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Abstract

While almost everyone discounts the value of future rewards over immediate rewards, people 

differ in their so-called delay-discounting. One of the several factors that may explain individual 

differences in delay-discounting is reward-processing. To study individual-differences in reward-

processing, however, one needs to consider the heterogeneity of neural-activity at each reward-

processing stage. Here using EEG, we separated reward-related neural activity into distinct 

reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven 

individuals completed a behavioral delay-discounting task. Reward-processing EEG activity was 

assessed using a separate reward-learning task, called a reward time-estimation task. During this 

task, participants were instructed to estimate time duration and were provided performance 

feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance 

on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, 

enhanced EEG activity during both reward-anticipation stage (including, cued-locked delta power 

during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and at the 

reward-outcome stage (including, feedback-locked delta, theta and beta power). Moreover, all of 

these EEG indices correlated with behavioral performance in the time-estimation task, suggesting 

their essential roles in learning and adjusting performance to maximize winnings in a reward-

learning situation. Importantly, enhanced EEG power during Reward trials for 1) pre-feedback 

alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta was associated with a 

greater preference for larger-but-delayed rewards. Results highlight the association between a 

stronger preference toward larger-but-delayed rewards and enhanced reward-processing. 

Moreover, our reward-processing EEG indices detail the specific stages of reward-processing 

where these associations occur.
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1. Introduction

Choosing between receiving $400 today or $800 today is easy. Most people, if not everyone, 

will select $800 today. However, choosing between receiving $400 today or $800 in three 

years is more difficult, and different people will choose differently. This latter decision 

becomes harder and requires a stronger computational demand (Rangel, Camerer, & 

Montague, 2008) because the subjective value of $800 is devalued, or discounted, over time. 

For decades, economists, psychologists, and, more recently, cognitive neuroscientists have 

studied this so-called delay-discounting phenomenon (also known as temporal discounting 

or inter-temporal choices; Ainslie, 1975; Frederick, Loewenstein, & O’Donoghue, 2003; 

Kalenscher & Pennartz, 2008; Peters & Büchel, 2011; Samuelson, 1937; Schultz, 2010). 

While the phenomenon is well documented, it is clear that people vary in how much they 

discount future rewards. In fact, individual differences in delay-discounting are stable over 

time and are sometimes considered a personality trait (Kirby, 2009; Odum, 2011). Recently 

personality and cognitive-neuroscience research has shown that these individual differences 

in delay-discounting are correlated with several trait affective and cognitive variables (Civai, 

Hawes, DeYoung, & Rustichini, 2016; Hirsh, Morisano, & Peterson, 2008; Mahalingam, 

Stillwell, Kosinski, Rust, & Kogan, 2014). Among these variables is reward-processing 

(Benningfield et al., 2014; Boettiger et al., 2007; Hariri et al., 2006), which relates to the 

value an individual places on potential rewards during both the expectation and receipt of 

that reward (McClure, York, & Montague, 2004; Schultz, Tremblay, & Hollerman, 2000). 

Yet, the exact nature of the relationship between delay-discounting tendencies and individual 

differences in reward-processing is still unclear, perhaps due to the multifaceted nature of 

reward-processing.

1.1 Reward-Processing and Individual Differences in Delay-Discounting Responses

An early study by Hariri and colleagues (2006) reported that individuals with elevated 

reward-related neural activation in the ventral striatum (VS) during an incentivized fMRI 

card-guessing task had a stronger preference toward smaller-but-immediate rewards, as 

indexed by a subsequent behavioral delay-discounting task. This finding suggests that 

enhanced reward-processing is related to a stronger preference toward smaller-but-

immediate rewards. However, recent data suggests the opposite pattern, indicating that 

elevated reward-processing is associated with a preference for larger-but-delayed (as 

opposed to smaller-but-immediate) rewards. In line with this view, a recent fMRI study 

using the Monetary Incentive Delay (MID) task reported that elevated VS activation during 

reward-anticipation among adolescents was associated with a stronger preference for larger-

but-delayed rewards on a subsequent behavioral delay-discounting task (Benningfield et al., 

2014). This finding is consistent with other recent fMRI studies reporting that elevated 

activation in the VS is associated with a stronger preference toward larger-but-delayed 

rewards (Ballard & Knutson, 2009; Samanez-Larkin et al., 2011). This relationship is also in 
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line with animal research showing that lesions to the VS lead to a preference for smaller-but-

immediate choices (Cardinal et al., 2001). In addition to the VS, enhanced activity in another 

neural region implicated in reward processing, the lateral orbitofrontal cortex (L-OFC), has 

been associated with a stronger preference toward larger-but-delayed rewards during an 

fMRI delay-discounting task (Boettiger et al., 2007). Next, there is indirect evidence from 

research involving the Val158Met polymorphism of the catechol-O-methyltransferase 

(COMT) gene. The Met-allele of the COMT gene is associated with higher synaptic 

dopamine levels and carriers of this allele display enhanced VS activation in an fMRI reward 

task (Chen et al., 2004; Yacubian et al., 2007). Critically, Met-allele carriers also show a 

preference toward larger-but-delayed rewards (Boettiger et al., 2007; Gianotti, Figner, 

Ebstein, & Knoch, 2012; Smith & Boettiger, 2012). More recently, research with Parkinson 

patients suggests that medications designed to elevate dopamine signaling are associated 

with a heightened preference for larger-but-delayed rewards (Foerde et al., 2016). Thus, 

taken as a whole, evidence from fMRI, animal, genetic, and pharmacological studies suggest 

that individuals with elevated reward-processing have a tendency to wait for larger rewards 

and forgo smaller-but-immediate rewards.1

The current study aimed to further test and substantiate the relationship between a stronger 

preference toward larger-but-delayed rewards and enhanced reward-processing by 

investigating the relationship at different temporal stages of reward-processing via 

electroencephalogram (EEG). Reward-processing is thought be comprised of two temporal 

stages that are mediated by distinct neurobiological systems: reward-anticipation and 

reward-outcome (Berridge, 1996; Wise, 2008). The superior temporal resolution of EEG, 

compared to fMRI, allows researchers to more accurately dissociate neural-cognitive states 

that occur close to each other in time (Cohen, 2014; Luck, 2014), such as reward-

anticipation and reward-outcome stages, as well as between different sub-stages within 

reward-anticipation itself (Brunia, Hackley, van Boxtel, Kotani, & Ohgami, 2011; Goldstein 

et al., 2006; McAdam & Seales, 1969). EEG, for instance, has been used to dissociate 

reward-anticipation from motor-preparation (Brunia et al., 2011; Hughes, Mathan, & Yeung, 

2013), which has been a challenge in previous fMRI research on the relationship between 

reward-processing and delay discounting tendencies. As noted by Benningfield and 

colleagues (2014), for example, the fMRI MID task does not isolate motor-preparation 

processes from reward-anticipation processes. Moreover, recent advancements in EEG time-

frequency analyses allows researchers to investigate neural processes in ways that may not 

be available in other techniques, such as examining changes in neural activation (power) at a 

1The relationship between elevated reward-processing and a stronger preference for larger-but-delayed rewards does not necessarily 
support or contradict one of the most cited theories in delay-discounting, called “the visceral factor perspective” by Loewenstein and 
colleagues (Frederick et al., 2003; Loewenstein, 1996, 2000). Loewenstein and colleagues proposed that visceral factors, or drive 
states (such as, hunger, thirst, emotions, moods, craving for drugs, etc.), may explain intra-individual variability in delay-discounting. 
These visceral factors are endogenous, and can be changed from moment to moment depending on one’s drive state (e.g., hunger level 
depending on how long ago a person ate food). To support his theory, Loewenstein (1996) highlights research by Mischel and 
colleagues (Mischel, 1974; Mischel, Shoda, & Rodriguez, 1989) showing that children prefer a smaller-but-immediate reward if the 
reward object (e.g., marshmallow) is placed in front of them. But children would prefer a larger-but-delayed reward if they see a 
photograph of the delayed reward object. Loewenstein (1996) interpreted these findings as suggesting that having the reward object in 
front of you enhances the drive state for the immediate rewards, and seeing the photograph of the delayed reward object enhances 
drive states for the delayed reward. The focus in the current study, however, is inter-individual relationships between reward-
processing and delay-discounting. This is reflecdted in the use of separate reward-processing and delay-discounting tasks, and the fact 
that we did not manipulate the visceral factors of our delay-discounting task (see Methods).
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specific time windows and frequency bands (Cohen, 2014; Makeig, Debener, Onton, & 

Delorme, 2004).

1.2 The Reward Time Estimation Task

To identify different stages of reward-processing, we adapted a feedback-learning task 

(called the reward time estimation task) (e.g., Damen & Brunia, 1987; Kotani et al., 2003; 

Luft, 2014; Pornpattananangkul & Nusslock, 2015). Here participants were asked to 

estimate a specific time duration by pressing a button 3.5 s after the onset of a Reward or 

No-Reward cue. The Reward/No-Reward cue indicated whether the current trial was a 

Reward- or No-Reward trial. Participants received monetary-reward for accurate-

performance (pressing close to 3.5 s) on Reward trials, but not on No-Reward trials. Two 

seconds after making the button press, participants received feedback regarding the accuracy 

of their time-estimation. This paradigm allowed us to parse EEG related to reward-

processing into reward-anticipation and reward-outcome phases (i.e., before and after 

feedback onset, respectively). Within reward-anticipation, we further separated EEG activity 

into 1) a cue-evaluation stage, involving a period immediately following the Reward/No-

Reward cue, and 2) a feedback-anticipation stage, involving a period right before the 

feedback while participants were waiting to see if their recent action was considered 

accurate (i.e., close to 3.5 s). In addition to EEG indices, the improvement of time-

estimation accuracy as the task proceeds can also be used as a behavioral index for the 

effectiveness in learning through feedback (Luft, Nolte, & Bhattacharya, 2013). When the 

task provides rewards based on performance, then this behavioral index may reflect 

motivated-learning, or how motivated people are in learning to improve their performance in 

order to maximize reward earning (Luft, 2014). This motivated-learning behavioral index 

can be used 1) in corroborating EEG activity as indices of reward processing, and 2) in and 

of itself as an indirect, behavioral measure for individual-differences in reward-processing.

1.3 EEG Indices at Each Stage of Reward-Processing

During cue-evaluation, participants evaluated whether their immediate future action could 

lead to a reward. In previous research, a cue signaling the possibility of receiving a reward 

was associated with a stronger P3 ERP component (compared to a cue in No-Reward trials) 

(Broyd et al., 2012; Goldstein et al., 2006; Ramsey & Finn, 1997; Santesso et al., 2012). 

More recently, Cavanagh (2015) found an enhancement of EEG power (or synchronization) 

in the delta band (~ 1 – 3 Hz, called cue-locked delta) to reward-related cues. This cue-

locked delta power at parietal sites approximately 100 – 500 ms following cue onset is 

relevant to the P3 ERP component. Moreover, Cavanagh (2015) showed that enhanced cue-

locked delta power to reward-related cues predicted behavioral adjustments in a 

reinforcement learning task, suggesting an important role of cue-locked delta power in the 

cue evaluation stage

As for feedback-anticipation, the suppression (or desynchronization) of alpha (~8–13 Hz) 

EEG power at parieto-occipital sites prior to stimulus onset appears to index anticipation-

related processes toward upcoming visual stimuli. For instance, using a time-estimation task, 

Bastiaansen and colleagues (2002; 1999; 2001) provided either visual or auditory feedback 

regarding the accuracy of time-estimation to participants. The authors reported alpha power 
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suppression immediately preceding both types of feedback, but this alpha suppression was 

strongly distributed to occipital sites for the visual, but not auditory, feedback. This suggests 

the role of pre-stimulus alpha suppression in modality-specific anticipation processes. Given 

that alpha power reflects the functional inhibition of neural activity (Jensen & Mazaheri, 

2010), alpha suppression during the pre-stimulus anticipatory period likely reflects the dis-

inhibition of neural activity in sensory cortices to facilitate attentional allocation to the 

upcoming stimulus. Additionally, this pre-stimulus suppression of parieto-occipital alpha to 

visual stimuli has been found to track the location of where people anticipate the stimuli to 

appear (Thut, Nietzel, Brandt, & Pascual-Leone, 2006). Stronger suppression of pre-

stimulus alpha power is also associated with how well people perceive the preceding near-

threshold stimulus (Hanslmayr et al., 2007). Collectively, these findings suggest a 

relationship between alpha-suppression and anticipatory attention. More recently, stronger 

alpha suppression has been reported following monetary-reward cues and preceding 

monetary-reward feedback (Hughes et al., 2013). This additional suppression of alpha power 

by reward motivational cues suggests that alpha suppression indexes enhanced attentional 

processes during the anticipation of reward-related stimuli/feedback. Consistent with this 

idea, van den Berg and colleague (2014) recently investigated the role of reward-related cues 

in a Stroop task, and demonstrated an inter-individual relationship. Specifically, individuals 

who had particularly strong alpha suppression following reward-related cues were more 

likely to have better behavioral performance on reward trials. Therefore, pre-feedback alpha 

suppression should serve as a reliable index for individual differences in reward-processing 

during the feedback-anticipation stage of reward-anticipation.

