Skip to main content
. 2016 Nov 2;2016:7861653. doi: 10.1155/2016/7861653

Table 2.

Formulation of WT and mutated sodium channels (Nav1.5-p.R222Q and Nav1.5-p.I141V) in the presence or absence of 30 µM of E3G in the Maleckar-Greenstein-Trayanova-Giles atrial cell model. The bold font corresponds to mutations effect and the bold-italic font to E3G effects.

MGTG atrial model, p.R222Q.I Na MGTG atrial model, p.I141V.I Na  MGTG atrial model, I CaL  MGTG atrial model, I Ks
WT m , WT (V m) = m , WT (V m) m , WT (V m) = m , WT (V m) 100% of I CaL 100% of I Ks
m factor, WT (V m) = m factor, WT (V m)
τ m = 4.2e − 5 (s)exp⁡(−m factor ∗m factor) + 2.4e − 5 (s)
m factor, WT (V m) = m factor, WT (V m)
τ m = 4.2e − 5 (s)exp⁡(−m factor ∗m factor) + 2.4e − 5 (s)
h , WT (V m) = h , WT (V m) h , WT (V m) = h , WT (V m)
h factor, WT (V m) = h factor, WT (V m) h factor, WT (V m) = h factor, WT (V m)
τ h1 = 0.03 (s) ∗h factor + 0.0003 (s) τ h1 = 0.03 (s)    h factor + 0.0003 (s)

WT + 30 µM E3G m , WT (V m) = m , WT (V m) m , WT (V m) = m , WT (V m) 80% of I CaL 50% of I Ks
m factor, WT (V m) = m factor,
WT (V m)
m factor, WT (V m) = m factor, WT (V m)
τ m = 4.2e − 5 (s)exp⁡(−m factor ∗m factor) + 2.4e − 5 (s) τ m = 4.2e − 5 (s)exp⁡(−m factor ∗m factor) + 2.4e − 5 (s)
h , WT (V m) = h , WT (V m + 6) h , WT (V m) = h , WT (V m + 6)
h factor, WT (V m) = h factor, WT (V m) h factor, WT (V m) = h factor, WT (V m)
τ h1 = 0.03 (s)    h factor + 0.0003 (s) τ h1 = 0.03 (s)    h factor + 0.0003 (s)

Mutants m , WT (V m) = m , WT (V m + 6.3) m , WT (V m) = m , WT (V m + 7) 100% of I CaL 100% of I Ks
m factor, WT (V m) = m factor, WT (V m) m factor, WT (V m) = m factor, WT (V m + 7)
τ m = 4.2e − 5 (s)exp⁡(−m factor ∗m factor) + 2.4e − 5 (s) τ m = 4.2e − 5 (s)exp⁡(−m factor ∗m factor) + 2.4e − 5 (s)
h , WT (V m) = h , WT (V m + 6.2) h , WT (V m) = h , WT (V m)
h factor, WT (V m) = h factor, WT (V m) h factor, WT (V m) = h factor, WT (V m + 7)
τ h1 = 0.03 (s)    h factor + 0.0003 (s) τ h1 = 0.03 (s)    h factor + 0.0003 (s)

Mutants + 30 µM E3G m , WT (V m) = m , WT (V m + 6.3) m , WT (V m) = m , WT (V m + 7) 80% of I CaL 50% of I Ks
m factor, WT (V m) = m factor, WT (V m) m factor, WT (V m) = m factor, WT (V m + 7)
τ m = 4.2e − 5 (s)exp⁡(−m factor ∗m factor) + 2.4e − 5 (s) τ m = 4.2e − 5 (s)exp⁡(−m factor ∗m factor) + 2.4e − 5 (s)
h , WT (V m) = h , WT (V m + 6.2 + 6) h , WT (V m) = h , WT (V m + 6)
h factor, WT (V m) = h factor, WT (V m) h factor, WT (V m) = h factor, WT (V m + 7)
τ h1 = 0.03 (s)    h factor + 0.0003 (s) τ h1 = 0.03 (s)    h factor + 0.0003 (s)