
KBG syndrome involving a single-
nucleotide duplication in ANKRD11
Robert Kleyner,1,9 Janet Malcolmson,1,2,9 David Tegay,1 Kenneth Ward,3

Annette Maughan,4 Glenn Maughan,5 Lesa Nelson,3 Kai Wang,6,7,8 Reid Robison,8

and Gholson J. Lyon1,8

1Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
11724, USA; 2Genetic Counseling Graduate Program, Long Island University (LIU), Brookville, New York
11548, USA; 3Affiliated Genetics, Inc., Salt Lake City, Utah 84109, USA; 4Epilepsy Association of Utah, West
Jordan, Utah 84088, USA; 5KBG Syndrome Foundation, West Jordan, Utah 84088, USA; 6Zilkha Neurogenetic
Institute, University of Southern California, Los Angeles, California 90089, USA; 7Department of Psychiatry &
Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
90033, USA; 8Utah Foundation for Biomedical Research, Salt Lake City, Utah 84107, USA

Abstract KBG syndrome is a rare autosomal dominant genetic condition characterized
by neurological involvement and distinct facial, hand, and skeletal features. More than 70
cases have been reported; however, it is likely that KBG syndrome is underdiagnosed
because of lack of comprehensive characterization of the heterogeneous phenotypic
features. We describe the clinical manifestations in a male currently 13 years of age, who
exhibited symptoms including epilepsy, severe developmental delay, distinct facial
features, and hand anomalies, without a positive genetic diagnosis. Subsequent exome
sequencing identified a novel de novo heterozygous single base pair duplication
(c.6015dupA) in ANKRD11, which was validated by Sanger sequencing. This single-
nucleotide duplication is predicted to lead to a premature stop codon and loss of
function in ANKRD11, thereby implicating it as contributing to the proband’s symptoms
and yielding a molecular diagnosis of KBG syndrome. Before molecular diagnosis, this
syndrome was not recognized in the proband, as several key features of the disorder
were mild and were not recognized by clinicians, further supporting the concept of
variable expressivity in many disorders. Although a diagnosis of cerebral folate deficiency
has also been given, its significance for the proband’s condition remains uncertain.

[Supplemental material is available for this article.]

INTRODUCTION

Whole-exome sequencing (WES) is a method that mainly targets regions of the genome that
code for proteins and is useful for detecting disease-contributing variants in genes associat-
ed with rare genetic syndromes (Bamshad et al. 2011; Lyon andWang 2012; Lyon and Segal
2013; Biesecker and Green 2014; Chong et al. 2015; Guo et al. 2015; He et al. 2015; Lyon
and O’Rawe 2015). Here we report our efforts in phenotypic characterization and molecular
diagnosis of a previously undiagnosed pediatric patient. We report the identification of a de
novo mutation in ANKRD11, which led to the recognition of KBG syndrome (Ockeloen et al.
2015; Walz et al. 2015) in the sequenced proband. KBG syndrome (OMIM #148050) is a rare,
but increasingly recognized, autosomal dominant genetic condition. It was first described in
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1975 and is characterized by craniofacial features, hand abnormalities, macrodontia, and
neurological involvement including developmental delay and epilepsy (Herrmann et al.
1975). The syndrome’s namewas derived from the last names of the first three families found
to have this syndrome (Herrmann et al. 1975). Our primary goal in reporting this detailed
case description is to provide rich phenotypic information that is still typically missing
from many studies (Hall 2003), thus enabling a better description and accounting of the tre-
mendous variable expressivity (Lyon and O’Rawe 2015) and stochastic developmental vari-
ation (SDV) (Vogt 2015) in all diseases.