The reward-outcome period in our time-estimation task involved participants receiving 

feedback for that particular trial. We focused on two types of feedback evaluation: reward-

evaluation and performance-evaluation. During reward-evaluation, individuals evaluate the 

motivational value of the feedback (Luft, 2014). That is, regardless of whether their 

performance outcome is good or bad, people should be more motivated to learn the outcome 

of their performance when this performance can lead to monetary reward (i.e., during 

Reward trials compared to No-Reward trials). During performance-evaluation, individuals 

assess whether their prior action was good or bad in meeting their performance goal, e.g., 

whether or not their time-estimation was accurate (Cavanagh & Shackman, 2015; Miltner, 

Braun, & Coles, 1997). The concept of performance evaluation has been related to both 

prediction error and conflict resolution. Unfortunately, many EEG studies have lumped these 

two aspects of feedback evaluation (i.e., reward-evaluation and performance evaluation) 

together, making it difficult to interprete the specific cognitive processes underlying their 

EEG findings. Here we separate reward-evaluation and performance evaluation. 

Furthermore, we examine three separate EEG indices during the reward-outcome stage, each 

occurring at distinct frequency bands: feedback-locked delta, feedback-locked theta and 

feedback-locked beta. As outlined next, we argue that each of these feedback-locked EEG 

profiles index individual differences in reward-processing during the reward-outcome stage.

First, similar to cue-locked delta, recent studies have started to document changes in 

feedback-locked delta (1–3 Hz) power at parietal sites during reward-outcome 

approximately 100–500 ms following feedback onset (Cavanagh, 2015; Foti, Weinberg, 

Bernat, & Proudfit, 2015; Leicht et al., 2013). Cavanagh (2015) reported that feedback-
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locked delta was associated with prediction error in a reinforcement-learning task. Foti and 

colleagues (2015) reported that feedback-locked delta activity was stronger to feedbacks 

indicating monetary gains, compared to losses. Nonetheless, because monetary-gain 

feedback in these previous studies indicated both good performance and a positive reward 

outcome, it remains unclear whether enhancement in feedback-locked delta activity to gain 

feedback is driven by performance-evaluation or reward-evaluation. In the present study, we 

use the time estimation task to dissociate neural processes associated with reward and 

performance evaluation, and we examine their respective relationships with individual 

differences in delay-discounting.

Next, the enhancement of feedback-locked theta (~4–7 Hz) power at frontal-midline sites 

(i.e., frontal-midline theta, FMT) approximately 200–400 ms following feedback onset has 

been implicated in feedback/outcome evaluation (Cohen, Wilmes, & van de Vijver, 2011). 

Thought to be generated from the anterior-cingulate cortex (Cavanagh & Frank, 2014), 

enhanced feedback-locked theta has been associated with cognitive-control processes that 

incorporate feedback/outcome information to facilitate behavioral adjustment on subsequent 

trials in order to maximize performance (van de Vijver, Ridderinkhof, & Cohen, 2011). 

Feedback-locked theta appears sensitive to both performance-evaluation and reward-

evaluation (Luft, 2014). In contrast to feedback-locked delta, feedback-locked theta is 

reliably stronger for bad-performance (compared to good-performance) feedback (Cohen, 

Elger, & Ranganath, 2007; for a review see Luft, 2014). Additionally, such enhancement to 

bad-performance feedback predicts behavioral adjustment on a subsequent trial (Cavanagh 

& Shackman, 2015). As for reward-evaluation, Van den Berg and colleagues (2012) 

employed the time-estimation task and focused on the Feedback-Related Negativity (FRN), 

an event-related potential (ERP) thought to reflect the phase/time-locked feature of 

feedback-locked theta (Cavanagh, Zambrano-Vazquez, & Allen, 2012). They found an 

enhanced FRN to feedback during Reward-trials where Good-performance led to monetary 

reward, compared to feedback during No-Reward trials where performance had no monetary 

consequences. Similar to the FRN, other studies have shown the influence of reward-

evaluation on feedback-locked theta. For instance, feedback-locked theta is modulated by 

reward expectation (Cohen et al., 2007) and is stronger following feedback indicating a 

higher magnitude of monetary reward (Leicht et al., 2013). Thus, we expected feedback-

locked theta to be modulated by both reward and performance evaluation.

Lastly, in addition to feedback-locked delta and theta, several recent studies have focused on 

feedback-locked EEG in the beta band (~15–25 Hz) (for review, see Luft, 2014). Similar to 

feedback-locked delta (but opposite to feedback-locked theta), researchers have consistently 

found stronger beta power to positive feedback (e.g., monetary gains), compared to negative 

feedback (e.g., monetary losses) (Cohen et al., 2007; De Pascalis, Varriale, & Rotonda, 

2012; HajiHosseini, Rodríguez-Fornells, & Marco-Pallarés, 2012; Marco-Pallares et al., 

2008; Marco-Pallarés et al., 2009). Given that a similar pattern of enhanced beta power has 

been reported in the ventral striatum of animals during a reward-processing task (Berke, 

2009; Courtemanche, Fujii, & Graybiel, 2003), it has been proposed that feedback-locked 

beta power represents reward-related signals from this region. Parietal feedback-locked beta 

power is reduced in humans following feedback during reward-learning tasks, such as the 

time estimation task (Luft, Nolte, et al., 2013; Luft, Takase, & Bhattacharya, 2013; van de 
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Vijver et al., 2011). This reduction in feedback-locked beta power (desynchronization) is 

less pronounced when feedback indicates good performance, compared to bad performance. 

Additionally, a greater enhancement of feedback-locked beta power (i.e., less reduction/

desynchronization) predicts more rapid learning of a time duration in the time estimation 

task (Luft, Nolte, et al., 2013). Nonetheless, similar to feedback-locked delta, most previous 

studies of feedback-locked beta have either lumped performance evaluation and reward 

evaluation feedback together (e.g., monetary gain indicating both good performance and 

reward associated with the performance) or focused solely on performance-evaluation, 

making it hard to interpret the psychological meaning of the effects. The current study 

separated the two aspects of feedback evaluation, and assessed their relationships with 

delay-discounting tendencies.

1.4 Current Study

In the present study, participants completed a behavioral delay-discounting task and then a 

separate EEG reward time-estimation task.2 Drawing on existing research (Benningfield et 

al., 2014; Boettiger et al., 2007; Foerde et al., 2016), we predict that enhanced reward-

related neural activity will be associated with a greater preference for larger-but-delayed 

rewards. An important contribution of this study is that we examined the relationship 

between reward-related neural activity and delay discounting tendencies at different 

temporal stages of reward-processing based on EEG time-frequency characteristics. Within 

the reward-anticipation stage, elevated reward-processing was operationalized as 1) greater 

cued-locked delta activity during cue-evaluation and 2) greater pre-feedback alpha 

suppression during feedback-anticipation. Within the reward-outcome stage, elevated 

reward-processing was operationalized as greater feedback-locked delta, theta and beta 

activity. To help corroborate these EEG variables as indices of reward processing, we 

examined the relationship between EEG-related data and behavioral learning performance 

during the reward time estimation task, which reflects motivated learning (Luft, Nolte, et al., 

2013). We also expect this behavioral index for motivated learning to correlate with 

individual differences in delay-discounting in a manner that is similar to reward-processing 

EEG indices.

2. Methods

2.1 Participants

Thirty-seven right-handed (< 18, Chapman Handedness Scale; Chapman and Chapman 

(1987) native English speakers (21 females; age M = 19.05 years, SD = 1.22) at 

Northwestern University received partial course credit for their participation. Participants 

also earned additional monetary bonus based on their performance in the reward time 

estimation task (see below). Data from nine additional participants were discarded due to an 

EEG equipment problem (n = 1), excessive EEG slow-frequency (i.e., sweat artifact; n = 2) 

2There are difficulties in interpreting results regarding individual differences from studies that investigated the association between 
reward-related neural activation and delay-discounting tendencies within the same delay-discounting task (e.g., Ballard & Knutson, 
2009; Boettiger et al., 2007). As argued by Benningfield and colleagues (2014), reward-related neural activation in the context of a 
delay-discounting task is already arbitrarily reduced due to the presence of the delay, and hence should not be used as an individual-
difference index for reward-processing. Accordingly, we employed two separate tasks to examine the relationship between reward-
related neural activity and delay discounting tendencies.
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or high-frequency noise (i.e., muscle artifact; n = 1), giving the same answer throughout the 

Delay-Discounting task (n = 2), or a model-fit index on the Delay-Discounting task (R-

square, see below) that was 1.5 inter-quartile ranges (IQRs) away from the nearer quartile (n 

= 3). Participants had no neurological history of head injury and were not taking 

psychotropic medications at the time of the study. Participants provided informed consent 

before the experiment. Northwestern Institutional Review Board approved the study.

2.2 Behavioral Measure of Delay-Discounting Responses: The Delay-Discounting Task

Before EEG setup, participants completed a computer-adaptive version of the Delay-

Discounting task (Figure 1a) to assess individual differences in delay-discounting tendencies 

(Ahn et al., 2011; Rachlin, Raineri, & Cross, 1991). Given previous studies reporting a 

similar pattern of responses in delay-discounting between hypothetical and real monetary 

rewards (M. W. Johnson & Bickel, 2002; Lagorio & Madden, 2005), we used hypothetical 

rewards in this task to allow us to assess a wide range of delay periods and reward amounts.

For each trial in the delay-discounting task, participants were told to choose between a 

smaller-but-immediate (e.g., “$400 now”) or larger-but-delayed (e.g., “$800 in one year”) 

reward (see Figure 1 for an example of a trial). There were six blocks of trials. Each block 

involved the same distribution of six different delay periods: two weeks, one month, six 

months, one year, three years or ten years. The order of blocks was fully randomized across 

participants. During the first trial of each block, participants made a choice between “$400 

now” vs. “$800 at a given delay.” A mean of the upper and lower bounds according to the 

choice made on the current trial were used as a smaller-but-immediate choice on the 

subsequent trial (Ahn et al., 2011; Du, Green, & Myerson, 2002; Green & Myerson, 2004). 

The larger-but-delayed choice was always fixed at $800 regardless of the choice made on the 

previous trial. For example, if “$400 now” was chosen over “$800 in one year”, then the 

smaller-but-immediate choice on the next trial would have been $200 (i.e., the mean of 

upper ($400) and lower ($0) bounds). This is because, based on the current-trial choice, 

“$800 in one year” had a lower subjective value than “$400 now”, which means that the 

subjective value of “$800 in one year” was between “$0 now” and “$400 now”. Thus, the 

subsequent trial would assess whether “$800 in one year” had a lower or higher subjective 

value than “$200 now.” Conversely, if “$800 in one year” was chosen over $400, the next 

smaller-but-immediate choice would have been “$600 now” (i.e., the mean of upper ($800) 

and lower ($400) bounds). Following procedures conventionally used in studies focusing on 

individual-differences (Ahn et al., 2011; Du et al., 2002), we continued the adaptation of the 

smaller-but-immediate choice to the sixth trial of each block. Accordingly, the mean of the 

upper and lower bounds of the sixth trial was considered participants’ subjective value of 

$800 at a given delay (Ahn et al., 2011; Du et al., 2002). The subjective values of $800 at 

every delay from all of the blocks were then fit into a hyperbolic model, which represented 

individual differences in delayed-discounting tendencies (Green & Myerson, 2004; Mazur, 

1987). The steepness of the slope within this hyperbolic model (known as the discounting 

rate, or k value) reflects the extent to which people prefer smaller-but-immediate (compared 

to larger-but-delayed) rewards (see data analyses below).
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2.3 EEG Measure of Reward-Processing: The Reward Time-Estimation Task

The reward time-estimation task, adapted from a previous EEG paradigm (e.g., Damen & 

Brunia, 1987; Kotani et al., 2003), was used to assess individual differences in reward-

related EEG activity. Participants were instructed to press a button with their right index 

finger 3.5 s after seeing a cue (see Figure 2 for a schematic representation of the task). 

During Reward Trials, participants earned 20 cents for accurate time estimations and 

received no monetary reward for inaccurate estimates. During No-Reward trials, participants 

received no monetary reward irrespective of their performance. Thus, the difference in EEG 

activity between Reward trials and No-Reward trials was considered an index of reward-

related neural activity and reward-processing more generally. Each trial began with a 

Reward/No-Reward anticipation cue that signaled whether the trial was a Reward or No-

Reward trial. This cue was presented for 300 ms and involved either circle or square shapes 

(counterbalanced across participants). The circle and square shapes were matched for 

luminance, contrast, and spatial frequency using Shine toolbox (Willenbockel et al., 2010) in 

Matlab.

