥ Σ22 ≥ … ≥ Σdd.

Let . Since

we have

Note that .

Denoting u1, …, ud the rows of U, since U is distributed according to the Haar measure, we 

have that uj and −uj have the same distribution conditioned on Σ and ui, for any i ≠ j. This 

implies that if i ≠ j,  is a symmetric random variable, and so . Also, ui ~ 
uj implies that Yii ~ Yjj. This means that  for some constant c. To obtain c,

which shows the lemma.

Proof—[of Lemma 5] We restrict the presentation of proof to the real case. Nevertheless, as 

before, all the arguments trivially adapt to the complex case by, essentially, replacing all 

transposes with Hermitian adjoints and αℝ(d) with αℂ(d).

Let A = [MT NT] ∈ ℝdn×2d and A = QB be the QR decomposition of A with Q ∈ ℝnd×nd an 

orthogonal matrix and B ∈ ℝnd×2d upper triangular with non-negative diagonal entries; note 

that only the first 2d rows of B are nonzero. We can write

where B11 ∈ ℝd×d and B22 ∈ ℝd×d are upper triangular matrices with non-negative diagonal 

entries. Since
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B11 = (QTMT)11 is an orthogonal matrix, which together with the non-negativity of the 

diagonal entries (and the fact that B11 is upper-triangular) forces B11 to be B11 = Id×d.

Since R is a Gaussian matrix and Q is an orthogonal matrix, QR ~ R which implies

Since  and 

,

where R1 and R2 are the first two d × d blocks of R. Since these blocks are independent, the 

second term vanishes and we have

The Lemma now follows from using Lemma 6 to obtain  and noting 

that B12 = (QTMT) (QTNT) = MNT.

The same argument, with Q’B’ the QR decomposition of A’ = [NTMT] ∈ ℝdn×2d instead, 

shows

       □

4 The approximation ratios αℝ(d)2 and αℂ(d)2

The approximation ratio we obtain (Theorem 1) for Algorithm 3 is given, in the orthogonal 

case, by αℝ(d)2 and, in the unitary case, by αℂ(d)2. αℝ(d) and αℂ(d) are defined as the 

average singular value of a d × d Gaussian matrix G with, respectively real and complex 

valued, i.i.d  entries. These singular values correspond to the square root of the 

eigenvalues of a Wishart matrix W = GGT, which are well-studied objects (see, e.g., [She01] 

or [CD11]).

For d = 1, this corresponds to the expected value of the absolute value of standard Gaussian 

(real or complex) random variable. Hence,
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meaning that, for d = 1, we recover the approximation ratio of , of Nesterov [Nes98] for the 

real case, and the approximation ratio of  of So et al. [SZY07] in the complex case.

For any d ≥ 1, the marginal distribution of an eigenvalue of the Wishart matrix W = GGT is 

known [LV11, CD11, Lev12] (see Section B). Denoting by  the marginal distribution for 

 and , we have

(15)

In the complex valued case,  can be written in terms of Laguerre polynomials [CD11, 

Lev12] and αℂ(d) is given by

(16)

Where Ln(x) is the nth Laguerre polynomial. In Section B we give a lower bound to (16). 

The real case is more involved [LV11], nevertheless we are able to provide a lower bound 

for αℝ(d) as well.

Theorem 7

Consider αℝ(d) and αℂ(d) as defined in (2). The following holds,

Proof—These bounds are a direct consequence of Lemmas 20 and 21.

One can easily evaluate  (without using Theorem 7) by noting that the 

distribution of the eigenvalues of the Wishart matrix we are interested in, as d → ∞, 

converges in probability to the Marchenko-Pastur distribution [She01] with density

for both  and . This immediately gives,
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We note that one could also obtain lower bounds for  from results on the rate of 

convergence to mp(x) [GT11]. However this approach seems to not provide bounds with 

explicit constants and to not be as sharp as the approach taken in Theorem 7.

