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Abstract

Metabolites are building blocks of cellular function. These species are involved in enzyme-

catalyzed chemical reactions and are essential for cellular function. Upstream biological 

disruptions result in a series of metabolomic changes, and as such the metabolome holds a wealth 

of information that is thought to be most predictive of phenotype. Uncovering this knowledge is a 

work in progress. The field of metabolomics is still maturing; the community has leveraged 

proteomics experience when applicable and developed a range of sample preparation and 

instrument methodology along with myriad data processing and analysis approaches. Research 

focuses have now shifted toward a fundamental understanding of the biology responsible for 

metabolomic changes. There are several types of metabolomics experiments including both 

targeted and untargeted analyses. While untargeted, hypothesis generating, workflows exhibit 

many valuable attributes, challenges inherent to the approach remain. This Critical Insight 

comments on these challenges, focusing on the identification process of LC-MS based untargeted 

metabolomics studies – specifically in mammalian systems. Biological interpretation of 

metabolomics data hinges on the ability to accurately identify metabolites. The range of 

confidence associated with identifications that is often overlooked is reviewed, and opportunities 

for advancing the metabolomics field are described.
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The ultimate goal of metabolomics is the comprehensive study of the low molecular weight 

molecules within an organism. Metabolites are the result of both biological and 

environmental factors, and as such provide great potential to bridge knowledge of genotype 

and phenotype. Metabolomics is often likened to its proteomics sibling and has leveraged 

proteomics experience, but the field has evolved with inherently different challenges 

including the identification process. Peptides and proteins are typically a linear polymer and 

can be sequenced. Proteins are inferred by matching of identified experimental peptides 

against in-silico fragmentation spectra. Metabolites are more challenging to annotate. These 

small molecules often lack a common building block, although there is common use of the 

elements C, H, O, N, S, P, and potentially heteroatoms. The idea that untargeted mass 

spectrometry (MS)-based metabolomics analysis will result in a large list of ‘identified’ 

small molecules that can be mapped to networks and pathways is often assumed, yet high 

confidence analyte assignments/identifications may not be made owing to the fundamental 

challenges of the metabolomic identification processes. For example, features (i.e., mass-to-

charge ratio and retention time pairs) can be assigned to a vast number of tentative or 

preliminary structures, or there may be no candidate matches in curated databases. Because 

metabolomics database content will likely always be considered incomplete – lacking a 

genetic template such as that for proteomics, in-silico metabolite databases can provide 

guidance and in some cases validation, but will not fit all metabolomic studies. Validation of 

retention times and MS/MS fragmentation data with a reference standard is nearly always 

required for confident metabolite identification.

Since its inception, the metabolomics field focus has shifted from detecting changes to 

understanding the biology leading to the changes [1], thus the accuracy of metabolite 

assignments is extremely important. In this Critical Insight, we will discuss various 

challenges inherent to LC-MS based metabolomics and describe the ranges of confidence for 

small molecule annotations when performing global metabolomic analyses, a concept 

essential for applying metabolomic data toward a better understanding of the mechanisms of 

human health and disease.
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LC-MS based Metabolomics: Strengths and Challenges

Metabolomics experiments aim to characterize diverse classes of small molecules from a 

variety of sample types (e.g., cell extracts, culture media, urine, serum, etc.). The 

metabolomics community has leveraged numerous aspects of proteomics methodology such 

as separation technologies, state-of-the-art instrumentation, and data processing approaches. 

However, there are fundamental differences in MS-based metabolomics versus proteomics 

that are important to recognize. Table 1 outlines the strengths and challenges in 

contemporary metabolomics relative to proteomic analyses.

The annotated human metabolome is considered to be less complex than the proteome [2,3], 

yet the diverse chemical structures exhibit a wide range of concentration, solubility, polarity, 

and volatility [4].Proteomics samples often require a multi-step preparation that may involve 

cell lysis, purification, enzymatic digestion, and solid phase extraction [5]. Sample 

preparation for metabolomics involves cell lysis and metabolite extraction [6], although 

purification and fractionation can also be performed. Metabolomics analyses are challenged 

by an analytes’ rapid temporal dynamics and sample composition reflecting endogenous and 

exogenous species (e.g., drugs, toxins, microorganisms, and nutrients) [1]. While proteomic 

analyses can often differentiate organism species based on protein sequence [6] (which is 