We considered accurate responses as estimations that fell within the correct time-window. To 

control for variance in time-estimation ability among participants, two procedures were used 

to determine the correct time window. First, the correct time window on a given trial was 

shortened (or lengthened) by 20 ms if the response on the previous trial was (or was not) 

within the correct time-window (Kotani et al., 2003; Ohgami et al., 2006). This method has 

been found to generate an accuracy-rate of approximately 50%. Second, we included three 

Control blocks, each comprised of 36 trials, which were administered prior to the 

Experimental blocks. During these Control blocks, participants were instructed to button-

press 3.5 s after seeing a triangle-shaped cue. There was no reward involved during these 

Control blocks, and participants were not informed about any of the reward contingencies in 

the time estimation task until after they finished these blocks. Moreover, unlike the 

Experimental blocks, participants received no performance feedback during the Control 

blocks, except if they made an extremely fast (a response faster than 2 s, indicated by a “<2” 

sign) or slow (a response slower than 5 s, indicated by a “>5” sign) response. These Control 

blocks allowed us to generate a correct response time window that was then calibrated to 

each individual participant and to measure participant’s initial time-estimation ability prior 

to them learning through reward/performance feedback in the Experimental blocks (see 

below). The initial time window for a correct response during the Control blocks was +/

− 500 ms, centered at 3500 ms. Following the Control blocks, participants completed 30 

practice trials. These practice trials resembled trials during the Experimental blocks, except 

there were no earnings. The individualized time window for a correct response obtained 

from the Control blocks was used in the first practice trial.

The Experimental blocks consisted of six blocks of 36 trials. Within each block, there was a 

random distribution of Reward and No-Reward trials with a 50/50 split for each trial type. 

During the Experimental blocks, two lines of feedback text appeared two seconds following 

the button-press in the middle of the screen for 1000 ms (see Figure 2). The top-line 

indicated performance feedback information, which was separated into three categories: 

Good-Performance, Bad-Performance and extremely fast/slow. Good-Performance 
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corresponded to an accurate response, or a response within the correct time-window, and 

was indicated by a “=“ sign on the top line. Bad-Performance corresponded to a response 

slower than 2 s and faster than 5 s, but not within the correct time-window, and was 

indicated by a “<3.5” (for a response between 2 s and the lower end of the correct time-

window) or “>3.5” (for a response between the higher end of the correct time-window and 

5s) sign on the top line. Extremely fast/slow feedback corresponded to a response faster than 

2 s or slower than 5 s and was indicated by a “<2” (for a response faster than 2 s) or “>5” 

(for a response slower than 5 s) sign on the top line.

The bottom line of the feedback text indicated whether or not participants won money for 

that particular response and included the following: “$” indicated the participant won money 

(20 cents) for that trial, and “0” indicated the participant did not win money for that trial. 

Thus, during Reward trials, participants would see “$”for Good-Performance, and see “0” 

for both Bad-Performance and Extremely fast/slow estimation. For No-Reward trials, 

participants would see “0” regardless of their performance. Trials were terminated with a 

randomly distributed ITI between 1000–1150 ms. To incentivize participants’ continued 

attention on both Reward and No-Reward trials, they were told they would receive no 

earnings if they saw feedback indicating extremely fast/slow responses (i.e., “<2” or “>5”) 

more than 15 times. This ensured that they avoided extremely fast or slow responses.

2.4 Procedure

Following consent, participants completed the delay-discounting task. EEG electrodes were 

then applied and participants next completed the Time-Estimation Task. To help familiarize 

participants with the time duration of 3.5-s, participants first listened to two beep sounds 

3.5-s apart as many times as they desired. Participants then completed the Control blocks for 

the Time-Estimation Task with no knowledge of the upcoming Experimental blocks. 

Participants were then given instructions regarding the Experimental blocks and 

corresponding Reward and No-Reward cues and the different kinds of feedbacks for the 

Time-Estimation Task. Participants were tested on their comprehension of these cues and 

feedbacks. Each block was separated by breaks of participant-determined length. During 

these breaks, participants were informed of their earnings and reminded of the meaning of 

the Reward/No-Reward Cues.

2.5 Electrophysiological Recording

Continuous EEG data with a sampling rate at 500 Hz (DC to 100 Hz on-line, Neuroscan 

Inc.) were collected from inside an electro-magnetic shielded booth. Twenty-four Ag/AgCl 

scalp electrodes were used (F7/3/z/4/8, FC3/z/4, C3/z/4, T3/4, CP3/z/4, P3/z/4, T5/6, 

O1/z/2). HEOG and VEOG were recorded with four separate eye electrodes. Recordings 

were referenced on-line to a left mastoid and re-referenced offline to linked mastoids. 

Impedance was kept below 5 kΩ and 10 kΩ for scalp and eye electrodes, respectively. 

During offline analyses, eye movement artifacts were first corrected with PCA algorithms 

implemented in NeuroScan EDIT (Neuroscan Inc.). Movement-related artifacts were 

removed manually. EEG data were offline highpass-filtered at .01 Hz.
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2.6 Data Analyses for the Delay-Discounting Task

Each participants’ subjective value of $800 at every delay were fit to the hyperbolic model in 

the form of V = A/(1 + kD) (Green & Myerson, 2004; Mazur, 1987) using the Curve Fitting 

Toolbox in Matlab. V was the subjective value, A was a larger-but-delayed reward amount 

($800), D was the delay interval in weeks, and k was a free parameter, reflecting a 

discounting rate. The smaller the k, the stronger preference toward larger-but-delayed 

rewards. To normalize its distribution, the natural log of k, ln(k), was used as an index for 

individual-differences in delay-discounting responses. R-square as a model-fit index was 

also calculated. R-square indicates the proportion of variance accounted for by the 

hyperbolic model, ranging from 0 to 1 (perfect fit).

2.7 Data Analyses for the Reward Time-Estimation Task

2.7.1 Manipulation Check—We computed an Inaccurate Estimation index as the 

standard deviation of the absolute difference between participants’ actual estimations (in 

milliseconds, ms) and the target time interval (3500 ms) (Luft, Nolte, et al., 2013). Thus, 

higher Inaccurate Estimation reflects worse time estimation performance. To normalize the 

Inaccurate Estimation distribution, a natural-log (In) transformation was applied. As a 

manipulation check for whether participants were more motivated during Reward trials, we 

compared Inaccurate Estimation during 1) Reward trials from all of the Experimental 

blocks, 2) No-Reward trials from all of the Experimental blocks and 3) Control trials from 

all of the Control blocks. We predicted lower Inaccurate Estimation during Reward 

(compared to No-Reward and Control) trials.

2.7.2 Behavioral Indices for Individual-Differences in Motivated Learning—In 

addition to being used as a manipulation check, Inaccurate Estimation was also employed as 

a behavioral index for individual-differences in motivated learning. Specifically, Inaccurate 

Estimation during the Control blocks (referred to as Control Inaccurate Estimation) served 

as an index for individual differences in estimation ability prior to learning in the 

Experimental blocks. Inaccurate Estimation during the last (i.e., 6th) Experimental block 

(referred to as Motivated-Learning Inaccurate Estimation) served as an index for how 

motivated participants were to learn through feedback over the course of the experiment (for 

a similar approch, see Luft, Nolte, et al., 2013). For individual differences in Motivated-

Learning Inaccurate Estimation, we collapsed across Reward and No-Reward trials during 

the last experiment block. This is because, in the context of the current time-estimation task, 

learning about their estimation performance through feedbacks during the No-Reward trials 

also helped participants to earn more rewards during the Reward trials. Thus, toward the end 

of the experiment (i.e., 6th block), people who were more motivated to obtain rewards in the 

task would perform better in both Reward and No-Reward trials. Additionally, combing both 

Reward and No-Reward trials during the last experiment block led to more trials to be 

computed, thus increasing stability of Motivated-Learning Inaccurate Estimation as a 

measure for individual differences. This is important, given that we only had 36 trials 

(Reward and No-Reward trials combined) in each block. We then examined whether both 

ln(k) and EEG indices have relationship with Control Inaccurate Estimation and Motivated-

Learning Inaccurate Estimation.
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2.7.3 EEG Data—Extremely fast (less than 2 s, “<2”) or slow (more than 5 s, “>5”) trials 

were excluded from the EEG analyses as they may reflect a lack of attention to the task. 

EEGlab (Delorme & Makeig, 2004) was used to analyze EEG data. After a linear detrend 

was applied to EEG epochs, any epoch containing artifacts (±75 μV) were rejected. Time-

frequency decomposition was then performed to compute event-related spectral perturbation 

(ERSP). ERSP refers to changes in EEG power from the baseline period at specific 

frequency and time (Makeig et al., 2004). We used a linear space for both frequency (at 

every 1 Hz) and time (at every 2 ms).

We separated EEG activity into three phases of reward-processing: 1) cue-locked EEG 

corresponding to cue-evaluation during the reward-anticipation stage (i.e., cue evaluation 

during Reward vs. No-Reward trials), 2) pre-feedback EEG corresponding to feedback-

anticipation during the reward-anticipation stage (i.e., anticipation during the wait for 

feedback outcome during Reward vs. No-Reward trials), and 3) feedback-locked EEG 

corresponding to the reward-outcome stage (i.e., evaluation of feedback that revealed 

Reward and Performance information). For cue-locked and feedback-locked EEG activity, 

we focused on ERSP power following the onset of the cue and feedback, respectively. Here, 

EEG data were epoched from −2500 to 3500 ms relative to cue/feedback onset. This 

relatively long epoch allowed us to investigate ERSPs from a low (1 Hz) to a relatively high 

(50 Hz) frequency, which covered EEG frequency bands of interest during these time 

periods (delta, theta and beta). A modified complex sinusoidal wavelet was used with a 

sliding window of 3342-ms wide (leading to 3 cycles at 1 Hz) and a wavelet factor of .92. To 

reduce the potential edge effects, we removed half of the sliding window (1671 ms) at the 

edges (i.e., the beginning and the end) of each epoch, leaving an epoch between −829 and 

1927 ms after edge removal. The baseline for cue- and feedback-locked EEG was between 

−300 to −100 ms before the stimulus onset.

For pre-feedback EEG activity, we focused on ERSP power prior to feedback onset. 

Specifically, pre-feedback EEG activity was epoched from −2557 to 2557 ms relative to the 

button-press. Given that our focus during this period was specifically on the Alpha band (8–

13 Hz), we computed pre-feedback ERSP at a narrower frequency range of 3 to 30 Hz. 

Because the lowest frequency (3 Hz) for pre-feedback EEG was higher than it was in the 

cue-/feedback-locked EEG (1 Hz), we used a shorter sliding window of 1114-ms wide 

(leading to 3 cycles at 3 Hz) and a wavelet factor of .5. The removal of epoch edges (557 ms 

or half of a sliding window) shortened the epoch to be between −2000 to 2000 ms relative to 

each button-press, which ended at the onset of the feedback. EEG power during this period 

from −2000 to −1500 ms before the button-press was used as baseline. This early baseline 

period was selected in order to avoid movement-related activity near the time of the button-

press.

Two-tailed paired parametric tests were performed on ERSP time-frequency and topographic 

maps, as implemented in EEGlab. Multiple comparisons were corrected using False 

Discovery Rate (FDR) (Benjamini & Yekutieli, 2001). P-values based on these statistical 

tests were shown on time-frequency and topographic maps. These maps of p values indicate 

times, frequencies and electrodes at which there was a significant effect. For cue-locked and 

pre-feedback EEG activity, the statistical tests were used to assess whether there was an 
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effect of reward condition (Reward-trial vs. No-Reward-trial) on ERSP power. For feedback-

locked EEG activity, we separated feedbacks based on evaluation types: Reward Evaluation 

(Reward-trial vs. No-Reward-trial) × Performance Evaluation (Bad-Performance vs. Good-

Performance). The main effects and interaction between evaluation types were tested on 

ERSP power.

2.7.4 Reward-Processing ERSPs as indices for individual differences—We 

focused individual differences analyses on ERSPs that significantly varied between Reward 

and No-Reward trials according to main-effect analyses (see Results). Specifically, for cue-

locked EEG, individual-differences analyses were centered at cue-locked delta (1–3 Hz) 

between 100 and 500 ms following the cue onset at the parietal CPz site, similar to a recent 

study on reward-processing to the cue (Cavanagh, 2015). For pre-feedback EEG, we used 

alpha (8–13 Hz) power within the 500-ms window right before feedback onset at Oz. 

Occipital pre-feedback alpha suppression (i.e., lower power) is related to anticipation 

processes toward upcoming visual stimuli (Bastiaansen et al., 1999; Hughes et al., 2013). 

Thus, the more negative the alpha-suppression, the stronger the anticipation-related 

processes. For feedback-locked EEG, we focused on three different ERPSs from three 

different frequency bands: feedback-locked delta, theta and beta. Similar to cue-locked delta, 

feedback-locked delta (1–3 Hz) was quantified as averaged EEG power between 100 and 

500 ms following the feedback onset at CPz. This is similar to previous research on 

feedback-locked delta power (Foti et al., 2015). As for feedback-locked theta (4–7 Hz), we 

employed averaged EEG power between 200 and 400 ms after feedback onset at Fz, 

following previous research on frontal-midline theta and outcome/feedback-processing 

(Cohen et al., 2007; Marco-Pallares et al., 2008). Lastly, feedback-locked beta (15–25 Hz) 

was quantified through averaged EEG power between 400 and 600 ms after feedback onset 

at CPz following a recent time-estimation study (Luft, Nolte, et al., 2013).