RESULTS

Clinical Presentation and Family History
The proband was born to a nonconsanguineous couple, who had an unremarkable pregnan-
cy history; however, at birth a large fontanel was reported. Parents and siblings were healthy,
and no significant family history was reported (Fig. 1). The proband had his first epileptic
episode at 3 years of age. After this episode, he lost all speech, began exhibiting autistic
behavior, and also started to have frequent generalized tonic–clonic seizures. Over time,
tonic, atonic, mild clonic, complex partial, myoclonic, and gelastic seizures were reported
in the proband. Other developmental skills, including throwing a ball, responding to his
name, feeding himself with utensils, and self-care skills were lost by 4 years of age. No sig-
nificant conductive hearing loss, heart abnormalities, or delayed bone age were found in the
proband at that age. The Social Communication Questionnaire (SCQ) (Corsello et al. 2007)
filled in by the parents was scored at 23, indicating the need for additional comprehensive
evaluation by a specialist such as a child psychiatrist, psychologist, or developmental pedi-
atrician trained in diagnosing autism spectrum disorder (ASD). He attended a week in an au-
tism evaluation classroom where he was diagnosed with ASD and considered severe and
qualified for every service offered. However, the only services that he has received were
those delivered in his school, partly because of complications from the severity of his seizures
and also because of the lack of availability of such services.

The proband was evaluated (by G.J.L.) at 11 years of age. He has several neurological
and craniofacial abnormalities including epilepsy, ventriculomegaly, relative macrocephaly,
prominent forehead, low hairline, thick eyebrows, wide-set eyes, and full lips (Fig. 2;
Supplemental File 1). Hand and foot abnormalities included clinodactyly of the fifth digit,
bilateral single transverse palmar creases, brachydactyly (Fig. 3), and flat feet. He was primar-
ily nonverbal during the course of the evaluation and also exhibited decreased eye contact

Figure 1. Pedigree: II-1, the affected proband (age 13), is the son of an unaffected, nonconsanguineous cou-
ple. The proband has two younger unaffected sisters (10-yr-old and 4-yr-old) and one younger unaffected
brother (2-yr-old).
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and social engagement, relative to his siblings. A summary of his clinical features is shown in
Table 1.

In 2011, during the course of his clinical workup, the proband was found to have a some-
what low level of 5-methyltetrahydrofolate (5-MTHF) in his cerebrospinal fluid (CSF)

Figure 2. Pictures of phenotype of proband throughout childhood, at (A) 6 months old, (B) 4 years old,
(C ) 9 years old, and (D) 13 years old. Facial characteristics include rounded face, bushy eyebrows, broad nasal
tip, short philtrum, thick lips, and prognathism.

Figure 3. Hand anomalies include bilateral clinodactyly of the fifth finger (A–D), brachydactyly (A–D), and
bilateral single transverse palmar creases (B–D).
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(32 nmol/L, where the reference range is 40–128 nmol/L). The concentration of pyridoxal 5′-
phosphate in the CSF was within the reference range, 25 nmol/L, with range 10–37 nmol/L.
With these results, a diagnosis of cerebral folate deficiency was given, and it was recom-
mended that he begin treatment with oral folinic acid. The proband has been receiving
folinic acid (leucovorin, 50mg/day) since that time, and a repeat CSF analysis in 2013 showed
an increased level of 5-MTHF (75 nmol/L, where the reference range is 40–128 nmol/L). He