particularly useful in microbiome studies), species determination in metabolomics is 

challenging because often small molecules are common across different organisms [7]. This 

can, however, be advantageous for metabolomics animal model studies as knowledge of 

physical properties guiding identifications can be shared across species. Another major 

difference between proteomic and metabolomic technologies involves the interpretation of 

fragmentation data. Known protein sequences and enzyme cleavage patterns enable 

predictable peptide sequences and fragmentation spectra. Further, the large size of protein 

molecules often results in multiple peptides being observed thus increasing confidence of 

protein identification. This is in contrast to metabolomics studies, where the small size and 

wide array of molecular structures of metabolites results in a singular species with no 

consensus fragmentation pattern.

Targeted and Untargeted Metabolomic Studies

Figure 1 outlines the goals and the types of data sets that are generated in targeted and 

untargeted/global metabolomic studies. In general, targeted approaches are aimed at 

identifying and quantifying a limited number (tens to hundreds) of known metabolites, such 

as those commonly encountered in clinical analyses. Many untargeted, or hypothesis 

generating, approaches focus on acquiring data for as many species as possible, annotating 

metabolites, and reviewing both known and unknown metabolic changes. Data can be used 

for relative quantification across sample groups and to provide hypotheses that can be 

further studied with targeted approaches. There are two broad approaches for data 

acquisition in untargeted metabolomics studies. The first method uses full scan MS1 to 

generate accurate mass measurements for individual molecules (i.e., features) to permit 

statistical calculations followed by data dependent acquisition (DDA) of a subset of samples 

to guide identifications. Similar to conventional proteomics techniques, metabolomics DDA 

methods generate fragmentation patterns for metabolites exhibiting the highest signal 
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intensity. A second untargeted metabolomics approach is based on data independent 

acquisition (DIA), where workflows integrate full MS1 with MS/MS fragmentation for all 

precursor ions either simultaneously (MSE [8]) or in finite mass ranges (SWATH [9]). DIA 

methods produce complicated fragmentation spectra and the link between precursor and 

product can be difficult to decipher. In downstream data analysis steps, fragment ions are 

matched with precursor ions based on retention time, mass, and drift time (when applicable). 

DIA allows fragmentation data to be acquired regardless of metabolite signal intensity. Both 

DDA and DIA approaches ultimately define features with a mass-to-charge ratio (m/z), 

retention time (RT), and drift time (DT) descriptors, among others. In the identification step, 

precursor ions and corresponding fragment ions are searched against databases for 

metabolite assignments.

One major advantage of untargeted metabolomics is the collection of data without pre-

existing knowledge; however, this is accompanied with the caveat that certainly sample 

preparation and analytical methods have a direct impact on the qualitative results that are 

obtained. Owing to the diverse composition of the metabolome [10], sample preparation 

steps , separation methods, and instrument platform and parameters will influence the subset 

of metabolites detected.

Analytical Platforms

A variety of separation [liquid chromatography (LC), gas chromatography (GC) and 

capillary electrophoresis (CE)] and detection [MS and nuclear magnetic resonance (NMR)] 

methods are used for metabolomics experiments. We focus on LC-MS-based metabolomics 

as it has become a leading technology for both polar and nonpolar small molecule analyses 

and draws many parallels with LC-MS-based proteomics analyses referenced herein. LC 

methods are time-consuming (minutes to hours) compared to direct infusion or flow 

injection analyses (seconds to minutes) [11]. However, the ability of LC to increase both 

selectivity and data content makes it invaluable [12], particularly for complex metabolomics 

samples such as human blood where an average of three isomers or isobars per nominal 

mass are estimated [13].

The coupling of ion mobility (IM) separations with LC-MS based analyses represents an 

emerging technology (LC-IM-MS) for metabolomics research. Ion mobility resolves gas 

phase ions based on their size-to-charge ratio or gas phase packing efficiency, 

complementing polarity and mass separations. The addition of ion mobility separation offers 

increased peak capacity [2], the ability to decrease chromatography time without sacrificing 

resolution, and opportunities to separate co-eluting precursors [13]. Rapid (milliseconds) IM 

separations are well integrated into time scales of most MS platforms; multiple IM spectra 

are acquired for each LC peak, and multiple mass spectra (microsecond time scale) are 

acquired for each IM spectrum [14].In addition to improved mass spectra quality and 

increased selectivity, IM measurements can be used to determine collision cross sections 

(CCS) for individual metabolites. Unlike RT measurements, which vary based on column 

chemistry, mobile phase, and elution gradient, CCS values are physical properties and not 

influenced by MS or LC settings where inter-laboratory precision is reported to be at least 

<5% for over a broad range of molecules assayed [15]. Improvements to this precision are 
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rapidly evolving with the development of more standardized protocols for CCS 

measurements.