In addition to examining ERSPs at separate conditions (i.e., Reward-Trial and No-Reward-

Trial ERSPs for cue-locked and pre-feedback EEG; Reward-Trial, No-Reward-Trial, Good-

Performance and Bad-Performance ERSPs for feedback-locked EEG), we also computed 

ERSP difference scores by subtracting ERSP power during No-Reward trials from that 

during Reward trials (collapsing across Bad- and Good-Performance feedback for feedback-

locked EEG). Referred to as ΔReward ERSPs, these difference scores allowed us to focus in 

on reward-processing EEG activity. For feedback-locked EEG, we also computed 

ΔPerformance ERSP difference scores by subtracting ERSP power during Good-

Performance trials from that during Bad-Performance trials, collapsing across Reward-and 

No-Reward trials. The ΔPerformance ERSPs reflect individual differences in performance 

evaluation.

3. Results

3.1 Delay-Discounting Responses

Figure 1b shows how subjective values were discounted as a function of delays. The mean of 

ln(k) was −4.72 (SD = 1.45). R-square, as a model-fit index for the hyperbolic model used, 
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had the median of .89 (IQR = .94 – .81), similar to previous studies (de Wit, Flory, Acheson, 

McCloskey, & Manuck, 2007; Hariri et al., 2006).

3.2 Reward Time-Estimation Behavior

3.2.1 Manipulation Check—During the time-estimation task, behavioral data from one 

participant was lost due to a technical error, leaving data from 36 (as opposed to 37) 

participants. Overall, during the Experimental blocks, participants estimated 3.5 s quite well 

(MRT = 3.52 s, SD = .11), and rarely made extremely fast (less than 2 s) or slow (more than 

5 s) responses (M = 2.58 trials out of 216 trials, SD = 2.15). Given that the accuracy rate (M 
= 50.3%, SD = 3.06) closely matched 50%, it is clear that the time-window adaptation 

algorithm worked effectively. Across blocks, there were differences in Inaccurate Estimation 

(i.e., SD of the absolute difference between actual estimations and the target time interval) 

among Reward and No-Reward trials during all of the Experimental blocks and Control 

trials during all of the Control blocks, F(1.14, 39.90) = 84.33, p < .001, Greenhouse-Geisser 

corrected. As expected, Inaccurate Estimation was lower during Reward trials (M = 5.44 

ln(ms), SD = .38) compared to No-Reward trials (M = 5.54 ln(ms), SD = .39, p < .001), 

which was lower than Control trials (M = 6.22 ln(ms), SD = .33, p < .001).

3.2.2 Relationship between Motivated Learning Inaccurate Estimation and 
Delay-Discounting Responses—Motivated-Learning Inaccurate Estimation (i.e., 

collapsing across all Reward and No-Reward trials during the last experimental block,) was 

positively correlated with ln(k), while Control Inaccurate Estimation (i.e., during the Control 

blocks) was not (see Table 1 and Figure 3). Thus, participants with poorer estimation 

performance after learning throughout the task (i.e., higher Motivated-Learning Inaccurate 

Estimation) had higher k values (i.e., stronger preference toward small-but-immediate 

rewards). In other words, people who were more motivated to learn through feedbacks 

throughout the task were more likely to prefer larger-but-delayed rewards.

3.3 Cue-Locked EEG Activity

Figure 4a and 4b show ERSP time-frequency and topographic maps of cue-locked EEG. 

Overall, following cue onset, there was an increase in ERSP power at delta (1–3 Hz) and 

theta (4–7 Hz) bands and a decrease in ERSP power at the alpha/beta (8–25 Hz) band. More 

importantly, cue-locked ERSP power at the delta (but not theta or beta) band was 

significantly stronger for Reward trials than for No-Reward trials approximately 100 ms to 

500 ms following cue onset at parietal sites (for p values, FDR corrected, see Figure 4a). 

This EEG pattern is similar to the profile of the parietal delta during reward-related cue 

evaluation reported in previous research (Cavanagh, 2015). Thus, for cue-locked EEG, we 

employed delta power during this window at CPz as an EEG index for individual differences 

in cue evaluation during the reward-anticipation stage.

We found that cue-locked delta during Reward trials (but not during No-Reward trials) was 

negatively correlated with Motivated-Learning Inaccurate Estimation (see Table 1, Figure 

4c). Similarly, ΔReward (Reward minus No-Reward-trial) cue-locked delta was also 

negatively correlated with Motivated-Learning Inaccurate Estimation (see Table 1, Figure 

9a). Control Inaccurate Estimation, however, was not predicted by any cue-locked delta 
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indices (see Table 1). Altogether, this suggests that enhanced delta power to Reward-trial 

cues (compared to No-Reward-trial cues) was related to how well participants adjusted their 

time-estimation performance. Nonetheless, none of the cue-locked delta indices significantly 

predicted ln(k) (see Table 1).

3.4 Pre-Feedback EEG Activity

Figure 5a and 5b show ERSP time-frequency and topographic maps during a period prior to 

feedback onset. There was a clear pattern of alpha (8–13 Hz) suppression (i.e., reduction in 

ERSP power) at parieto-occipital sites, peaking at the period right before feedback onset. 

This EEG pattern is similar to the profile of occipital alpha suppression during anticipation-

related activity reported in previous studies (Bastiaansen et al., 1999; Hughes et al., 2013; B. 

van den Berg et al., 2014). As predicted, alpha suppression was significantly stronger (i.e., 

higher reduction in alpha power) for Reward trials than for No-Reward trials starting 

approximately 500 ms before feedback onset. This effect was primarily significant at 

parieto-occipital sites (for p values, FDR corrected, see Figure 5a). Thus, we employed pre-

feedback alpha power during the 500-ms window prior to feedback onset at Oz as an EEG 

index for individual differences in feedback anticipation during the reward-anticipation 

stage.

Motivated-Learning Inaccurate Estimation had a significant, positive correlation with pre-

feedback alpha during Reward trials, and a marginally significant, positive correlation with 

this ERSP during No-Reward trials (see Table 1, Figure 5c). Nonetheless, Motivated-

Learning Inaccurate Estimation was not correlated with the ΔReward (Reward minus No-

Reward-trial) pre-feedback alpha (see Table 1). Additionally, Control Inaccurate Estimation 

was not correlated with any pre-feedback alpha indices (see Table 1). This suggests that 

enhanced alpha suppression (i.e., lower alpha power) prior to the feedback onset was related 

to better adjustment of time-estimation performance (i.e., lower Inaccurate Estimation) 

throughout the task. However, the relationship between alpha suppression and time-

estimation performance may not be limited to Reward trials.

With respect to delay-discounting tendencies, pre-feedback alpha power during Reward 

trials (but not during No-Reward trials) had a positive relationship with ln(k) (see Table 1). 

Moreover, there was a significant positive relationship between ΔReward pre-feedback alpha 

and ln(k) (see Table 1, Figure 10). These correlations suggest that participants who had 

stronger alpha suppression (i.e., lower power) during Reward (compared to No-Reward) 

trials (i.e., more negative ΔReward pre-feedback alpha) had smaller k values. In other words, 

individuals who had stronger feedback anticipation during Reward trials had a stronger 

preference toward larger-but-delayed, compared to smaller-but-immediate, rewards.

3.5 Feedback-Locked EEG Activity

ERSP time-frequency and topographic maps following feedback onset are shown in Figures 

5–7. Overall, following feedback onset, EEG power was increased at the delta (1–3 Hz) and 

theta (4–7 Hz) bands and decreased at the alpha/beta (8–25 Hz) band. Moreover, the effect 

of Reward-Evaluation (Reward-trial vs. No-Reward-trial feedbacks) on feedback-locked 
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EEG power was found at delta, theta and beta bands (for p values, FDR corrected, see Figure 

6b, 7b, 8b).

3.5.1 Feedback-Locked Delta—Similar to cue-locked delta, feedback-locked delta (1–3 

Hz) was enhanced approximately 100 – 500 ms following feedback onset at parietal sites. 

There were main effects of both Reward Evaluation and Performance Evaluation on 

feedback-locked delta (see Figure 6a, 6c for ERSP power and 6b for p values, FDR 

corrected). Specifically, for Reward Evaluation, feedback-locked delta was stronger for 

Reward-trial, than No-Reward-trial, feedback at CPz and other parietal sites. For Feedback 

Evaluation, feedback-locked delta was significantly stronger for Good-Performance, than 

Bad-Performance, feedback at parietal sites. There was also a significant interaction. Yet, 

while the effect of Reward Evaluation (i.e., stronger feedback-locked delta during Reward 

trials than during No-Reward trials) was numerically larger for Good-Performance (than for 

Bad-Performance) feedback, the Reward Evaluation effect was significant for both Good-

Performance and Bad-Performance feedback. Thus, we collapsed across Good-Performance 

and Bad-Performance feedback when employing the feedback-locked delta as an index for 

individual differences in Reward Evaluation of the feedback.

Motivated-Learning Inaccurate Estimation had a significant, negative correlation with 

feedback-locked delta during Reward trials, and a marginally significant, positive correlation 

with this ERSP during No-Reward trials (see Table 1, Figure 6d). Similar to ΔReward cue-

locked delta, ΔReward (Reward minus No-Reward-trial) feedback-locked delta was also 

negatively correlated with Motivated-Learning Inaccurate Estimation (see Table 1, Figure 

9b). Motivated-Learning Inaccurate Estimation, however, had no relationship with 

ΔPerformance (Bad minus Good-Performance) feedback-locked delta. Similarly, Control 

Inaccurate Estimation was not correlated with any feedback-locked delta indices (see Table 

1). Altogether, this suggests that enhanced feedback-locked delta power to Reward-trial 

(compared to the No-Reward-trial) feedback was related to a better behavioral adjustment of 

time-estimation performance (reflected by smaller Motivated-Learning Inaccurate 

Estimation). Nonetheless, similar to cue-locked delta indices, feedback-locked delta indices 

did not significantly predict ln(k) (see Table 1).

3.5.2 Feedback-Locked Theta—ERSP power in the theta frequency (4–7 Hz) was 

enhanced during the 200 – 400 ms window following feedback onset at frontal-midline sites. 

This EEG pattern is similar to the profile of frontal-midline theta (FMT) during outcome-

processing reported in previous studies (Cohen et al., 2007; Luft, 2014). As expected, there 

was a main effect of both Reward Evaluation and Performance Evaluation (see Figure 7a, 7c 

for ERSP power and 7b for p values, FDR corrected). At Fz and other frontal-midline sites, 

feedback-locked theta was significantly stronger for Reward-trial, than No-Reward-trial, 

feedback. In contrast to feedback-locked delta, feedback-locked theta was significantly 

stronger for Bad-Performance, than Good-Performance, feedback at Fz and other frontal-

midline sites. There was no interaction between Reward Evaluation and Performance 

Evaluation on feedback-locked theta at any frontal-midline sites (for p values, FDR 

corrected, see Figure 7b).
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Similar to feedback-locked delta, Motivated-Learning Inaccurate Estimation was negatively 

correlated with feedback-locked theta during Reward trials, and there was a marginally 

significant negative correlation between Motivated-Learning Inaccurate Estimation and 

feedback-locked theta during No-Reward trials (see Table 1, Figure 7d). Similar to ΔReward 

cue-locked and feedback-locked delta, ΔReward feedback-locked (Reward minus No-

Reward-trial) theta was also negatively correlated with Motivated-Learning Inaccurate 

Estimation (see Table 1, Figure 9c). There was, however, no relationship between 

ΔPerformance (Bad minus Good-Performance) feedback-locked theta and Motivated-

Learning Inaccurate Estimation. Control Inaccurate Estimation was not predicted by any of 

the feedback-locked theta indices (see Table 1). Together, this suggests that enhanced 

feedback-locked theta power to Reward-trial (compared to the No-Reward-trial) feedback 

was associated with a better adjustment of time-estimation performance (reflected by 

smaller Motivated-Learning Inaccurate Estimation).

In contrast to cue-locked and feedback-locked delta, but similar to pre-feedback alpha, 

feedback-locked theta was related to delay-discounting tendencies. Specifically, ln(k) was 

negatively correlated with feedback-locked theta during Reward trials, and there was a 

marginally significant negative correlation between ln(k) and feedback-locked theta during 

No-Reward trials (Table 1). Moreover, while the relationship between the ΔPerformance 

feedback-locked theta and ln(k) was not significant, there was a significant negative 

relationship between the ΔReward feedback-locked theta and ln(k) (Table 1). Thus, 

participants with stronger feedback-locked theta power following Reward-trial, compared to 

No-Reward-trial, feedback (i.e., more positive ΔReward feedback-locked theta) had smaller 

k values (i.e., stronger preference toward larger-but-delayed rewards). To investigate the 

specificity of this relationship, we examined correlations between ln(k) and the ΔReward 

feedback-locked theta following Bad-Performance feedback separately from ΔReward 

feedback-locked theta following Good-Performance feedback. Ln(k) was negatively 

correlated with the ΔReward feedback-locked theta following Good-Performance feedback, 

r(35) = −.44, p = .006 (Figure 11), but not with the ΔReward feedback-locked theta 

following Bad-Performance feedback, r(35) = −.14, p = .39.