Table 1. Summary of the clinical features found in this proband

Features (Human Phenotype Ontology Nos) Proband

Facial dysmorphism

Large fontanelle (HP:0000239) +

Rounded face (HP:0000311) +

Bushy eyebrows (HP:0000574) +

Broad nasal Tip (HP:0000455) +

Short philtrum (HP:0000322) +

Full/thick lips (HP:0012471) +

Cupid bow upper lip (HP:0002263) +

Macrodontia of upper central incisors (HP:0000675) +

Prognathism (HP:0000303) +

Developmental/intellectual disability

Intellectual disability (HP:0001249) +

Developmental regression +

Developmental delay prior to regression +

Absent speech (HP:0001344) +

Skeletal

Clinodactyly of the fifth finger (HP:0004209) +

Brachydactyly (HP:0009803) +

Bilateral single transverse palmar creases (HP:0007598) +

Short toes (HP:0001831) +

Pes planus (HP:0001763) +

Neurological

Seizures (T/C, atonic, complex, partial, tonic, gelastic) (HP:0001250) +

Growth

Currently short stature (10th percentile) (HP:0004322) +

Behavioral

Autistic behavior (HP:0000729) +

Congenital birth defects

Congenital heart defect −

Surgeries: ear tubes, broken jaw +

Cryptorchidism −

Palatal defects −

Miscellaneous

Low CSF 5-methyltetrahydrofolate (HP:0012446) +

Hearing loss −

CSF, cerebrospinal fluid.
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was even treated clinically with a 5-d course of intravenous immunoglobulin (IVIG), despite
the fact that there is very little in the medical literature demonstrating the efficacy of this. He
was later shown to have 1.52 pmoles/mL serum of folate receptor (FR) blocking antibody,
where the range of these values is as follows: <0.5, low; >0.5–1.0, medium; >1, high. He
was shown to have an FR binding autoantibody titer of 2.37 pmoles IgG/mL in serum, where
the range for FR binding autoantibody titers is <1, low; >1–5, medium; >5, high. Binding
autoantibodies against the FR recognize epitopes other than the folate binding site on
the FR (Ramaekers et al. 2007, 2016). It should be noted that recent work has demonstrated
that there is a lack of control data for 5-MTHF in healthy children, and the limited number
of longitudinal measurements has shown considerable variability even in healthy children
(Shoffner et al. 2016). Future studies should carefully measure in a longitudinal fashion in
many more healthy children not only 5-MTHF in CSF but also FR blocking and binding au-
toantibodies, particularly given that the prevalence of these antibodies has not been ascer-
tained or published in thousands of healthy children.

Some patients with cerebral folate deficiency (CFD) have been reported to have muta-
tions in the folate receptor 1 (FOLR1) gene (MIM ∗136430) with extremely low levels of 5-
MTHF in CSF (Cario et al. 2009; Delmelle et al. 2016), but we did not find any mutation in
this gene in this proband. CFD is reported to also be caused by the interruption of folate
transport across the blood–brain barrier due to folate receptor autoantibodies (FRAs) (Frye
et al. 2013). CFD has been reported to be associated with neurological findings including
seizures, spastic paraplegia, cerebellar ataxia, dyskinesia, and developmental regression,
and recent cases have described ASD (Frye et al. 2013), although much of this is nonspecific
and not correlated in any way with the severity of any of the symptoms (Mangold et al. 2011).

The proband has also been treated with various antieplileptic drugs (AEDs) including
lamotrigine (Lamictal, 400 mg/day), which has been the most effective antiepileptic drug
to control his seizures as per family report, and recently 1.5 mL twice daily of 100 mg/mL
Epidiolex (cannabidiol) has also been reported by the family to reduce his frequency of sei-
zures (Devinsky et al. 2015; Filloux 2015). A caveat is that these treatments were not admin-
istered in a blinded fashion nor was there any period of treatment with a placebo. In addition,
the strength of evidence from clinical trials for efficacy of these medications for epilepsy is
strongest for lamotrigine (Kwan et al. 2011; Li et al. 2012; Liu et al. 2016), whereas the evi-
dence is currently much weaker regarding the efficacy for autism disorder for folinic acid
(Ramaekers et al. 2016) and/or IVIG (Wong and White 2015). As of the publication of this
study, there are ongoing clinical trials for cannabidiol (Devinsky et al. 2015; Filloux 2015).

Genomic Analyses
Blood and saliva samples from the proband as well as his parents and siblings were used as
samples to be sequenced. These samples were sent to Affiliated Genetics in Salt Lake City,
Utah, where genomic DNAwas extracted and exons sequenced using the Life Technologies
Ampliseq Exome RDY kit and the Life Technologies Proton sequencing system (see
Methods). These targeted regions were sequenced using the Ion Proton sequencing system
using Ion Hi-QChemistry with 200-bp reads. TheDNA sequencing datawere comparedwith
the UCSC hg19 reference sequence using several methods of analysis (seeMethods). A sum-
mary of variants called for all individuals in the family are described in Table 2, and coverage
and mapping statistics are shown in Table 3. These analyses included in-house protocols
and several commercial software packages including Tute Genomics, Omicia Opal, and
Cartagenia v4.1, along with the use of an OTG-snpcaller pipeline (seeMethods). The various
analyses do provide a more comprehensive and in-depth approach to the data, although re-
ducing the false-negative rate also can lead to an elevation of the false-positive rate (O’Rawe
et al. 2013, 2015).