For any d, the exact value of  can be computed, by (15), using Mathematica (See table 

below). Figure 1 plots these values for d = 1, …, 44. We also plot the bounds for the real and 

complex case obtained in Theorem 7, and the approximation ratios obtained in [NRV13], for 

comparison.

d αℝ(d) αℂ(d) αℝ(d) ≈ αℝ(d)2 ≈ αℂ(d) ≈ αℂ(d)2 ≈

1 0.7979 0.6366 0.8862 0.7854

2 0.8102 0.6564 0.8617 0.7424

3 0.8188 0.6704 0.8554 0.7312

∞ 0.8488 0.7205 0.8488 0.7205

The following conjecture is suggested by our analysis and numerical computations.

Conjecture 8

Let αℝ(d) and αℂ(d) be the average singular value of a d × d matrix with random i.i.d., 

respectively real valued and complex valued,  entries (see Definition 2). Then, for 

all d ≥ 1,

5 The little Grothendieck problem over the Stiefel manifold

In this section we focus on a generalization of (3), the little Grothendieck problem over the 

Stiefel manifold , the set of matrices O ∈ ℝd×r such that OOT = Id×d. In this exposition 

we will restrict ourselves to the real valued case but it is easy to see that the ideas in this 

Section easily adapt to the complex valued case.

We consider the problem
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(17)

for C ⪰ 0. The special case d = 1 was formulated and studied in [BBT11] and [BFV10] in 

the context of quantum non-locality and quantum XOR games.

Note that, for r = d, problem (17) reduces to (3) and, for r = nd, it reduces to the tractable 

relaxation (5). As a solution to (3) can be transformed, via zero padding, into a solution to 

(17) with the same objective function value, Algorithm 3 automatically provides an 

approximation ratio for (17), however we want to understand how this approximation ratio 

can be improved using the extra freedom (in particular, in the case r = nd, the approximation 

ratio is trivially 1). Below we show an adaptation of Algorithm 3, based on the same 

relaxation (5), for problem (17) and show an improved approximation ratio.

Algorithm 9

Compute X1, …, Xn ∈ ℝd×nd a solution to (5). Let R be and × r Gaussian random matrix 

whose entries are real i.i.d. . The approximate solution for (17) is now computed as

where , for any X ∈ ℝd×r, is a generalization of the 

polar component to the Stiefel manifold .

Below we show an approximation ratio for Algorithm 9.

Theorem 10

Let C ⪰ 0. Let  be the (random) output of Algorithm 9. Then,

where αℝ(d, r) is the defined below (Definition 11).

Definition 11

Let r ≥ d and G ∈ ℝd×r be a Gaussian random matrix with i.i.d real entri . We 

define
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where σj(G) is the jth singular value of G.

We investigate the limiting behavior of αℝ(d, r) as r → ∞ and as r, d → ∞ at a 

proporitional rate in Section 6.2.

The proof of Theorem 10 follows the same line of reasoning as that of Theorem 1 (and 

Theorem 4). We do not provide the proof in full, but state and prove Lemmas 17 and 18 in 

the Appendix, which are the analogous, to this setting, of Lemmas 6 and 5.

Besides the applications, for d = 1, described in [BBT11] and [BFV10], Problem (17) is also 

motivated by an application in molecule imaging, the common lines problem.

5.1 The common lines problem

The common lines problem arises in three-dimensional structure determination of biological 

molecules using Cryo-Electron Microscopy [SS11], and can be formulated as follows. 

Consider n rotation matrices . The three columns of each rotation matrix 

form a orthonormal basis to ℝ3. In particular, the first two columns of each rotation matrix 

span a two-dimensional subspace (a plane) in ℝ3. We assume that no two planes are parallel. 