3.5.3 Feedback-Locked Beta—Feedback-locked beta power (15–25 Hz) was reduced 

starting approximately 200 ms after feedback onset at parietal sites (see Figure 8a, 8c for 

ERSP power). This is similar to a pattern of beta desyncronization found in a recent time-

estimation study (Luft, Nolte, et al., 2013). Significant main effects of both Reward 

Evaluation and Performance Evaluation on feedback-locked beta were found at 

approximately 400 – 600 ms following feedback onset (see Figure 8b for p values, FDR 

corrected). Specifically, for Reward Evaluation, feedback-locked beta was less reduced 

during Reward trials than No-Reward trials. Moreover, for Feedback Evaluation, feedback-

locked beta was less reduced following Good-Performance feedback, compared to following 

Bad-Performance feedback. There was a trend for the Reward Evaluation by Performance 

Evaluation interaction, but this interaction did not survive FDR correction. Thus, we 

collapsed across Good-Performance and Bad-Performance feedback when employing 

feedback-locked beta as an index for individual differences in Reward Evaluation at this 

frequency band.
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Similar to feedback-locked delta and theta, Motivated-Learning Inaccurate Estimation was 

negatively correlated with feedback-locked beta during Reward trials, and was marginally 

correlated with feedback-locked beta during No-Reward trials (see Table 1, Figure 8d). 

Nonetheless, neither ΔReward feedback-locked (Reward minus No-Reward-trial) beta or 

ΔPerformance feedback-locked (Bad- minus Good-Performance) beta was correlated with 

Motivated-Learning Inaccurate Estimation (see Table 1). Additionally, Control Inaccurate 

Estimation was not predicted by any feedback-locked beta indices (see Table 1). Similar to 

pre-feedback alpha, this suggests that a smaller reduction in feedback-locked beta was 

related to better adjustment of time-estimation performance (i.e., smaller Motivated-

Learning Inaccurate Estimation). However, the relationship between feedback-locked beta 

and Motivated-Learning Inaccurate Estimation does not appear to be unique to Reward 

trials.

Similar to pre-feedback alpha and feedback-locked theta, there was a relationship between 

feedback-locked beta and delay-discounting tendencies (see Table 1). Specifically, Ln(k) 

was negatively correlated with feedback-locked beta during both Reward and No-Reward 

trials. Thus, participants with stronger (i.e., less of a reduction in) feedback-locked beta 

power had smaller k values (i.e., stronger preference toward larger-but-delayed rewards), 

regardless of whether it was a Reward-trial or No-Reward-trial feedback. Moreover, while 

the correlation coefficient between Ln(k) and ΔReward (Reward-trial minus No-Reward-

trial) feedback-locked beta was not significant, r(35) = −.25, p = .13, the correlation became 

significant after one bivariate outlier was removed, r(34) = −.36, p = .03 (see Figure 12). We 

employed the Minimum Covariance Determinant (MCD) estimator (Rousseeuw & Driessen, 

1999) to detect this bivariate outlier, using the Robust Correlation and LIBRA toolboxes in 

Matlab (Pernet, Wilcox, & Rousselet, 2012; Verboven & Hubert, 2005). This so-called 

skipped correlation method is a robust statistical for controlling for outliers while preserving 

statistical power compared to non-parametric statistics (Rousseeuw, 1984; Wilcox, 2012). 

Thus, participants with less of a reduction in feedback-locked beta power following Reward-

trial, compared to No-Reward-trial, feedback (i.e., more positive ΔReward feedback-locked 

beta) had smaller k values. To investigate the specificity of this relationship, we removed the 

outlier and examined correlations between ln(k) and the ΔReward feedback-locked beta 

following Bad-Performance feedback separately from the ΔReward feedback-locked beta 

following Good-Performance feedback. Ln(k) was marginally correlated with the ΔReward 

feedback-locked beta following Good-Performance feedbacks, r(34) = −.30, p = .07, but not 

with the ΔReward feedback-locked beta following Bad-Performance feedbacks, r(34) = −.

11, p = .53. Additionally, the correlation between ΔPerformance (Bad- minus Good-

Performance) feedback-locked beta and ln(k) was not significant.

3.6 Delay-Discounting Responses as Predicted by Multiple Reward-Processing EEG 
Activity

Because multiple ΔReward (Reward- minus No-Reward-trial) EEG indices were correlated 

with ln(k), an additional multiple-regression analysis was used to assess for shared versus 

unique effects of these EEG indices (see Table 2). The ΔReward EEG indices included in 

this multiple-regression analysis were ΔReward pre-feedback alpha, ΔReward feedback-

locked theta following Good-Performance feedback and ΔReward feedback-locked beta 
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(collapsing across Bad- and Good-Performance feedback). First, we examined the 

correlations among these indices (see Table 3), and found that ΔReward pre-feedback alpha 

and ΔReward feedback-locked theta following Good-Performance feedback were correlated 

with each other. However, ΔReward feedback-locked beta was not correlated with either 

ΔReward pre-feedback alpha or ΔReward feedback-locked theta following Good-

Performance feedback. Then, the three ΔReward EEG indices were entered as simultaneous 

predictors with ln(k), as a criterion. In this model, while ΔReward pre-feedback alpha was 

not significant, ΔReward feedback-locked theta following Good-Performance feedback was 

significant, and ΔReward feedback-locked beta was marginally significant (p = .06). 

Because ΔReward pre-feedback alpha and ΔReward feedback-locked theta following Good-

Performance feedback were correlated with each other (but not with ΔReward feedback-

locked beta), these two EEG indices may account for similar variance in ln(k). However, this 

variance in ln(k) was unique from that of ΔReward feedback-locked beta.

4. Discussion

The current study tested the relationship between individual differences in delay-discounting 

tendencies and reward-processing at specific temporal stages. To operationalize individual 

differences in reward-processing, we examined EEG activity during a reward time 

estimation task. Our use of time- and frequency-specific EEG measures allowed us to 

separately investigate individual differences in reward-processing at the reward-anticipation 

stage (including, cued-locked delta during cue-evaluation and pre-feedback alpha 

suppression during feedback-anticipation) and at the reward-outcome stage (including, 

feedback-locked delta, theta and beta). All of our EEG indices were elevated during Reward, 

compared to No-Reward, trials. Moreover, these EEG indices significantly predicted 

behavioral performance during the time estimation task (reflected by smaller Motivated-

Learning Inaccurate Estimation), highlighting their essential roles in modulating 

performance during motivated-learning situation.

4.1 Reward-Processing and Individual Differences in Delay-Discounting Responses

Overall, results supported our primary hypotheses regarding the relationship between 

enhanced reward-processing and a stronger preference toward larger-but-delayed, over 

smaller-but-immediate, rewards (i.e., smaller ln(k) or less delay-discounting). Behaviorally, 

people who were motivated to learn through feedback over the course of the experiment 

(reflected by having smaller Motivated-Learning Inaccurate Estimation) had a stronger 

preference toward larger-but-delayed. Neurally, people whose EEG activity was particularly 

enhanced during Reward trial at various stages (reflected by having stronger pre-feedback 

alpha-suppression during feedback-anticipation in the reward-anticipation stage, and 

stronger feedback-locked theta and beta during the reward-outcome stage) also expressed a 

stronger preference toward larger-but-delayed rewards. More specifically, from multiple-

regression results, it appears that two sets of EEG indices (pre-feedback alpha-suppression 

and feedback-locked theta vs. feedback-locked beta) independently modulate individual 

differences in delay-discounting responses. This suggests that different neural-cognitive 

mechanisms during reward processing are related to delay-discounting tendencies.
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The observed bias toward larger-but-delayed rewards among individuals with elevated 

reward-processing is consistent with a number of previous studies (although see Hariri et al., 

2006 for contradictory finding). First, a recent fMRI study reported a bias toward larger-but-

delayed rewards among adolescents with elevated ventral striatal (VS) activation during 

reward anticipation using the MID task (Benningfield et al., 2014). Other fMRI studies have 

also found a relationship between elevated activation in the VS and other reward-related 

areas, such as the lateral orbitofrontal cortex (L-OFC), and a stronger preference toward 

larger-but-delayed rewards (Ballard & Knutson, 2009; Boettiger et al., 2007; Samanez-

Larkin et al., 2011). Second, animal research has shown that lesions to the VS, resulting in 

reduced reward-related neural activation, leads to a preference for smaller-but-immediate 

rewards (Cardinal et al., 2001). Third, psychiatric and health-related research has shown that 

dampened reward sensitivity and reduced reward-related brain function is a risk factor for 

high-risk and poor health related behaviors (P. M. Johnson & Kenny, 2010; Stice, Spoor, 

Bohon, & Small, 2008). These data have been conceptualized within the Reward Deficiency 

Model of addiction, which proposes that persons with low reward sensitivity self-medicate 

negative emotions and/or attempt to elevate positive emotions through pursuing high-risk, 

short-term rewards (e.g., drugs, alcohol, high-fat diets) (Blum et al., 2000; Volkow, Wang, 

Fowler, Tomasi, & Baler, 2012). The logic of the Reward Deficiency Model is consistent 

with our results given that participants with reduced reward-related EEG activity in the 

present study had a stronger preference for smaller-but-immediate rewards. Additionally, 

individuals with the Met-allele of the COMT-gene, which has been associated with elevated 

reward-related brain function (Chen et al., 2004; Yacubian et al., 2007), show a preference 

for larger-but-delayed reward (Boettiger et al., 2007; Gianotti et al., 2012; Smith & 

Boettiger, 2012; Yacubian et al., 2007). Similarly, a recent study also found a stronger 

preference toward larger-but-delayed rewards as a result of medications designed to increase 

dopamine signaling in patients with Parkinson’s disease (Foerde et al., 2016). Thus, 

combined with results from the present study, we argue that there is growing evidence that 

elevated reward-processing is associated with a higher propensity to forgo smaller-but-

immediate rewards, in favor of larger-but-delayed rewards.

4.2 EEG Indices at Each Stage of Reward-Processing

Our use of EEG extends previous fMRI findings (Benningfield et al., 2014) by providing a 

more time-sensitive index of reward-related neural activity, allowing us to demonstrate the 

nature of the relationship between delay-discounting and reward-processing at specific 

temporal stages (e.g., during feedback-anticipation and reward outcome, but not cue-

evaluation). Owing to the time-frequency decomposition of the EEG data, we also were able 

to show that these relationships were quite sensitive to specific neural frequency bands (e.g., 

theta, alpha and beta, but not delta).

4.2.1 Pre-Feedback Alpha-Suppression during the Reward Time Estimation 
Task—With respect to feedback-anticipation EEG activity, we found a clear pattern of pre-

feedback occipital alpha suppression peaking right before feedback onset. This pattern is 

consistent with previous reports suggesting that occipital alpha suppression prior to 

upcoming visual stimuli indexes anticipatory processes (Bastiaansen et al., 1999; Hughes et 

al., 2013; Pfurtscheller & Aranibar, 1977). Also consistent with previous research 
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(Hanslmayr et al., 2007; Hughes et al., 2013; B. van den Berg et al., 2014), occipital alpha 

suppression was modulated by reward condition, as we observed greater alpha suppression 

during Reward, compared to No-Reward, trials.3 These findings are in line with the recent 

perspective that occipital alpha suppression indexes enhanced attentional processes during 

the anticipation of reward-related stimuli/feedback, and that this enhanced attentional 

processing is associated with individual differences in reward-processing (B. van den Berg et 

al., 2014). Moreover, our study is among the first to demonstrate that pre-feedback alpha 

suppression predicts enhanced motivated-learning during a reward task (reflected by smaller 

Motivated-Learning Inaccurate Estimation). This suggests enhanced attentional processing 

prior to feedback facilitates learning and behavioral adjustment to maximize rewards.

4.2.2 Pre-Feedback Alpha-Suppression and Delay-Discounting Responses—
Most importantly, however, is the fact that stronger occipital alpha suppression, reflecting 

elevated feedback-anticipation neural activity was associated with a greater preference 

toward larger-but-delayed rewards during the delay-discounting task. Given the temporal and 

frequency precision afforded by our EEG time-estimation paradigm, we were able to 

dissociate neural activity during reward feedback-anticipation from other reward-

anticipation processes (e.g., cue-evaluation and motor-preparation). This degree of temporal 

precision is not feasible with fMRI studies of reward processing using paradigms such as the 

MID task (Benningfield et al., 2014), given the slow dynamics of the fMRI BOLD signal. 

We argue that the neurophysiological index of reward-anticipation neural activity related to 

delay-discounting responses in the present study (i.e., occipital alpha suppression) reflects 

the dis-inhibition of neural activity in sensory cortices that facilitate anticipatory attention to 

reward-related feedbacks (Hughes et al., 2013; Jensen & Mazaheri, 2010; B. van den Berg et 

al., 2014). Future research with alpha-suppression prior to feedback onset will have 

important implications for unpacking the nuances of reward-anticipation, particularly when 

aiming to control for other relevant processes, such as reward cue-evaluation or motor-

preparation.