KBG syndrome involving a single-nucleotide duplication in ANKRD11

C O L D S P R I N G H A R B O R

Molecular Case Studies

Kleyner et al. 2016 Cold Spring Harb Mol Case Stud 2: a001131 5 of 16



As one example, for the OTG-snpcaller pipeline, for each individual, the final variant call
format (VCF) file contained 20,000 to 25,000 variants, of which around 300 to 400 variants
were found to be autosomal recessive (i.e., heterozygous in both parents and homozygous
only in the proband). More than 1000 variants were recognized as de novo, which is well
above the expected number of de novo mutations found in WES (Bamshad et al. 2011;
Kong et al. 2012); this is because there are a significant number of false-positives in this
data set, as we have adopted lenient filters to reduce the rate of false negatives (O’Rawe
et al. 2013, 2015). Although we can easily reduce the number of variants with stringent
read quality and coverage cutoffs, we have used more lenient filters and then prioritized var-
iants based on their phenotypic relevance.

Variants with a possible autosomal recessive inheritance pattern were examined, and
there was no strong evidence found to support any of them as possible contributing muta-
tions. These variants are provided in supplementary files (as described in Methods). For the
de novomutations, a single-nucleotide duplication of adenine (A) at position 6015 in exon 10
of ANKRD11 (c.6015dupA , p.Gly2006Argfs∗26) (Table 4; Fig. 4) was identified as the most
relevant mutation. All phenotypic analysis software, including Phenolyzer (Yang et al. 2015),
wANNOVAR (Chang and Wang 2012), and PhenIX (Zemojtel et al. 2014), indicated that
a heterozygous frameshift mutation in ANKRD11, or the ankyrin repeat domain 11 gene,
is likely to be a contributing factor in this individual’s disease. This mutation has a
Combined Annotation-Dependent Depletion (CADD) score of 32, and it is considered to
be “Deleterious” by SIFT with a confidence score of 0.858 and is therefore predicted to
have a severe effect on protein structure. SIFT also predicted that nonsense-mediated decay
would be a likely result in the case of this variant. The Exome Aggregration Consortium
(ExAC) probability of loss-of-function (LOF) intolerance (pLI) score was calculated to be
1.0, indicating that this gene is very intolerant to mutations, and previous studies have

Table 2. Count of single-nucleotide polymorphisms (SNPs), insertions and deletions (indels), and the total
number of variants for each sequenced family member

Individual
Number of single-nucleotide

polymorphisms
Number of insertions/

deletions
Total number of

variants

Proband 21,014 769 21,783

Mother 21,224 1011 22,235

Father 20,203 953 21,156

Sister 1 21,030 959 21,989

Sister 2 21,458 1046 22,504

Brother 20,163 1253 21,416

Table 3. Sequencing statistics including average read depth in exonic regions, number of reads, and
percent of reads mapped for each individual sequenced

Individual Average read depth Number of reads Reads mapped (%)

Proband 113.71 41,047,051 98.57

Mother 107.59 38,625,292 98.97

Father 74.70 26,177,859 98.69

Sister1 95.57 33,990,105 98.91

Sister2 127.92 44,992,904 98.86

Brother 70.07 27,394,501 96.08
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indicated that mutations in this gene often lead to haploinsufficiency (see Discussion) (Lek
et al. 2016b). Other mutations in this gene have been previously identified as contributing
to KBG syndrome, a rare disease that affects around 60 to 70 people worldwide (Brancati
et al. 2006; Sirmaci et al. 2011; Crippa et al. 2015; Walz et al. 2015). The presence of the mu-
tation was confirmed using Sanger sequencing (Fig. 4).

DISCUSSION

Many syndromes affecting neurological development present with heterogeneous and non-
distinct phenotypes (Lyon and O’Rawe 2015) and therefore remain undiagnosed or are mis-
diagnosed. The combination of whole-exome sequencing combined with detailed and
standardized phenotypic documentation is a powerful method to achieve improved diag-
noses, particularly in the context of large-scale genomic sequencing efforts of normal pop-
ulation controls (Lek et al. 2016a). In this regard, we report here a unique mutation (never
seen in more than 60,000 individuals) in a highly conserved and mutation-intolerant gene,
ANKRD11. This stands in contrast to a mildly low level of 5-MTHF detected in CSF for the
proband, in the context of a lack of control data for 5-MTHFmeasured longitudinally in thou-
sands of healthy children (Frye et al. 2013; Shoffner et al. 2016). It is also worth noting that, to