Every pair of planes intersect at a line, called the common-line of intersection. Let bij ∈ ℝ3 

be a unit vector that points in the direction of the common-line between the planes 

corresponding to Oi and Oj. Hence, there exist unit vectors cij and cji with vanishing third 

component (i.e., cij = (xij, yij, 0)T) such that Oicij = Ojcji = bij. The common lines problem 

consists of estimating the rotation matrices O1, …, On from (perhaps noisy) measurements 

of the unit vectors cij and cji. The least-squares formulation of this problem is equivalent to

(18)

However, since cij has zero in the third coordinate, the common-line equations Oicij = Ojcji 

do not involve the third columns of the rotation matrices. The optimization problem (18) is 

therefore equivalent to

(19)

where Π: ℝ3 → ℝ2 is a projection discarding the third component (i.e., Π(x, y, z) = (x, y)) 

and . The coefficient matrix in (19), Cij = Π(cij)Π(cji)T, is not positive 

semidefinite. However, one can add a diagonal matrix with large enough values to it in order 

to make it PSD. Although this does not affect the solution of (19) it does increase its 
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function value by a constant, meaning that the approximation ratio obtained in Theorem 10 

does not directly translate into an approximation ratio for Problem (19); see Section 7 for a 

discussion on extending the results to the non positive semidefinite case.

5.2 The approximation ratio αℝ(d, r)2

In this Section we attempt to understand the behavior of αℝ(d, r)2, the approximation ratio 

obtained for Algorithm 9. Recall that αℝ(d, r) is defined as the average singular value of G ∈ 

ℝd×r, a Gaussian random matrix with i.i.d. entries .

For d = 1 this simply corresponds to the average length of a Gaussian vector in ℝr with i.i.d. 

entries . This means that αℝ(1, r) is the mean of a normalized chi-distribution,

In fact, this corresponds to the results of Briet el al [BFV10], which are known to be sharp 

[BFV10].

For d > 1 we do not completely understand the behavior of αℝ(d, r), nevertheless it is easy 

to provide a lower bound for it by a function approaching 1 as r → ∞.

Proposition 12—Consider αℝ(d, r) as in Definition 11. Then,

(20)

Proof: Gordon’s theorem for Gaussian matrices (see Theorem 5.32 in [Ver12]) gives us

where smin(G) is the smallest singular value. The bound follows immediately from noting 

that the average singular value is larger than the expected value of the smallest singular 

value.

As we are bounding αℝ(d, r) by the expected value of the smallest singular value of a 

Gaussian matrix, we do not expect (20) to be tight. In fact, for d = 1, the stronger 

 bound holds [BFV10].
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Similarly to αℝ(d), we can describe the behavior of αℝ(d, r) in the limit as d → ∞ and 

. More precisely, the singular values of G correspond to the square root of the 

eigenvalues of the Wishart matrix [CD11] . Let us set r = ρd, for ρ ≥ 1. The 

distribution of the eigenvalues of a Wishart matrix , as d → ∞ are known to 

converge to the Marchenko Pastur distribution (see [CD11]) given by

where .

Hence, we can define ε(ρ) as

Although we do not provide a closed form solution for ε(ρ) the integral can be easily 

computed numerically and we plot it below. It shows how the approximation ratio improves 

as ρ increases.

6 Integrality Gap

In this section we provide an integrality gap for relaxation (5) that matches our 

approximation ratio αℝ(d)2. For the sake of the exposition we will restrict ourselves to the 

real case, but it is not difficult to see that all the arguments can be adapted to the complex 

case.

Our construction is an adaption of the classical construction for the d = 1 case (see, e.g., 

[AN04]). As it will become clear below, there is an extra difficulty in the d > 1 orthogonal 

case. In fact, the bound on the integrality gap of (5) given by this construction is , 

defined as

(21)

where G is a Gaussian matrix with i.i.d. real entries .
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Fortunately, using the notion of operator concavity of a function and the Lowner-Heinz 

Theorem [Car09], we are able to show the following theorem.