4.2.3 Reward-Outcome EEG Activity—With respect to reward-outcome EEG activity 

during the reward time-estimation task, we found that EEG activity in two frequency bands 

(feedback-locked theta and beta) were associated with individual differences in delay-

discounting. Importantly, our study is among the first to separate the influence of reward-

evaluation from performance-evaluation on individual differences in reward-outcome EEG 

activity (Leicht et al., 2013). Most studies of individual-differences of reward-outcome EEG 

data collapse across these two factors (e.g., Bress & Hajcak, 2013; Bress, Smith, Foti, Klein, 

& Hajcak, 2012; Foti & Hajcak, 2009; I. Van den Berg, Franken, & Muris, 2011). For 

3Based on our design, we argue that stronger alpha-suppression during Reward (compared to No-Reward) trials was driven by the 
motivationally salient aspects (as opposed to uncertainty aspect) of the upcoming feedback in the Reward trials. Unlike previous 
studies that manipulated uncertainty and found the modulation of uncertainty on a stimulus-preceding negativity (SPN) ERP 
component (Catena et al., 2012; Morís, Luque, & Rodríguez-Fornells, 2013), our study controlled for uncertainty. That is, for both 
Reward and No-Reward trials, the only source of uncertainty during feedback-anticipation facing participants was whether their recent 
performance would be considered good or bad. Because of our adaptation method, the accuracy rates during Reward trials (M = 
52.42%, SD = 5.23) and No-Reward trials (M = 48.07%, SD = 4.75) were closely matched at 50% chance. Hence, the uncertainty 
between the two reward conditions was controlled at around a chance level. This means that once a participant pressed the time-
estimation button, it was equally likely for them to see bad- versus good-performance feedback during both Reward and No-Reward 
trials. The bad and good-performance feedback, however, were more meaningful and motivationally salient during Reward trials than 
No-Reward trials, given that performance information during Reward trials indicated monetary-reward earnings.
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instance, in several studies, good-performance feedback also indicates the wining of a 

monetary reward, while bad-performance feedback implies no-wining/losing of monetary 

reward. This makes it difficult to dissociate whether individual differences in outcome EEG 

data are driven by variability in reward-feedback evaluation, performance-feedback 

evaluation, or some combination of the two (Luft, 2014).

4.2.4 Feedback-Locked Theta during the Reward Time Estimation Task—For 

feedback-locked theta, our findings are in line with previous research suggesting that 

feedback-locked theta is sensitive to both reward- (Leicht et al., 2013) and performance- 

(Cohen et al., 2007; Luft, 2014) evaluation. Specifically, for reward evaluation, we observed 

greater feedback-locked theta during Reward trials (compared to No-Reward trials). For 

performance evaluation, greater feedback-locked theta was found in response to Bad-

Performance (compared to Good-Performance) feedback. These two main effects were 

independent of each other given the absence of a reward-by-performance evaluation 

interaction. Consistent with previous studies, feedback-locked theta predicted behavioral 

performance in our reward-learning task (Cavanagh & Shackman, 2015; van de Vijver et al., 

2011). This confirms the role of feedback-locked theta in cognitive-control processes that 

incorporate feedback/outcome information (Luft, 2014). More importantly, by separating 

reward from performance evaluation, we demonstrated for the first time that reward 

evaluation (i.e., ΔReward feedback-locked theta), but not performance evaluation (i.e., 

ΔPerformance feedback-locked theta) predicted enhanced motivated-learning during a 

reward task (reflected by smaller Motivated-Learning Inaccurate Estimation). This suggests 

that the enhancement of cognitive-control during Reward (compared to No-Reward) trials 

facilitates one’s ability to learn through feedback in a reward situation to maximize reward 

receipt.

4.2.5 Feedback-Locked Theta and Delay-Discounting Responses—Similarly, 

reward evaluation (but not performance evaluation) of feedback-locked theta predicted a 

greater preference to larger-but-delayed rewards. This may indicate that enhanced cognitive-

control processes during Reward trials (reflected by reward evaluation), as opposed to 

prediction error or uncertainty resolution (reflected by performance evaluation), drove the 

relationship between reward-processing and delay-discounting responses. Moreover, 

subsequent analyses indicated that the relationship between ΔReward feedback-locked theta 

and delay-discounting responses was primarily driven by ΔReward feedback-locked to 

Good-Performance, but not Bad-Performance, feedback. This suggests that a preference 

toward larger-but-delayed rewards is particularly related to theta activity in the gain, but not 

the no-gain, domain, highlighting the fact that this relationship is specific to a reward-

processing context.

4.2.6 Feedback-Locked Beta during the Reward Time Estimation Task—As for 

feedback-locked beta, our findings are consistent with studies showing stronger beta power 

(less reduction/desyncronization) to positive (compared to negative) feedbacks (for review, 

see Luft, 2014). By separating reward from performance evaluation, we extend previous 

research on feedback-locked beta power by showing the effect of both reward (stronger 

during Reward trials) and performance (stronger to Good-Performance feedback) evaluation. 
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Additionally, greater enhancement of feedback-locked beta predicted enhanced motivated-

learning during a reward task, replicating a previous time-estimation study (Luft, Nolte, et 

al., 2013). Altogether, this pattern of feedback-locked beta is in line with the interpretation 

of this EEG index as a reward-specific signal (Cohen et al., 2007; De Pascalis et al., 2012; 

HajiHosseini et al., 2012; Marco-Pallares et al., 2008; Marco-Pallarés et al., 2009).

4.2.7 Feedback-Locked Beta and Delay-Discounting Responses—Relating to our 

main focus on delay discounting, we demonstrate for the first time that reward evaluation 

(but not performance evaluation) of feedback-locked beta predicted a greater preference to 

larger-but-delayed rewards. This suggests that individual differences in delay-discounting 

may be related to the motivational saliency of the feedback (i.e., during Reward trials) as 

opposed to the positive behavioral performance signal from the feedback (i.e., a Good-

Performance feedback).

4.2.8 Cue-Locked and Feedback-Locked Delta during the Reward Time 
Estimation Task—Although cue-locked delta and feedback-locked delta did not predict 

delay-discounting tendencies, the present study provides additional insight into to their roles 

in reward-processing. During cue-evaluation in the reward-anticipation stage, cue-locked 

delta was stronger in Reward, compared to No-Reward, trials. This pattern is consistent with 

previous research focusing on a P3 component elicited by reward-related cues at similar time 

and topography (Broyd et al., 2012; Goldstein et al., 2006; Ramsey & Finn, 1997; Santesso 

et al., 2012). In line with a recent reinforcement study (Cavanagh, 2015), cue-locked delta 

predicted enhanced motivated-learning in our reward task (reflected by smaller Motivated-

Learning Inaccurate Estimation). More importantly, motivated-learning was predicted by 

cue-locked delta power to the Reward cue (i.e., ΔReward cue-locked delta), suggesting an 

essential role of cue-locked delta in reward-processing, not just cue-evaluation in general. As 

for feedback-locked delta during the reward-outcome stage, similar to feedback-locked beta, 

we found an effect of both reward evaluation (stronger during Reward trials) and 

performance evaluation (stronger to Good-Performance feedbacks). This extends previous 

research that collapsed the two evaluation types together (Cavanagh, 2015; Foti et al., 2015; 

Leicht et al., 2013). More specifically, reward evaluation (ΔReward feedback-locked delta) 

of feedback-locked delta (not performance evaluation) predicted motivated-learning during 

the reward time-estimation task. This suggests that higher sensitivity to the motivational 

saliency of the feedback (reflected by stronger ΔReward feedback-locked detla) facilitates 

one’s ability to learn through feedback and adjust their performance to maximize gains. 

Taken together with other EEG indices, our study provides a comprehensive overview of 

reward-processing neural activity across specific temporal stages.

4.2.9 Relationship Among Reward-Processing ERSP indices—We also report, for 

the first time, a relationship between reward-processing during feedback-anticipation 

(ΔReward pre-feedback alpha) and during reward-outcome (ΔReward feedback-locked theta 

following Good-Performance feedback) (see Table 3). ΔReward pre-feedback alpha, 

however, did not correlate with ΔReward feedback-locked beta. This suggests that enhanced 

attentional processes prior to feedback (pre-feedback alpha suppression) was specifically 
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related to enhanced cognitive-control processes during evaluation of reward-outcome 

(feedback-locked theta).

4.3 Limitations

This study is not without its limitations. First, similar to previous fMRI research on delay 

discounting and reward-related neural activity (Benningfield et al., 2014), our reward task 

did not include a punishment condition. Given that our focus was on individual differences 

in reward-processing, we were concerned that adding a punishment condition would 

unnecessarily lengthen the task. Task length is an important issue given fatigue has been 

shown to attenuate reward-related EEG data (Boksem & Tops, 2008). Future research 

involving a punishment condition is needed to examine whether the relationship between 

delay discounting and reward-related neural activity is primarily driven by a sensitivity to 

rewarding stimuli, or by a more general sensitivity to arousing or motivationally salient 

stimuli. Second, using undergraduate students may restrict the range of individual 

differences in impulsivity compared to other populations (Henrich, Heine, & Norenzayan, 

2010). This is important, given that individual differences in impulsivity are associated with 

delay-discounting as well as reward-processing (e.g., Bjork, Knutson, & Hommer, 2008; 

Hahn et al., 2009; for a review see Plichta & Scheres, 2014). Future research may employ 

other populations to further investigate whether the relationship between reward-related 

EEG activity and delay-discounting manifests differently among individuals with high (e.g., 

hypomania) or low (e.g., depression) in impulsivity.

An important future direction is to examine the relationship between individual differences 

in reward-processing EEG activity at specific temporal stages to personality indices of 

reward sensitivity more generally. One of the most wildly used personality theories of 

reward-sensitivity is Gray’s biopsychological theory of personality (Gray, 1987, 1989). In 

particular, Gray proposed that the behavioral activation system (BAS) underlies individual 

differences in appetitive motivation. Later personality researchers have separated the BAS 

into three subtypes: BAS Drive, Fun Seeking and Reward Responsiveness (Carver & White, 

1994). The main difference between Gray’s BAS reward-sensitivity and reward-processing 

used in the current study is that Gray did not separate BAS into temporal reward-processing 

stages as is common in contemporary neuroscientific theories (Berridge, 1996; McClure et 

al., 2004; Schultz et al., 2000; Wise, 2008). Accordingly, it is unclear how Gray’s theory and 

the three proposed BAS subtypes map onto individual differences in reward-processing 

across each specific temporal stage of reward processing. Future research is needed to 

examine these relationships. Additionally, the time-estimation reward task used in the 

present study only provides immediate rewards, and does not provide delayed rewards. The 

delay-discounting task, by contrast, involves both immediate and delayed reward choices. 

Accordingly, we were only able to investigate the relationship between delay-discounting 

responses and neural activity to immediate-reward stimuli. Future research may wish to vary 

whether rewards are delivered immediately or following a delay, as in previous research 

(Cherniawsky & Holroyd, 2013). Similarly, while the delay-discounting task in the present 

study employed hypothetical monetary rewards, the time-estimation reward task employed 

real monetary rewards. Although previous studies suggest a similarity between hypothetical 

and real monetary rewards in the delay-discounting task (M. W. Johnson & Bickel, 2002; 
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Lagorio & Madden, 2005), future research should employ real monetary rewards in both 

tasks to test the generalizability of our findings.

5. Conclusions

In conclusion, one of the multiple factors that may modulate individual differences in delay-

discounting responses is reward-processing. To comprehensively study individual 

differences in reward-processing, however, one needs to consider its heterogeneity in 

temporal dynamics. Here using EEG, we were able to separate reward-processing neural 

activity at each temporal stage into different indices based on time and frequency 

dimensions. In line with recent research (Benningfield et al., 2014; Boettiger et al., 2007; 

Foerde et al., 2016), we found that a stronger preference toward larger-but-delayed rewards 

was associated with enhanced reward-related neural activity at specific stages of reward-

processing. Our findings not only substantiates the association between individual 

differences in delay-discounting responses and reward-processing, but also provides specific 

details about which stages of reward-processing are driving these associations.
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Abbreviations

ANOVA analysis of variance

COMT geneCatechol-O-methyltransferase gene

EEG electroencephalogram

ERSP event-related spectral perturbation

FDR false discovery rate

fMRI functional magnetic resonance imaging

FMT frontal-midline theta

FRN feedback-related negativity

HEOG horizontal electrooculography

IQR inter-quartile range

ITI inter-trial interval

L-OFC left orbitofrontal cortex

MID task Monetary Incentive Delay task
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PCA principle component analysis

VEOG vertical electrooculography

VS ventral striatum
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Highlights

1. We tested the relationship between reward-processing and delay-

discounting responses.

2. Enhanced reward-anticipation and -outcome EEGs predicted larger-but-

delayed choices.

3. Reward-anticipation EEG refers to pre-feedback occipital alpha-

suppression.

4. Reward-outcome EEG refers to post-feedback frontal-midline theta and 

parietal beta.

5. Hence, enhanced reward-processing was related to delay-gratification.

Pornpattananangkul and Nusslock Page 33

Neuropsychologia. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. The delay-discounting task
Figure 1a. An example of one trial in the delay-discounting task.