Table 4. ANKRD11 variant

Chr:position
GRCh37(hg19)

HGVS
cDNA HGVS protein

Type of
variant

Predicted
effect Genotype

Parent
of origin

Chr16:89346934 c.6015dupA p.Gly2006Argfs∗26 Duplication Frameshift Heterozygous De novo

Figure 4. GenomeBrowse output for the proband. The orange T in the proband’s nucleotide indicates a het-
erozygous thymine duplication in Chromosome 16, position 89,346,935. This insertion appears to be support-
ed by more than 20 reads and is likely a true-positive mutation. (A) None of the other family members appears
to have this mutation, indicating that it is likely de novo. The small orange bar on the father and sister indicates
one read supporting an adenine insertion and a thiamine insertion, respectively, and are considered to be se-
quencing errors. The red box on the cytoband shows the mutation’s location on Chromosome 16. (B) Sanger
sequencing confirms the thymine duplication.
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our knowledge, previous studies proposing the efficacy of folinic acid treatment fail to com-
pare its treatment with a control (e.g., a placebo).

Skjei et al. (2007) suggested that a clinical diagnosis of KBG syndrome can bemade if the
individual meets four out of the following eight major criteria: characteristic facial features,
macrodontia of upper central incisors, short stature, delayed bone age, neurological involve-
ment, hand abnormalities, costovertebral anomalies, and the presence of a family member
affectedwith the syndrome (see Fig. 5). Facial features include hypertelorism, short nosewith
broad base and bulbous nasal tip, and broad bushy eyebrows (Ockeloen et al. 2015).
Although the shape of the face is often described as being round, it has been noted that
the shape evolves as affected children develop (Skjei et al. 2007). Hand abnormalities typi-
cally include brachydactyly, clinodactyly of the fifth digit, small hands, and nail anomalies
(Skjei et al. 2007). Skeletal anomalies frequently involve the pelvis, thorax, limbs, and skull
with abnormal curvature of the spine, including kyphosis and scoliosis, being reported in
some cases (Skjei et al. 2007). Minor features of KBG syndrome include cutaneous syndac-
tyly, conductive hearing loss, palatal abnormalities, cryptorchidism, webbed/short neck,
strabismus, and congenital heart defects (Brancati et al. 2006). There is some phenotypic
overlap with Cornelia de Lange syndrome (CdLS), although there is nothing that is necessar-
ily pathognomonic in either disorder (Ansari et al. 2014; Parenti et al. 2015). More than 100
cases have now been reported (see Fig. 6; Ockeloen et al. 2015; Goldenberg et al. 2016);
however, it is likely that KBG syndrome is underdiagnosed because dysmorphic features
may be underreported, subtle, or even nonexistent, and cognitive delay can vary from
mild to moderate (Crippa et al. 2015).

Individuals with KBG syndrome have been found to have heterozygous mutations lead-
ing to haploinsufficiency of the ankyrin repeat domain 11 (ANKRD11) gene or a 16q24micro-
deletion that encompasses ANKRD11 (Ockeloen et al. 2015). Mutations that lead to
premature stop codons could trigger nonsense-mediated decay (NMD) and result in hap-
loinsufficiency. Sporadic and familial cases of KBG syndrome have been reported, with fami-
lial cases following an autosomal dominant inheritance pattern (Zollino et al. 1994; Brancati
et al. 2004; Maegawa et al. 2004; Davanzo et al. 2005; Skjei et al. 2007; Lim et al. 2014;