Theorem 13

Let d ≥ 1. Also, let αℝ(d) be as defined in Definition 2 and  as defined in (21). Then,

Proof—We want to show that

where G is a d × d matrix with i.i.d. entries . By taking V = D2, and recalling the 

definition of singular value, we obtain the following claim (which immediately implies 

Theorem 13)

Claim 6.1

Proof—We will proceed by contradiction, suppose (6.1) does not hold. Since the 

optimization space is compact and the function continuous it must have a maximum that is 

attained by a certain V ≠ Id×d. Out of all maximizers V, let V(*) be the one with smallest 

possible Frobenius norm. The idea will be to use concavity arguments to build an optimal 

V(card) with smaller Frobenius norm, arriving at a contradiction and hence showing the 

theorem.

Since V(*) is optimal we have

Furthermore, since V(*) ≠ Id×d, it must have two different diagonal elements. Let V(**) be a 

matrix obtained by swapping, in V(*), two of its non-equal diagonal elements. Clearly, 

‖V(**)‖F = ‖V(*)‖F and, because of the rotation invariance of the Gaussian, it is easy to see 

that
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Since V(*) ⪰ 0, these two matrices are not multiples of each other and so

has a strictly smaller Frobenius norm than V(*). It is also clear that V(card) is a feasible 

solution. We conclude the proof by showing

(22)

By linearity of expectation and construction of V(card), (22) is equivalent to

This inequality follows from the stronger statement: Given two d × d matrices A ⪰ 0 and B 
⪰ 0, the following holds

(23)

Finally, (23) follows from the Lowner-Heinz Theorem, which states that the square root 

function is operator concave (See these lecture notes [Car09] for a very nice introduction to 

these inequalities).

Theorem 13 guarantees the optimality of the approximation ratio obtained in Section 3. In 

fact, we show the theorem below.

Theorem 14

For any d ≥ 1 and any ɛ > 0, there exists n for which there exists C ∈ ℝdn×dn such that C ⪰ 0, 

and

(24)

We will construct C randomly and show that it satisfies (24) with positive probability. Given 

p an integer we consider n i.i.d. matrix random variables Vk, with k = 1, …, n, where each 
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Vk is a d × dp Gaussian matrix whose entries are . We then define C as the 

random matrix with d × d blocks . The idea now is to understand the typical 

behavior of both

For wc, we can rewrite

If

then . The idea is that, 

given a fixed (direction unit frobenius-norm matrix) , 

converges to the expected value of one of the summands and, by an ε-net argument (since 

the dimension of the space where  is depends only on d and p and the number of 

summands is n which can be made much larger than d and p) we can argue that the sum is 

close, for all  simultaneously, to that expectation. It is not hard to see that we can assume 

that  where D is diagonal and non-negative d × d matrix with . In that 

case (see (21)),

where G is a Gaussian matrix with i.i.d. real entries . This, together with Theorem 

13, gives . All of this is made precise in the following 

lemma

Lemma 15

For any d and ɛ > 0 there exists p0 and n0 such that, for any p > p0 and n > n0,
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with probability strictly larger than 1/2.

Proof—Let us define

We have

For D with ‖D‖F = 1, we define

We proceed by understanding the behavior of AD(V) for a specific D.

Let , where Σ is a d × d non-negative diagonal matrix, be the singular 

value decomposition of D. For each i = 1, …, n, we have (using rotation invariance of the 

Gaussian distribution):

where G is a d × d Gaussian matrix with  entries.
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This means that

with Xi i.i.d. distributed as .

Since , by (21), we get

This, together with Theorem 13, gives

(25)

In order to give tail bounds for  we will show that Xi is subgaussian and 

use Hoeffding’s inequality (see Vershynin’s notes [Ver12]). In fact,

Note that  is a subgaussian random variable as ‖G‖F is smaller than the entry wise ℓ1 

norm of G which is the sum of d2 half-normals (more specifically, the absolute value of a 

 random variable). Since half-normals are subgaussian and the sum of subgaussian 

random variables is a subgaussian random variable with subgaussian norm at most the sum 

of the norms (see the Rotation invariance Lemma in [Ver12]) we get that Xi is subgaussian. 