Figure 1b. Mean subjective values of a larger-but-delayed choice ($800) as a function of 
delays (in weeks). Error bars represent ± standard error.
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Figure 2. Diagram of the time estimation task during the experimental blocks
Note: The image representations for Reward-Anticipation and No-Reward-Anticipation 

Cues were counter-balanced across subjects. A Good-Performance feedback corresponds to 

an accurate response, or a response within the correct time-window, and is indicated by a 

“=“ sign on the top line. A Bad-Performance feedback corresponds to a response slower than 

2 s and faster than 5 s, but not within the correct time-window, and is indicated by a “<3.5” 

or “>3.5” sign on the top line, respectively. An extremely fast/slow feedback corresponds to 

a response faster than 2 s or slower than 5 s and is indicated by a “<2” or “>5” sign on the 

top line, respectively. The task during the Control blocks used a different image 

representation for the cue that carried no reward-related meaning, and only provided 

extremely fast/slow feedbacks (see text). ITI = Inter Trial Interval.
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Figure 3. Scatterplot of the correlations between delay-discounting tendencies [ln(k)] and 
Control Inaccurate Estimation (i.e., during the control blocks) and Motivated-Learning 
Inaccurate Estimation (i.e., during the last (6th) experimental block)
Note: Delay-Discounting Tendencies ln(k) was significantly correlated with Motivated-

Learning Inaccurate Estimation (during the last (6th) experimental block) (r(34) = .39, p = .

02), but not with Control Inaccurate Estimation (during the control blocks) (r(34) = .01, p = .

94). Inaccurate Estimation is the standard deviation from the goal of estimating 3.5 s. Hence, 

higher Inaccurate Estimation values reflect worse time-estimation performance. Control 

Inaccurate Estimation reflects participant’ time estimation ability prior to the experimental 

session, during when participants could not learn about their performance through feedback. 

Motivated-learning Inaccurate Estimation during the last block of the experimental session 

reflects how well participants had been motivated to learn through feedback over the course 

of the experimental session. Gray areas indicate the confident interval of 95% around the 

linear regression line.
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Figure 4. Cue-locked Parietal Delta
Figure 4a shows event-related spectral perturbation (ERSP) time-frequency maps at the 

electrode CPz (Top) and topographic maps (the grand-average of delta ERSP power (1–3 

Hz) at the 100 – 500 ms window following cue onset) (Bottom) depicting cue-locked 

reward-anticipation EEG activity. Specifically, ERSP activity during Reward and No-

Reward trials is depicted in the left and middle columns, respectively. The right column 

depicts paired t-tests’ (df = 36) p values (FDR corrected) for which Reward trial ERSP 

power was significantly different from No-Reward trial ERSP power. For these p-value 

maps, the time-frequency map shows p values at each time and frequency at CPz, while the 

bottom topo map shows p values at the delta (1–3 Hz) band at the 100 – 500 ms window 

following cue onset at every electrode. The time scale in the time-frequency maps is relative 

to the cue onset. Note that we computed time-frequency maps from −830 to 1828 ms (see 

text). However, for visual proposes, we only show −300 to 1000 ms relative to the cue onset 

here, given our focus on the time period right after cue onset. Note also that heat-map scales 

for time-frequency and topographic maps are different. Figure 4b depicts ERSP at the delta 

band (1–3 Hz) at CPz. Figure 4c shows a scatterplot between Motivated-Learning Inaccurate 
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Estimation (i.e., during the last experimental block) and cue-locked delta ERSP (1–3 Hz 

between 100 – 500 ms) at CPz. In this scatterplot, cue-locked delta ERSP is separated to the 

ERSP during Reward Trials and No-Reward Trials. Gray areas indicate the confident 

interval of 95% around the regression line.
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Figure 5. Pre-feedback occipital alpha suppression
Figure 5a shows event-related spectral perturbation (ERSP) time-frequency maps at the 

electrode Oz (Top) and topographic maps (the grand-average of alpha (8–13 Hz) ERSP 

power at the 500-ms window prior to feedback onset) (Bottom) depicting pre-feedback 

reward-anticipation EEG activity. Specifically, ERSP activity during Reward and No-

Reward trials is depicted in the left and middle columns, respectively. The right column 

depicts paired t-tests’ (df = 36) p-values (FDR corrected) for which Reward trial ERSP 

power was significantly different from No-Reward trial ERSP power. For these p-value 

maps, the time-frequency map shows p values at each time and frequency at Oz, while the 

bottom topo map shows p values at the alpha (8–13 Hz) band at the 500-ms window prior to 

feedback onset at every electrode. The time scale in the time-frequency maps is relative to 

button-presses: 0 ms is when a button was pressed, and 2000 ms is when the feedback was 

presented. Note that we computed time-frequency maps from −2000 to 2000 ms (see text). 

However, for visual proposes, we only show 0 to 2000 ms here, given our focus on the time 

period right before feedback onset. Note also that heat-map scales for time-frequency and 

topographic maps are different. Figure 5b depicts ERSP at the alpha band (8–13 Hz) at Oz. 
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Figure 5c shows a scatterplot between Motivated-Learning Inaccurate Estimation (i.e., 

during the last experimental block) and pre-feedback alpha ERSP (8–13 Hz at the 500-ms 

window pre-feedback) at Oz. In this scatterplot, pre-feedback alpha ERSP is separated to the 

ERSP during Reward Trials and No-Reward Trials. Gray areas indicate the confident 

interval of 95% around the regression line.
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Figure 6. The influence of reward-evaluation and performance-evaluation on parietal delta 
ERSP following feedback onset
Figure 6a show ERSP time-frequency maps at the electrode CPz and topographic maps (the 

grand-average of delta ERSP power at 1–3 Hz, 100 – 500 ms window following feedback 

onset). ERSP activity locked to feedback onset is separated into reward evaluation (Reward-

Trial vs. No-Reward Trial feedbacks) and performance evaluation (Bad-Performance vs. 

Good-Performance feedbacks). Note that we computed time-frequency maps from −830 to 

1828 ms (see text). However, for visual proposes, we only show −300 to 1000 ms relative to 

the feedback onset here. Note also that heat-map scales for time-frequency and topographic 

maps are different. Figure 6b depicts p-values (FDR corrected) showing the main effect of 

Reward Evaluation (Reward Trial vs. No-Reward Trial), main effect of Performance 

Evaluation (Bad- vs. Good-Performance) and their interaction. For these p-value maps, the 

time-frequency map shows p values at each time and frequency at CPz, while the 
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topographic map shows p values at the delta (1–3 Hz) band at the 100 – 500 ms window 

following feedback onset at every electrode. Figure 6c shows grand-average of delta power 

(1–3 Hz) at CPz during 100 – 500 ms window following feedback onset, separated by 

conditions. Error bars represent standard error of the mean, corrected for repeated-measure 

comparison. Figure 6d shows a scatterplot between Motivated-Learning Inaccurate 

Estimation (i.e., during the last experimental block) and feedback-locked delta ERSP (1–3 

Hz, 100 – 500 ms window following feedback onset). In this scatterplot feedback-locked 

delta ERSP was separated to the ERSP during the Reward Trials and No-Reward Trials, 

collapsing across Bad- and Good-Performance. Gray areas indicate the confident interval of 

95% around the regression line.
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Figure 7. The influence of reward-evaluation and performance-evaluation on frontal-midline 
theta ERSP following feedback onset
Figure 7a show ERSP time-frequency maps at the electrode Fz and topographic maps (the 

grand-average of theta ERSP power at 4–7 Hz, 200 – 400 ms window following feedback 

onset). ERSP activity locked to feedback onset is separated into reward evaluation (Reward-

Trial vs. No-Reward Trial feedbacks) and performance evaluation (Bad-Performance vs. 

Good-Performance feedbacks). Note that we computed time-frequency maps from −830 to 

1828 ms (see text). However, for visual proposes, we only show −300 to 1000 ms relative to 

the feedback onset here. Note also that heat-map scales for time-frequency and topographic 
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maps are different. Figure 7b depicts p-values (FDR corrected) showing the main effect of 

Reward Evaluation (Reward Trial vs. No-Reward Trial), main effect of Performance 

Evaluation (Bad- vs. Good-Performance) and their interaction. For these p-value maps, the 

time-frequency map shows p values at each time and frequency at Fz, while the topographic 

map shows p values at the theta (4–8 Hz) band at the 200 – 400 ms window following 

feedback onset at every electrode. Figure 7c shows grand-average of theta power (4–7 Hz) at 

CPz during 200 – 400 ms window following feedback onset, separated by conditions. Error 

bars represent standard error of the mean, corrected for repeated-measure comparison. 

Figure 7d shows a scatterplot between Motivated-Learning Inaccurate Estimation (i.e., 

during the last experimental block) and feedback-locked theta ERSP (4–7 Hz, 200 – 400 ms 

window following feedback onset). In this scatterplot feedback-locked theta ERSP was 

separated to the ERSP during the Reward Trials and No-Reward Trials, collapsing across 

Bad- and Good-Performance. Gray areas indicate the confident interval of 95% around the 

regression line.
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Figure 8. The influence of reward-evaluation and performance-evaluation on parietal beta ERSP 
following feedback
Figure 8a show ERSP time-frequency maps at the electrode CPz and topographic maps (the 

grand-average of beta ERSP power at 15–25 Hz, 400 – 600 ms window following feedback 

onset). ERSP activity locked to feedback onset is separated into reward evaluation (Reward-

Trial vs. No-Reward Trial feedbacks) and performance evaluation (Bad-Performance vs. 

Good-Performance feedbacks). Note that we computed time-frequency maps from −830 to 

1828 ms (see text). However, for visual proposes, we only show 300 to 700 ms relative to the 

feedback onset here. This is to highlight beta activity (15–25 Hz) between 400 – 600 ms. To 

further highlight ERSP power at the beta band, we also constrains the heat-map scales for 

the time-frequency maps to −2 to 2 dB. Note also that heat-map scales for the time-

frequency and topographic maps are different. Figure 8b depicts p-values, FDR corrected, 

showing the main effect of Reward Evaluation (Reward Trial vs. No-Reward Trial), main 

effect of Performance Evaluation (Bad- vs. Good-Performance) and their interaction. For 
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these p-value maps, the time-frequency map shows p values at each time and frequency at 

CPz, while the topographic map shows p values at the beta (15–25 Hz) band at the 400 – 600 

ms window following feedback onset at every electrode. Figure 8c shows grand-average of 

beta power (15–25 Hz) at CPz during 400 – 600 ms window following feedback onset, 

separated by conditions. Error bars represent standard error of the mean, corrected for 

repeated-measure comparison. Figure 8d shows a scatterplot between Motivated-Learning 

Inaccurate Estimation (i.e., during the last experimental block) and feedback-locked theta 

ERSP (15–25 Hz) during 400 – 600 ms window following feedback onset at CPz. The 

feedback-locked theta ERSP is separated into the ERSP during the Reward Trials and No-

Reward Trials, collapsing across Bad- and Good-Performance. Gray areas indicate the 

confident interval of 95% around the regression line.
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Figure 9. Scatterplots of the correlation between Motivated-Learning Inaccurate Estimation (i.e., 
during the last experimental block) and ΔReward ERSPs (Reward-trial ERSPs minus No-
Reward-trial ERSPs)
Note that higher Motivated-Learning Inaccurate Estimation values reflect worse time-

estimation performance during the last experimental block. Potentials bivariate outliers were 

detected using Minimum Covariance Determinant (MCD), and represented by red data 

points. Ellipses contain non-outlying data. Pink shaded areas represent 95% bootstrapped 

confident intervals around the linear regression line after the potential bivariate outliers were 

removed. Importantly, all of the correlations presented below remain significant, with or 

without bivariate outlier removal, suggesting the robustness of the relationship. Figure 9a 

represents the correlation between Motivated-Learning Inaccurate Estimation and ΔReward 

cue-locked delta (Reward-trial cue-locked delta minus No-Reward-trial cue-locked delta). 

The correlation coefficient was significant both before (r(34) = −0.36, p=0.03) and after 

(r(32) = −0.39, p=0.02) bivariate outliers removal. Figure 9b represents the correlation 

between Motivated-Learning Inaccurate Estimation and ΔReward feedback-locked delta 

(Reward-trial cue-locked delta minus No-Reward-trial cue-locked delta, collapsing across 

Bad- and Good-Performance feedbacks). The correlation coefficient was significant both 

before (r(34) = −0.47, p=0.004) and after (r(31) = −0.65, p<0.001) bivariate outliers 

removal. Figure 9c represents the correlation between Motivated-Learning Inaccurate 

Estimation and ΔReward feedback-locked theta (Reward-trial cue-locked theta minus No-

Reward-trial cue-locked theta, collapsing across Bad- and Good-Performance feedbacks). 

The correlation coefficient was significant both before (r(34) = −0.56, p<0.001) and after 

(r(33) = −0.45, p = 0.007) bivariate outliers removal.
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Figure 10. Scatterplot of the correlation between delay-discounting tendencies [ln(k)] and 
Δalpha-suppression (Reward-trial Alpha activity minus No-Reward-trial Alpha activity) prior to 
the feedback onset
Note that, the more negative the Δalpha-suppression, the greater the suppression of alpha 

activity during Reward trials (relative to No-Reward trials). Potentials bivariate outliers were 

detected using Minimum Covariance Determinant (MCD), and represented by red data 

points. Ellipse contains non-outlying data. Pink shaded areas represent 95% bootstrapped 

confident intervals around the linear regression line after the potential bivariate outliers were 

removed. The correlation coefficient was significant both before (r(35) = 0.40, p=0.01) and 
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after (r(33) = 0.36, p=0.03) bivariate outliers removal. This suggests that the potential 

outliers did not drive the correlation.