Figure 5. Venn diagram showing the eight major criteria suggested for KBG syndrome and the five character-
istics present in the proband. For a clinical diagnosis of KBG syndrome it has been suggested that four of the
eight criteria be present. We note that we have been unable to obtain precise measurements of the proband’s
teeth, so the mild macrodontia was noted only by visual inspection and by family report, including the obser-
vation by the parents that the proband’s central incisors are larger than those of his siblings.
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Tunovic et al. 2014; Hafiz et al. 2015; Kim et al. 2015; Ockeloen et al. 2015). ANKRD11 is a
chromatin regulator that controls histone acetylation and gene expression during neural de-
velopment (Gallagher et al. 2015). There are two functional domains that act as transcription-
al repressors and one domain that functions as a transcriptional promoter (Zhang et al. 2007).
Themajority of reportedmutations in KBG syndrome result in a truncated protein that affects
a domain for transcriptional repression (Crippa et al. 2015). ANKRD11 interacts with the p160
coactivator and the nuclear receptor complex, and it functions to inhibit ligand-dependent
transcriptional activation by recruiting histone deacytelases (HDACs) (Sirmaci et al. 2011).
Additionally, ANKRD11 was also found to play a role in enhancing the transcriptional activity
of p53 (Neilsen et al. 2008). Homozygosity for a missense mutation in ANKRD11 is embry-
onic lethal in mice, whereas the heterozygous mice have an osteopenia-like phenotype
and craniofacial abnormalities (Barbaric et al. 2008).

This sporadic case of KBG syndrome demonstrates the importance of ongoing investiga-
tions of rare conditions. Each case reported in the literature will help to delineate the pheno-
typic spectrum, so that wemay better identify cases in the future and determine appropriate
recommendations for clinical management. Current recommendations for management of
KBG syndrome include hearing tests, ophthalmologic assessments, echocardiography, an
electroencephalogram (EEG), orthodontic evaluation, and skeletal investigation with special
attention to spine curvatures and limb asymmetry (Brancati et al. 2006; Ockeloen et al. 2015).
Additionally, this case also demonstrates the variability of the clinical manifestations of KBG
syndrome, as any macrodontia in the proband was not noticeable enough to be recognized
and associated with any syndrome diagnosis by any clinician, including medical geneticists,
before the molecular diagnosis of the syndrome. This is consistent with the very recent sug-
gestion thatmacrodontia should not be considered a “mandatory feature” of KBG syndrome
(Goldenberg et al. 2016). In addition, seizures are an often reported feature of KBG syn-
drome, found in up to 28% of patients (Skjei et al. 2007). Typically, seizures with KBG syn-
drome are characterized as tonic–clonic, responsive to treatment, transient, and benign
(Brancati et al. 2006; Ockeloen et al. 2015). However, in this proband, seizures have been
persistent, mixed generalized, and partial, treatment-resistant, and temporally associated
with developmental regression at seizure onset.

Figure 6. Some of the published mutations in ANKRD11, most of which are loss of function (LOF). Mutations
represented by the black circles were those documented in individuals with KBG syndrome. The mutations
represented by the gray circles are those reported in Exome Aggregration Consortium (ExAC) data. The mu-
tation represented by the large black circle was the one found in the proband. Only the LOFmutations in ExAC
were plotted. The height of each mutation varies only for the ease of showing the mutations in the figure. The
image was created using the “lollipops” tool (https://github.com/pbnjay/lollipops), which retrieved domains
fromPfam. Unless otherwise noted in parentheses, all mutations were found in only one individual. None of the
exact same mutations have been found in more than one family. A more detailed version of this figure can be
viewed by opening the file ANKRD11_Mutations_Web_Viewable.svg (Supplemental Material) in a Web
browser and holding the cursor over the domain and the mutations.
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Although there is currently no cure for this disease, identifying individuals with this syn-
dromewill not only provide a method to track the outcome of these individuals but also help
provide support. For instance, the family of the affected individual created a social media
group, and a KBG nonprofit foundation was specifically developed to connect families
with children affected with KBG syndrome. Tracking these individuals might also identify in-
formation regarding the progression of the disease and any shared, or individual, pheno-
types that might be relevant to study in the future. Of course, we look forward to the day
when there is a comprehensive and interactive database that incorporates extensive pheno-
typic and whole-genome information while maintaining acceptable privacy standards, but
no such database currently exists, although there are certainly efforts along these lines
(Kibbe et al. 2015; McMurry et al. 2016).

METHODS

DNA Isolation and Sequencing
Genomic DNA was extracted using standard methods (Puregene, QIAGEN). The Life
Technologies Ampliseq Exome RDY kit (Thermo Fisher) was used to target the exon regions.
Of note, 97% of Consensus Coding Sequences with 5-bp exon padding were amplified us-
ing 294,000 primer pairs. These products were sequenced using the Life Technologies
Proton sequencing system with 200-bp reads using a P1V3 chip.