Furthermore, the subgaussian norm of Xi, which we define as 

, is bounded by , for some 

universal constant C.

Hence, we can use Hoeffding’s inequality (see [Ver12]) and get, since ,
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where ci are universal constants.

To find an upper bound for  we use a classicl ε-net argument. 

There exists a set  of matrices Dk ∈ ℝd×pd satisfying ‖Dk‖F = 1, such that for any D ∈ 

ℝd×pd with Frobenius norm 1, there exists an element  such that . 

 is called an ε-net, and it’s known (see [Ver12]) that there exists such a set with size

By the union-bound, with probability at least

all the Dk’s in  satisfy

If D is not in , there exists  such that ‖D − Dk‖F ≤ ε. This means that

We can globally bound  by Hoeffding’s inequality as well (see [Ver12]). 

Using the same argument as above, it is easy to see that ‖Vi‖F has subgaussian norm 

bounded by , and an explicit computation shows its mean is 

, where the inequality follows from lemma 20.

This means that by Hoeffding’s inequality (see [Ver12])
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with ci universal constants.

By union-bound on the two events above, with probability at least

we have

Choosing  and  we get

with probability at least

which can be made arbitrarily close to 1 by taking n large enough.

This means that

with high probability, proving the lemma.      □

Regarding wr, we know that it is at least the value of  for 

. Since, for p large enough,  we essentially have 
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 which should approximate . This is made precise in 

the following lemma:

Lemma 16

For any d and ɛ > 0 there exists p0 and n0 such that, for any p > p0 and n > n0,

with probability strictly larger than 1/2.

Proof—Recall that  is the d × dp matrix polar component of Vi, meaning that

Hence,

We proceed by using a lower bound for the expected value of the smallest eigenvalue (see 

[Ver12]), and get

Since , it has subgaussian norm smaller than Cd, with C an 

universal constant (using the same argument as in Lemma 15). Therefore, by Hoeffding’s 

inequality (see [Ver12]),
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where ci are universal constants.

By setting , we get

with probability at least  proving the Lemma.

Theorem 14 immediately follows from these two lemmas.

We note that these techniques are quite general. It is not difficult to see that these arguments, 

establishing integrality gaps that match the approximation ratios obtained, can be easily 

adapted for both the unitary case and the rank constrained case introduced in Section 5. For 

the sake of exposition we omit the details in these cases.

7 Open Problems and Future Work

Besides Conjecture 8, there are several extensions of this work that the authors consider to 

be interesting directions for future work.

A natural extension is to consider the little Grothendieck problem (3) over other groups of 

matrices. One interesting extension would be to consider the special orthogonal group 

and the special unitary group , these seem more difficult since they are not described by 

quadratic constraints.3

In some applications, like Synchronization [BSS13, Sin11] (a similar problem to Orthogonal 

Procrustes) and Common Lines [SS11], the positive semidefiniteness condition is not 

natural. It would be useful to better understand approximation algorithms for a version of (3) 

where C is not assumed to be positive semidefinite. Previous work in the special case d = 1, 

[NRT99, CW04, AMMN05] for  and [SZY07] for , suggest that it is possible to obtain 

an approximation ratio for (3) depending logarithmically on the size of the problem. 

Moreover, for , the logarithmic term is known to be needed in general [AMMN05].

It would also be interesting to understand whether the techniques in [AN04] can be adapted 

to obtain an approximation algorithm to the bipartite Grothendieck problem over the 

orthogonal group; this would be closer in spirit to the non commutative Grothendieck 

inequality [NRV13].