Analysis and Identification

Untargeted metabolomics data processing workflows incorporate several defined steps 

including noise filtering, peak detection, peak deconvolution, retention time alignment, and 

finally feature annotation. Importantly, features are not always metabolites; related species 

(e.g., isotopes, neutral losses, adducts) of a single metabolite may be present with different 

m/z values. Metabolite identification is necessary to draw biological conclusions from 

untargeted metabolomics data. Analyte identification can be performed by searching the 

experimental MS1 or MS/MS data through databases available to the public for free (e.g., 

ChemSpider (http://www.chemspider.com), METLIN [16], Human Metabolome DataBase 

(HMDB) [17], MassBank [18], mzCloud (https://www.mzcloud.org), GNPS (http://

gnps.ucsd.edu/), and LipidBlast [19]) or for a nominal fee (e.g., NIST Mass Spectral Library 

(http://chemdata.nist.gov)). Batch searching MS/MS fragmentation spectra within these 

databases, however, is often not possible without commercial software. Given that numerous 

libraries are generally queried to maximize metabolome coverage, bioinformatics efforts are 

necessary to remove or reduce match redundancy. This process can be complicated since 

metabolite nomenclature is not entirely standardized and varies greatly by database.

Feature annotation is performed by comparing an experimental mass measurement to a 

database of known metabolites within a mass tolerance window to generate potential 

candidates. Thus, the development of high-resolution high-mass accuracy mass instruments 

has proven invaluable for discovery (MS1) and heuristic validation (MS2) metabolomics 

efforts. As illustrated in Figure 2, it is difficult for MS mass measurement alone to provide 

metabolite information beyond molecular formula, at best. Kind and Fiehn demonstrated 

that high mass accuracy measurements (<1 ppm error) were inadequate for determining the 

elemental composition of numerous metabolites [20]; notably, the authors later showed that 

isotope ratio measurements were more important than mass accuracy for determining the 

most probable elemental composition for small molecules [21]. Additional information, such 

as fragmentation data, is essential for structure elucidation of a mass measurement. Putative 

identifications require matching an experimental MS/MS spectrum with a reference 

fragmentation spectrum [24, 26]. Metabolomics spectral libraries have been created with 

experimental data from commercially available or synthesized standards. Significant efforts 

are being made to routinely update content as new compounds are analyzed, as such, these 

libraries are considered incomplete [22]. MS/MS data is often insufficient to differentiate 

structural and stereo-isomers. Orthogonal evidence is needed in these cases and when 

experimental MS/MS data is non-discriminating. LC and IM can be used to generate 

retention time and collision cross section information, respectively. Both of these separation 

methods are capable of resolving some isomeric/isobaric species. IM has even shown utility 

for differentiating lipids based on position of double bond, which is often unable to be 

accomplished by LC [23]. MS-based metabolomic studies are performed on numerous 

different instrument platforms; ion intensities and fragmentation patterns vary based on 

analytical conditions including instrument, ionization source, and collision energy [18]. For 

small molecules, a collision energy that depletes some precursors may have little effect on 
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others. The selection of isobaric co-eluting precursor ions for fragmentation may further 

complicate experimental MS/MS data. MS/MS matching can be subjective. Scores are 

generated to represent similarities between experimental data from unknown and 

experimental data from the standard and assignments are often made using the best match. 

False positives and false negatives may be the result of low quality spectra and incomplete 

databases, respectively. Many opportunities exist for the development of methods to 

calculate these unknowns as well as a confidence metric for scoring MS/MS matches [12].