Variant Calling
The DNA sequence was aligned to the UCSC hg19 reference sequence and variants were
called using the Torrent Suite software and the Torrent Variant caller. Only exonic variants
and variants at the intron–exon boundary (1 or 2 nt into the intron and 1 nt into the exon)
were reviewed. For each variant considered, depth of coverage was >10× and the quality
score was >30. Ethnicity and variant frequency were considered during analysis. Analysis
of the variants was conducted by two independent reviews using in-house protocols and
two commercial software packages, Tute Genomics and Cartagenia v4.1. Pathogenic vari-
ants were confirmed by Sanger sequencing. American College of Medical Genetics and
Genomics (ACMG) reporting criteria were used to evaluate variants (Richards et al. 2015).

In additional analyses, binary alignment (BAM) files from the Ion Torrent Personal
GenomeMachine (PGM) platform were converted to FASTQ files. Variants were called using
the OTG-snpcaller pipeline, which has been reported to map a higher proportion of se-
quencing reads to the reference genome in comparison to other methods and result in lower
error rates when analyzing sequences coming from the PGM platform (Zhu et al. 2014).
Unlike other sequencing software and pipelines such as the Genome Analysis Toolkit
(GATK) and FreeBayes (McKenna et al. 2010; Garrison and Marth 2012), OTG-snpcaller is
specifically designed to take into account errors associated with PGM data, such as errors
around homopolymers, thus increasing overall accuracy.

After the hardcoded pipeline was received from one of the authors of its paper, it was
recoded (without any change to its function), so that it could be run on a computational clus-
ter on campus. Analysis was run for eachmember of the proband’s immediate family, includ-
ing his parents and siblings. Variants were aligned to the GRCh37 assembly, as several
downstream analysis tools do not yet support the newGRCh38 assembly. AVCF file contain-
ing information about each mutation was then output (Danecek et al. 2011). All programs
created, or rewritten by the author (R.K.), and used for analysis were uploaded to GitHub
and can be found at https://github.com/rkleyner/PGM-WES-Pipeline.
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Variant Selection and Prioritization
The resulting VCF file for each individual in the family (see Supplemental File 2) was convert-
ed into ANNOVAR files (avinput) using ANNOVAR. avinput provides information regarding
chromosome number, start position, end position, reference nucleotide, alternate nucleo-
tide, and quality scores for each variant (Wang et al. 2010). All avinput files for a particular
family were then loaded into a Python program (see Supplemental File 3), which performs
set intersections using DataFrame functions from the Pandas library and set functions using
the Numpy library to identify de novo and autosomal recessive variants (McKinney 2010; Van
Der Walt et al. 2011). Autosomal recessive variants were identified by isolating homozygous
variants in the affected child, intersecting these variants with variants that were heterozygous
in both parents, and subtracting variants that were homozygous in the siblings. De novo var-
iants were identified by subtracting variants found in the parents and siblings from variants
found in the proband.

The columns examined included the chromosome number, start point, end point, and
zygosity of each called variant. The resulting avinput files were then output as BED files,
which contain columns providing chromosome number, start point, and end point of themu-
tation. This process ensured that the resulting BED files contained all autosomal recessive
and de novo variants that could be determined from the VCF:

autosomal recessive = [(Mhet > Fhet)> Phom] − SIBhom],
denovo = Pall −Mall − Fall − SIBall,

where M refers to the mother’s variants, F refers to the father’s variants, P refers to the pro-
band’s variants, and SIB refers to the sibling’s variants. The subscript het refers to heterozy-
gous variants, hom refers to homozygous variants, and all refers to all variants.

Using the GATK SelectVariants tool, these two BED files were intersected with the orig-
inal VCF file two separate times, creating two VCF files, one containing only autosomal re-
cessive variants and one containing only de novo variants.

Both these VCF files were then annotated with the Variant Effect Predictor (VEP) software
(McLaren et al. 2010), which provided additional information about the variants. This anno-
tated VCF file was then used with GEMINI (Paila et al. 2013), which is a powerful, yet flexible
network that allows for organization, sorting, and filtering of variants based on VEP and ad-
ditional annotations. Variants were then filtered using rarity, deleteriousness, and read qual-
ity as filter criteria.