Another interesting question is whether the approximation ratios obtained in this paper 

correspond to the hardness of approximation of the problem (perhaps conditioned on the 

Unique-Games conjecture [Kho10]). Our optimality conditions are restricted to the 

3The additional constraint that forces a matrix to be in the special orthogonal or unitary group is having determinant equal to 1 which 
is not quadratic.
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particular relaxation we consider and do not exclude the existence of an efficient algorithm, 

not relying on the same relaxation, that approximates (3) with a better approximation ratio. 

Nevertheless, Raghavendra [Rag08] results on hardness for a host of problems matching the 

integrality gap of natural SDP relaxations suggest that our approximation ratios might be 

optimal (see also the recent results in [BRS15]).
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A Technical proofs – analysis of algorithm for the Stiefel Manifold setting

Lemma 17

Let r ≥ d. Let G be a d × r Gaussian random matrix with real valued i.i.d.  entries 

and let αℝ(d, r) as defined in Definition 11. Then,

Furthermore, if G is a d × r Gaussian random matrix with complex valued i.i.d. 

entries and αℂ(d, r) the analogous constant (Definition 11), then

The proof of this Lemma is a simple adaptation of the proof of Lemma 6.

Proof

We restrict the presentation to the real case. As before, all the arguments are equivalent to 

the complex case, replacing all transposes with Hermitian adjoints and αℝ(d, r) with αℂ(d, 
r).

Let G = U[Σ 0]VT be the singular value decomposition of G. Since GGT = UΣ2UT is a 

Wishart matrix, it is well known that its eigenvalues and eigenvectors are independent and U 
is distributed according to the Haar measure in  (see e.g. Lemma 2.6 in [TV04]). To 

resolve ambiguities, we consider Σ ordered such that Σ11 ≥ Σ22 ≥ … ≥ Σdd.

Let . Since
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we have

Note that .

Since , where u1, …, ud are the rows of U, and U is distributed according to the 

Haar measure, we have that uj and −uj have the same distribution conditioned on any ui, for i 

≠ j, and Σ. This implies that, if i ≠ j,  is a symmetric random variable, and so 

. Also, ui ~ uj implies that Yii ~ Yjj. This means that  for some constant c. To 

obtain c,

which shows the lemma.      □

Lemma 18

Let r ≥ d. Let M, N ∈ ℝd×nd such that M MT = N NT = Id×d. Let R ∈ ℝnd×r be a Gaussian 

random matrix with real valued i.i.d. entries . Then

where αℝ(d, r) is the constant in Definition 11.

Analogously, if M, N ∈ ℂd×nd such that MMH=N NH = Id×d, and R ∈ ℂnd×r is a Gaussian 

random matrix with complex valued i.i.d. entries , then

where αℂ(d, r) is the constant in Definition 11.

Similarly to above, the proof of this Lemma is a simple adaptation of the proof of Lemma 5.
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Proof

We restrict the presentation of proof to the real case. Nevertheless, all the arguments trivially 

adapt to the complex case by, essentially, replacing all transposes with Hermitian adjoints 

and αℝ(d) and αℝ(d, r) with αℂ(d) and αℂ(d, r).

Let A = [MT NT] ∈ ℝdn×2d and A = QB be the QR decomposition of A with Q ∈ ℝnd×nd an 

orthogonal matrix and B ∈ ℝnd×2d upper triangular with non-negative diagonal entries; note 

that only the first 2d rows of B are nonzero. We can write

where B11 ∈ ℝd×d and B22 ∈ ℝd×d are upper triangular matrices with non-negative diagonal 

entries. Since

B11 = (QT MT)11 is an orthogonal matrix, which together with the non-negativity of the 

diagonal entries (and the fact that B11 is upper-triangular) forces B11 to be B11 = Id×d.