A subset of experimental metabolomics data does not match any database entry. Null 

matches may represent truly new metabolites or simply known metabolites that are missing 

from or do not match the spectral database (e.g., in-source fragments, metabolites modified 

by enzyme activity, etc.) [24]. Characterization of these “unknown” unknowns requires 

significant effort – such as that often encountered in natural product discovery of secondary 

metabolites [25,45]. Algorithms geared toward predicting and comparing small molecule in 
silico and experimental MS/MS data are also currently available (e.g., MetFrag [26]), 

however significant opportunities exist for the refinement and further development of these 

tools. The addition of IM data is informative; mobility-mass correlations as well as CCS/

mass ratios can guide unknown identifications by giving an idea of molecular class and by 

excluding unlikely candidates on the basis of structure. Established metabolomics labs and 

metabolomics centers have fixed chromatography methods that are robust, reliable and yield 

stable retention times. High quality RT and MS/MS fragmentation data of pure reference 

standards have been acquired for in-house libraries. These efforts certainly facilitate 

identification confidence, but are not feasible for most small research groups. Thus, 

leveraging methodologies and data with shared knowledge will benefit the entire 

metabolomics community.

Confidence levels

Metabolite annotation is the crucial link between acquired data and meaningful biological 

information. It is essential that the confidence of metabolite assignments is transparent. In 

2007 the Chemical Analysis Working Group (CAWG) of the Metabolomics Standards 

Initiative (MSI) published a first stage of guidelines for reporting the minimum metadata 

relative to metabolite identification as a means to communicate the confidence of 

identifications [27]. Recently, revisions to these levels have been proposed to cover special 

cases where level determination may be unclear [28, 29]. We propose modest changes to 

include orthogonal IM-MS data as evidence for metabolite identification (Figure 3).

The highest confidence identification, a validated identification (Level 1), confirms a 

structure with a minimum of two independent and orthogonal data from a pure reference 

standard under identical analytical conditions. A lack of reference standard acquisition but 

predictive or externally acquired structure evidence, namely MS/MS data, exhibiting 

diagnostic fragments or neutral losses consistent with a specific structure would be 

considered a putative identification (Level 2). Preliminary identifications (Level 3) arise 

when accurate mass and isotopic distribution patterns produce tentative structures from 

database searches. Note, a single molecular formula typically renders multiple candidate 

structures. Our personal experience is that the majority of features detected by our methods 
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result in preliminary identifications. Molecular formula candidates (Level 4) and a de-

convoluted experimental m/z (Level 5) complete the less confident annotation 

classifications.

Suggestions have been made to clarify the set of reporting standards with the inclusion of an 

evidence-based quantitative score [30]. With either a score or level-based system, the future 

of annotation is likely to be influenced by multiplexed technologies. Recently, Pacini et al. 

obtained five levels of small molecule data in a single DIA acquisition (LC,UV, IM, MS, 

MS/MS) [31]. Advances of multidimensional analytical approaches are inherently the most 

promising for the broadest metabolome coverage. Orthogonal in-line data can provide the 

needed evidence to meet minimum data requirements for confident identifications. At the 

present time LC and IM are successfully multiplexed with MS providing RT and CCS data, 

respectively, as supporting evidence. As IM-MS becomes more widespread and CCS data is 

populated in searchable metabolomic databases and libraries, identifications using this 

knowledge will increase metabolite assignment confidence. The class-specific relationship 

in IM is also valuable evidence to support both annotations of metabolites and exclusion of 

unlikely candidates. For example, only correlated molecular classes based on IM trend lines 

or retention times based on polarity may be considered for identification purposes. For 

metabolite candidates that lack an available reference standard, a quantitative structure 

retention relationship (QSRR) model can predict retention times [32] and computational 

calculations can estimate CCS values [33] to be used as evidence.

False Discovery Rate

False positive identifications are a significant challenge for metabolomics. As described 

above, annotations arise by querying neutral mass against a database of candidate small 

molecule masses. Neutral masses are inferred from experimental m/z, thus the presence of 

related isotope and adduct features may complicate neutral mass determination and 

potentially lead to false positive identifications. False positives can also arise during MS/MS 

spectrum matching. Statistical tools for estimating the error of metabolite-spectrum matches 

are necessary for evaluating the confidence of annotation results. The inclusion of 

experimental orthogonal data such as RT and CCS data will decrease false positives, but 

there is currently no agreed upon metric to assess False Discovery Rate (FDR) of metabolite 

identifications. In MS-based proteomic studies, target-decoy search based FDR calculations 

are widely accepted [34, 35]. Briefly, predicted peptide MS/MS spectra are used to create a 

reverse decoy database, and experimental data matches are used to estimate FDR. In 

principle, a target-decoy strategy could be used for metabolomics using a small molecule set 

exclusive of the experimental species, but since metabolomics databases are incomplete this 

approach is currently challenging [22]. There are reports of novel FDR methods exclusive of 

decoy approaches, though none has yet gained widespread acceptance. For example a 

simulation model that uses the rate of a match for elemental composition search queries 