Rarity was determined using the ExAC database (version 0.3.1), which contains popula-
tion allele frequencies for exonic variants gathered from 60,706 unrelated individuals with no
history of severe pediatric disease (Lek et al. 2016b). Rare variants were considered to be var-
iants not found in ExAC. Deleteriousness was determined by CADD scores, which encom-
pass 63 annotations to determine a variant’s deleteriousness. CADD scores are based off
PHRED quality scores; therefore a minimum CADD score of ≥20 or zero (as CADD was
not calculated for indels), corresponding to the top 1%most deleterious variants, was select-
ed as a cutoff (Kircher et al. 2014). Although the resulting quality scores from the OTG-
snpcaller pipeline did not correspond to the standard PHRED quality score, a minimum cut-
off score of ≥120 was decided after comparing variant calls with their corresponding BAM
files. Chromosome number, start point, and end point columns of variants that met these
three requirements were obtained using GEMINI, and the output was saved as a BED file
(see Supplemental File 5). The GEMINI query used was gemini query -q “select chrom, start,
end from variants where qual≥120 AND (cadd_scaled>20 OR cadd_scaled is NULL) AND
in_exac=0 order by chrom, start” denovo.db
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This BED file along with Human Phenotype Ontology (HPO) numbers corresponding to
the proband’s phenotype were used in conjunction with Phenolyzer (Yang et al. 2015), which
is desiged to determine and prioritize which mutations contribute most to the phenotype by
comparing the provided HPO numbers to the phenotypes attributed to the gene in which
the proband’s mutation is located. A VCF file containing the same variants as the BED file
used with Phenolyzer was then input into similar programs such as wANNOVAR and
PhenIX in order to utilize several sources of analysis (Chang and Wang 2012; Zemojtel
et al. 2014). These same VCF files were input into theOmicia Opal system, with similar results
(see Supplemental File 4; Rope et al. 2011; Hu et al. 2013; Kennedy et al. 2014).

Confirmation of Variants
Once a possible disease-contributory mutation was identified, its location was then input
into Golden Helix GenomeBrowse, which displayed read information from the BAM files cor-
responding to each family. All variants of interest were also researched and ruled out as ma-
jor contributing mutations because of no association with a relevant phenotype. The genic
locations of each variant were identified using GEMINI (Paila et al. 2013). Initially, the known
functions, phenotypes, and diseases associated with each gene would be researched using
the GeneCards online database (Rebhan et al. 1998; Stelzer et al. 2011; Dierking and
Schmidtke 2014), which contains information compiled from more than 100 sources.
These results were then confirmed by researching the gene in other databases, such as
National Center for Biotechnology Information (NCBI), PubMed, and OMIM (Hamosh
et al. 2005; Brown et al. 2015). These findings were also compared with the output of the
phenotype analysis software. No additional contributing mutations were identified in this in-
dividual. The GEMINI query selected no autosomal recessive mutations of interest and 16
rare de novo mutations as mutations of interest. The Phenolyzer, wANNOVAR, and
PhenIX outputs all identified a heterozygous missense mutation in ANKRD11 as the most
likely contributing mutation. Sanger sequencing confirmed this variant. The primers used
in the procedure are:

ANKRD11-F-10810 GACTTGTCCTTGAAGCCACTCT

ANKRD11-R-10810 GGACATGAAGAGCGACTCTGT

ADDITIONAL INFORMATION

Data Deposition and Access
The ClinVar (http://www.ncbi.nlm.nih.gov/clinvar/) accession number for the variant is
SCV000292225.1. Sequencing data were deposited to the Sequence Read Archive (SRA;
http://www.ncbi.nlm.nih.gov/sra/) with the accession number SRR3773726, and the
BioSample identifier is SAMN05366061.

Ethics Statement
Research was carried out in compliance with the Federal Policy for the Protection of Human
Subjects 45C.F.R.46. The family was recruited to this study at the Utah Foundation for
Biomedical Research (UFBR) where extensive clinical evaluationwas performed.Written con-
sent was obtained for phenotyping, use of facial photography, and whole-exome sequenc-
ing through Protocol #100 at the UFBR was approved by the Independent Investigational
Review Board, Inc.
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