Since R is a Gaussian matrix and Q is an orthogonal matrix, QR ~ R which implies

Since  and 

,

where R1 and R2 are the first two d × r blocks of R. Since these blocks are independent, the 

second term vanishes and we have

The Lemma now follows from using Lemma 17 to obtain 

and nothing that .
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The same argument, with Q′B′ the QR decomposition of A′ = [NTMT] ∈ ℝdn×2d instead, 

shows

B Bounds for the average singular value

Lemma 19

Let  be a Gaussian random matrix with i.i.d. complex valued  entries 

and define . We have the following bound

Proof

We express  as sums and products of Gamma functions and then use classical bounds 

to obtain our result.

Recall that from equation (16),

(26)

where

and Ln(x) is the nth Laguerre polynomial,

This integral can be expressed as (see [GR94] section 7.414 equation 4(1))

(27)

where (x)m is the Pochhammer symbol
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The next lemma states a couple basic facts about the Gamma function that we will need in 

the subsequent computations.

Lemma 20

The Gamma function satisfies the following inequalities:

Proof

See [AS64] page 255.

We want to bound the summation in (27), which we rewrite as

For simplicity define

so that (27) becomes
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The first term we can compute explicitly (see [GR94]) as

For the second term we use the fact that  to get

Using the first inequality in Lemma 20 and the multiplication formula for the Gamma 

function,

so we have

For the third term, we use the formula  to deduce

Using the second bound in Lemma 20,

and also

so that
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If we multiply top and bottom by  and use the fact that

then

Combining our bounds for (I), (II) and (III),

and by (26),

The term  is the main term and can be bounded below by

The other error terms are at most
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Combining the main and error term bounds, the lemma follows.

Lemma 21

For  a Gaussian random matrix with i.i.d.  valued  (0, d−1) entries, define 

. The following holds

Proof

To find an explicit formula for αℝ(d), we need an expression for the spectral distribution of 

the wishart matrix , which we call , given by equation (16) in [LV11]:

where

κ = d mod 2 and  is the incomplete Gamma function.

This means that
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Recall that (see section 5)

which implies

(28)

We are especially interested in the following terms which appear in the full expression for 

αℝ(d):

(29)

From [GR94] section 7.414 equation 4(1), we have

The following lemma deals with bounds on sums involving Q(m, k) terms.

Lemma 22

For Q(m, k) as defined in (29) we have the following bounds

(30)

(31)

Proof

Note that in (30),
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since m ≥ k.

For 0 < i < 2k − 1, the ith term in the summation of Q(2m, 2k) can be bounded above by

This means that

We bound the sum from i = 1 to 2k − 3 by

so that for k ≥ 1,

For k = 0, Q(2m, 0) < 0 except for the term  which also becomes negative in 

the full sum, so we ignore these terms.

We now turn our attention to the full sum . As before, we define 

for clarity
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Using the bounds in lemma 20,

Finally,

To deduce the inequality (31), we use the previously derived bounds to show that
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so that Q(2m − 1; 2k − 1) ≤ Q(2m, 2k). Now it suffices to note that in the full sum, 

 and we get

We now return our focus to finding a bound on the expression for αℝ (d) given in (28). Since 

ψ1, ψ2 depend on the parity of d, we split in to two cases.

Odd d = 2m + 1

From (see [GR94] section 7.414 equation 6),

thus equation (28) becomes

and using the first bound in Lemma 22,

Even d = 2m

For d = 2m, we have

We split the integral into two parts,

Expanding from the definition of ψ1 above, we have
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so by Lemma 22,

The other part of the integral is

where we use the fact that for odd 2m − 1 (see [GR94] section 7.414 equation 6),

We can bound the first integral in the expression of (II) by

so finally

Combining the above bounds we see that in the case of even d = 2m,
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Figure 1. 

Plot showing the computed values of , for d ≤ 44, the limit of  as d → ∞, the 

lower bound for  given by Theorem 7 as function of d, and the approximation ratio of 

 and  obtained in [NRV13].

Bandeira et al. Page 46

Math Program. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Plot of ε(ρ) = limd → ∞ αℝ(d, ρd) for ρ ∈ [1, 5].
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