[38], the incorporation of a spectrum similarity score with a completion score for GC × GC/

TOF-MS data [36], and a mixture modeling method coined GREAZY for phospholipids [37] 

have all been suggested. Querying predicted molecular formula of experimental data against 

a decoy set of theoretically possible candidates has been proposed, however the inflated 

search space increases the chance of a false positive identification and it is difficult to 
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distinguish artificial compositions from legitimate candidate metabolites [38].Potential 

inclusion of the Seven Golden Rules [21] may offer an approach to classify the legitimate 

candidate list for exclusion from the decoy elemental composition list.

Biological Analysis of Metabolites

Biological interpretation of metabolomics data, and ultimately systems biology studies, 

hinges on the ability to accurately identify metabolites so they can be mapped to pathways 

and networks. Data from an untargeted metabolomics experiment is challenging to visualize 

and interpret on account of the amount of data generated. This challenge is amplified by the 

fact that numerous features are identified with varying levels of confidence. Table 2 outlines 

several open source options for analyzing metabolomics data depending on identification 

confidence level (unique feature to validated identification, described in Confidence Levels 
section above). Subsets of data may be analyzed using different tools depending on the data 

obtained (e.g., MS/MS fragmentation spectra is often only available for higher abundance 

ions from DDA analyses). Statistical and multivariate analyses are applied to prioritize data; 

multiple hypothesis testing, data dimension reduction (e.g., Principal Component Analysis 

(PCA) scores or loadings plots and Partial Least Squares (PLS) modeling), and data 

visualization (e.g., cloud plots [39]) and clustering (e.g, Self-organizing Map (SOM) [40]) 

can reveal altered ion abundances and patterns that may be characteristic of the phenotype.

Most of the existing analysis tools require a list of identified metabolites to integrate 

biological knowledge [41–44]. New techniques for placing small molecules in a biological 

context are now being presented, relying on the integration of systems biology tools. For 

example, genomic and metabolomic data have been combined in a mining workflow to 

identify pharmaceutical candidates [45]. Another innovative approach utilizes the fact that 

single upstream biological disruptions result in a cascade of metabolomic changes. The 

creation of informatic strategies, such as mummichog [46], that predicts biological activity 

from MS1 data rather than formal MS2-dependent identifications is an attractive concept as 

it circumvents identification challenges. Importantly, a high level of agreement between 

identifications from mummichog results and conventional identification pipelines is found. 

This software uses the accurate mass of m/z features to map candidate metabolites to 

genome-scale metabolic networks and calculates local enrichment of metabolites to 

distinguish those networks from a stochastic distribution of metabolites [46]. Network 

modules are generated, as illustrated in Figure 4 which presents a comparison of 

metabolomic profiles of glucose 6-phosphate dehydrogenase deficient (G6PDd) and normal 

human erythrocytes, which reveal areas of network activity. These data are then used to 

focus additional efforts on validating the prioritized metabolites from the multitude of 

possibilities from database searching and isomeric species.

Summary

This is an exciting time for metabolomics research. Tremendous successes have been made 

to establish the necessary foundation for the field to mature. The metabolomics community 

now has the opportunity to address the high reward challenges associated with MS/MS data 

interpretation, database content, isomer resolution, identification confidence, and FDR 
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estimation. Innovative research and development is essential, particularly at the interface of 

biomedical, cheminformatics, and bioinformatics fields. The metabolome is thought to be 

most predictive of phenotype thus novel ideas that address these challenges will allow the 

field to better understand mechanisms underlying health and disease.
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Figure 1. 
Untargeted versus Targeted Metabolomics Studies. Untargeted, or discovery-based, 

metabolomics focuses on global detection and relative quantitation of small molecules in a 

sample. In contrast, targeted, or validation-based, metabolomics focuses on measuring well-

defined groups of metabolites, with opportunities for absolute quantitation.
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Figure 2. 
An illustration of the amount of information density present at different levels of mass 

measurement accuracy, using the validated entries in the PubChem compound database. (a) 