Pornpattananangkul and Nusslock Page 49

Neuropsychologia. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 11. Scatterplot of the correlation between delay-discounting tendencies [ln(k)] the 
ΔReward feedback-locked theta (Reward-trial feedback-locked theta minus No-Reward-trial 
feedback-locked theta) following Good-Performance feedback
Note that, the more positive the ΔReward feedback-locked theta, the stronger the theta power 

during Reward trials (relative to No-Reward trials). Potentials bivariate outliers were 

detected using Minimum Covariance Determinant (MCD), and represented by red data 

points. Ellipse contains non-outlying data. Pink shaded areas represent 95% bootstrapped 

confident intervals around the linear regression line after the potential bivariate outliers were 

removed. The correlation coefficient was significant both before (r(35) = −.44, p=0.006) and 
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after (r(32) = −.49, p=0.003) bivariate outliers removal. This suggests that the potential 

outliers did not drive the correlation.

Pornpattananangkul and Nusslock Page 51

Neuropsychologia. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12. Scatterplot of the correlation between delay-discounting tendencies [ln(k)] the 
ΔReward feedback-locked beta (Reward-trial feedback-locked beta minus No-Reward-trial 
feedback-locked beta), collapsing across Bad- and Good-Performance feedbacks
Note that, the more positive the ΔReward feedback-locked beta, the stronger the theta power 

during Reward trials (relative to No-Reward trials). Potentials bivariate outliers were 

detected using Minimum Covariance Determinant (MCD), and represented by red data 

points. Ellipses contain non-outlying data. Pink shaded areas represent 95% bootstrapped 

confident intervals around the linear regression line after the potential bivariate outliers were 

removed. While the Pearson zero-order correlation coefficient was not significant (r(35) = −.

25, p=0.13), the correlation became significant after one bivariate outlier was removed (r(34) 

= −.36, p=0.03).

Pornpattananangkul and Nusslock Page 52

Neuropsychologia. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pornpattananangkul and Nusslock Page 53

Ta
b

le
 1

Z
er

o-
or

de
r 

co
rr

el
at

io
ns

 b
et

w
ee

n 
E

R
SP

s,
 b

eh
av

io
ra

l i
nd

ic
es

 a
nd

 ln
(k

).

E
R

SP
s 

&
B

eh
av

io
ra

l I
nd

ic
es

M
ot

iv
at

ed
-L

ea
rn

in
g

In
ac

cu
ra

te
E

st
im

at
io

n

C
on

tr
ol

In
ac

cu
ra

te
E

st
im

at
io

n

D
el

ay
-D

is
co

un
ti

ng
Te

nd
en

ci
es

 L
n(

k)

C
ue

-l
oc

ke
d

R
ew

ar
d-

T
ri

al
 D

el
ta

−
.3

77
*

.0
47

−
.0

76

N
o-

R
ew

ar
d-

T
ri

al
 D

el
ta

−
.0

69
.1

25
−

.1
43

Δ
R

ew
ar

d 
D

el
ta

−
.3

59
*

−
.0

90
.0

80

Pr
e-

fe
ed

ba
ck

R
ew

ar
d-

T
ri

al
 A

lp
ha

 S
up

pr
es

si
on

.3
75

*
.2

09
.4

41
**

N
o-

R
ew

ar
d-

T
ri

al
 A

lp
ha

 S
up

pr
es

si
on

.3
27

†
.2

37
.2

54

Δ
R

ew
ar

d 
A

lp
ha

 S
up

pr
es

si
on

.1
96

.0
35

.4
00

*

Fe
ed

ba
ck

-l
oc

ke
d 

R
ew

ar
d-

E
va

lu
at

io
n

R
ew

ar
d-

T
ri

al
 D

el
ta

−
.5

07
**

−
.1

85
−

.2
64

N
o-

R
ew

ar
d-

T
ri

al
 D

el
ta

−
.3

21
†

−
.1

78
−

.1
94

Δ
R

ew
ar

d 
D

el
ta

−
.4

66
**

−
.0

52
−

.1
91

R
ew

ar
d-

T
ri

al
 T

he
ta

−
.5

36
**

−
.1

17
−

.4
07

*

N
o-

R
ew

ar
d-

T
ri

al
 T

he
ta

−
.3

02
†

−
.1

31
−

.2
93

†

Δ
R

ew
ar

d 
T

he
ta

−
.5

63
**

−
.0

43
−

.3
44

*

R
ew

ar
d-

T
ri

al
 B

et
a

−
.3

77
*

.0
71

−
.4

27
**

N
o-

R
ew

ar
d-

T
ri

al
 B

et
a

−
.3

02
†

.0
61

−
.3

61
*

Δ
R

ew
ar

d 
B

et
a

−
.2

37
.0

38
−

.2
46

a

Fe
ed

ba
ck

-l
oc

ke
d 

Pe
rf

or
m

an
ce

-E
va

lu
at

io
n

B
ad

-P
er

fo
rm

an
ce

 D
el

ta
−

.4
80

**
−

.2
05

−
.1

96

G
oo

d-
Pe

rf
or

m
an

ce
 D

el
ta

−
.3

38
*

−
.1

4
−

.2
42

Δ
Pe

rf
or

m
an

ce
 D

el
ta

−
.1

6
−

.0
75

.0
79

B
ad

-P
er

fo
rm

an
ce

 T
he

ta
−

.4
70

**
−

.1
5

−
.3

54
*

G
oo

d-
Pe

rf
or

m
an

ce
 T

he
ta

−
.4

54
**

−
.0

76
−

.4
00

*

Δ
Pe

rf
or

m
an

ce
 T

he
ta

−
.2

17
−

.1
91

−
.0

51

B
ad

-P
er

fo
rm

an
ce

 B
et

a
−

.2
54

.1
49

−
.3

03
†

Neuropsychologia. Author manuscript; available in PMC 2017 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pornpattananangkul and Nusslock Page 54

E
R

SP
s 

&
B

eh
av

io
ra

l I
nd

ic
es

M
ot

iv
at

ed
-L

ea
rn

in
g

In
ac

cu
ra

te
E

st
im

at
io

n

C
on

tr
ol

In
ac

cu
ra

te
E

st
im

at
io

n

D
el

ay
-D

is
co

un
ti

ng
Te

nd
en

ci
es

 L
n(

k)

G
oo

d-
Pe

rf
or

m
an

ce
 B

et
a

−
.3

65
*

−
.0

13
−

.4
36

**

Δ
Pe

rf
or

m
an

ce
 B

et
a

.1
09

.2
02

.1
38

Pe
rf

or
m

an
ce

E
xp

er
im

en
ta

l I
na

cc
ur

at
e 

E
st

im
at

io
n

-
.2

66
.3

93
*

C
on

tr
ol

 I
na

cc
ur

at
e 

E
st

im
at

io
n

-
-

.0
14

N
ot

e.
 F

or
 f

ee
db

ac
k-

lo
ck

ed
 R

ew
ar

d-
E

va
lu

at
io

n 
E

R
SP

s,
 E

R
SP

s 
w

er
e 

co
lla

ps
in

g 
ac

ro
ss

 B
ad

-P
er

fo
rm

an
ce

 a
nd

 G
oo

d-
Pe

rf
or

m
an

ce
 f

ee
db

ac
ks

. Δ
R

ew
ar

d 
E

R
SP

s 
w

er
e 

ca
lc

ul
at

ed
 b

y 
su

bt
ra

ct
in

g 
N

o-
R

ew
ar

d-
T

ri
al

 
E

R
SP

s 
fr

om
 R

ew
ar

d-
T

ri
al

 E
R

SP
s.

 S
im

ila
rl

y,
 f

or
 f

ee
db

ac
k-

lo
ck

ed
 P

er
fo

rm
an

ce
-E

va
lu

at
io

n 
E

R
SP

s,
 E

R
SP

s 
w

er
e 

co
lla

ps
in

g 
ac

ro
ss

 R
ew

ar
d-

 a
nd

 N
o-

R
ew

ar
d-

T
ri

al
 f

ee
db

ac
ks

. Δ
Pe

rf
or

m
an

ce
 E

R
SP

s 
w

er
e 

ca
lc

ul
at

ed
 b

y 
su

bt
ra

ct
in

g 
G

oo
d-

Pe
rf

or
m

an
ce

 E
R

SP
s 

fr
om

 B
ad

-P
er

fo
rm

an
ce

 E
R

SP
s.

 M
or

e 
ne

ga
tiv

e 
va

lu
es

 o
f 

Δ
R

ew
ar

d 
A

lp
ha

-S
up

pr
es

si
on

 r
ef

le
ct

 th
e 

gr
ea

te
r 

su
pp

re
ss

io
n 

of
 a

lp
ha

 a
ct

iv
ity

 d
ur

in
g 

R
ew

ar
d 

tr
ia

ls
 (

re
la

tiv
e 

to
 N

o-
R

ew
ar

d 
tr

ia
ls

).
 I

na
cc

ur
at

e 
E

st
im

at
io

n 
re

fe
rs

 to
 th

e 
de

vi
at

io
n 

fr
om

 th
e 

go
al

 o
f 

es
tim

at
in

g 
tim

e 
(3

.5
 s

),
 a

nd
 th

er
ef

or
e 

hi
gh

 v
al

ue
s 

re
fl

ec
t w

or
se

 p
er

fo
rm

an
ce

. M
ot

iv
at

ed
-L

ea
rn

in
g 

In
ac

cu
ra

te
 E

st
im

at
io

n 
an

d 
C

on
tr

ol
 I

na
cc

ur
at

e 
E

st
im

at
io

n 
re

fe
r 

to
 I

na
cc

ur
at

e 
E

st
im

at
io

n 
in

di
ce

s 
du

ri
ng

 th
e 

la
st

 b
lo

ck
 o

f 
th

e 
ex

pe
ri

m
en

ta
l s

es
si

on
, a

nd
 d

ur
in

g 
th

e 
co

nt
ro

l b
lo

ck
s 

(i
.e

., 
be

fo
re

 th
e 

le
ar

ni
ng

 
oc

cu
rr

ed
),

 r
es

pe
ct

iv
el

y.

**
p 

<
 .0

1,

* p 
<

 .0
5,

† p 
<

 .1
0 

(2
-t

ai
le

d)
.

a be
ca

m
e 

si
gn

if
ic

an
t (

r(
35

) 
=

 −
.3

6,
 p

 =
 .0

3)
, a

ft
er

 a
 b

iv
ar

ia
te

 o
ut

lie
r 

w
as

 r
em

ov
ed

 (
se

e 
Fi

gu
re

 1
1)

.

Neuropsychologia. Author manuscript; available in PMC 2017 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pornpattananangkul and Nusslock Page 55

Ta
b

le
 2

M
ul

tip
le

 R
eg

re
ss

io
n 

A
na

ly
se

s 
fo

r 
Δ

R
ew

ar
d 

(R
ew

ar
d-

T
ri

al
 m

in
us

 N
o-

R
ew

ar
d-

T
ri

al
) 

E
E

G
 in

di
ce

s 
pr

ed
ic

tin
g 

ln
(k

)

B
SE

 B
β

P
To

le
ra

nc
e

V
IF

C
on

st
an

t
−

3.
87

.3
2

<
.0

01

Δ
R

ew
ar

d 
pr

e-
fe

ed
ba

ck
 a

lp
ha

.3
0

.2
5

.2
1

.2
3

.7
1

1.
41

Δ
R

ew
ar

d 
fe

ed
ba

ck
-l

oc
ke

d 
th

et
a 

fo
llo

w
in

g 
G

oo
d-

Pe
rf

or
m

an
ce

 f
ee

db
ac

k
−

.3
7

.1
8

−
.3

6
.0

4
.7

1
1.

42

Δ
R

ew
ar

d 
fe

ed
ba

ck
-l

oc
ke

d 
be

ta
 (

co
lla

ps
in

g 
ac

ro
ss

 B
ad

- 
an

d 
G

oo
d-

Pe
rf

or
m

an
ce

 f
ee

db
ac

k)
−

.7
5

.3
9

−
.2

8
.0

6a
.9

9
1.

01

N
ot

e.
 R

2  
=

 .3
1 

(p
 =

 .0
06

);
 C

ol
lin

ea
ri

ty
 s

ta
tis

tic
s 

(T
ol

er
an

ce
 a

nd
 V

IF
) 

in
di

ca
te

 th
at

 m
ul

tic
ol

lin
ea

ri
ty

 b
et

w
ee

n 
th

e 
pr

ed
ic

to
rs

 w
as

 n
ot

 a
 c

on
ce

rn
.

a be
ca

m
e 

si
gn

if
ic

an
t (

p 
=

 .0
3)

 a
ft

er
 a

 b
iv

ar
ia

te
 o

ut
lie

r 
w

as
 r

em
ov

ed
 (

se
e 

Fi
gu

re
 1

2)
.

Neuropsychologia. Author manuscript; available in PMC 2017 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Pornpattananangkul and Nusslock Page 56

Table 3

Zero-order correlations among ΔReward (Reward-Trial minus No-Reward-Trial) EEG indices that predicted 

ln(k)

1) 2) 3)

1) ΔReward pre-feedback alpha - −.54*** .003

2) ΔReward feedback-locked theta following Good-Performance feedback - - −.10

3) ΔReward feedback-locked beta (collapsing across Bad- and Good-Performance feedback) - - -

Note.

***
p < .001 (2-tailed).
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