The distribution of molecules in the PubChem compound database between 0 and 1000 Da, 

as surveyed in 2007, 2011, and 2015. As new compounds are discovered and archived, the 

distribution has shifted to lower mass, with most entries currently centered between 100 and 

600 Da. Theoretical molecular formulas determined from chemical stability rules are 

illustrated by the dotted line, indicating that most of these entries are isomers. The inset 

zooms in on a 10 Da window where over half a million compounds are represented. (b) At 

increasing levels of mass accuracy, the number of possible molecular formulas can be 

reduced to a few thousand, but in one extreme case shown at 1 ppm, one formula is 

represented by over 10,000 isomers in the database. Mass spectrometry can significantly 

reduce complexity, but it cannot fully address molecular characterization without other 

dimensions of information. Reproduced with permission of Annual Review of Analytical 

Chemistry, Volume 9 © by Annual Reviews, http://www.annualreviews.org from reference 

[2].
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Figure 3. 
Proposed workflow for metabolite identification confidence using multidimensional mass 

spectrometry. From top to bottom: Obtaining an exact mass measurement for a Unique 

Feature (Level 5) allows database searching, which here is illustrated by the over 61 million 

compounds indexed in PubChem at the time of this review. Subsequent levels of mass 

accuracy reduce the number of possible molecular formulas from over 200,000 (unit 

resolution), to ca. 10,000 at 1 ppm mass accuracy for the example mass of 354 Da. Using 

higher mass accuracy and/or a heuristic filtering approach obtains a unique Molecular 

Formula (Level 4), which still represents several thousand isomeric compounds. Tentative 

Structures (Level 3) match precursor m/z to a metabolite database and Putative 

Identifications (Level 2) match fragmentation data to metabolite MS/MS libraries. Obtaining 

a Validated Identification (Level 1) requires additional data evidence, such as tandem 

MS/MS, LC, IM, or measurements from other analytical techniques (optical spectroscopy or 

NMR) that match corresponding reference standard data under identical experimental 

conditions. Right portion of figure modified with permission of Annual Review of 

Analytical Chemistry, Volume 9 © by Annual Reviews, http://www.annualreviews.org from 

reference [2].
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Figure 4. 
Network module output from mummichog analysis of the qualitative and relative 

quantitative differences in metabolomic profiles of G6PDd deficient vs. normal human 

erythrocytes. Feature m/z values and significance measurements were used to predict 

metabolic activity networks without the use of conventional MS/MS identification 

workflows. Metabolites are colored blue (negative fold change) or red (positive fold change) 

and the size/color intensity represents the magnitude of fold change.
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Table 1

Current Scale, Strengths, and Challenges of MS-based Metabolomics and MS-based Proteomics.

Metabolomics Proteomics

Scale

• > 40,000 annotated human metabolites and an 
estimated > 200,000 possible metabolites

• Highly diverse structural forms and high number 
of isomers

• Highly diverse physiochemical properties

• > 20,000 base human proteins and an 
estimated > 1,000,000 possible protein 
variants

• Predominantly linear polymers and high 
number of isomers

• Highly diverse physiochemical properties

Strengths

• Many metabolites are common across species; 
experimental evidence can be shared to guide 
identifications

• Metabolic state dynamics is relatively fast

• Sample preparation can be relatively simple (i.e.,. 
lysis and extraction) or more complex (i.e., added 
steps of purification an fractionation) depending 
on goals of the experiment

• False discovery rates can be estimated

• Protein identification can be inferred from 
unique fragments (i.e. peptides) 
comprising the protein

• Fragmentation patterns are relatively 
predictable

• Standard reference proteins are not 
requiredfor protein assignments

• Many proteins are species specific; it may 
bepossible to discern biological source in a 
microbiome study

Challenges

• False discovery rates are difficult to ascertain

• There is a lack of standard reference material for 
many metabolites

• Metabolite identification cannot be inferred from 
fragments comprising the whole metabolite

• Fragmentation patterns are relatively 
unpredictable or uninformative (similar fragments 
for different species)

• Many metabolites are common across species; it 
is challenging to discern the source in 
microbiome study

• Protein expression profile dynamics is 
relatively slow

• Sample preparation is often multi-step 
(e.g. lysis, purification, enzymatic 
digestion, and solid phase extraction) 
depending on goals of the experiment
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