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Inhibition of connexin 43 prevents 
trauma-induced heterotopic 
ossification
Bing Tu1,*, Shen Liu1,*, Guangwang Liu2,*, Zhiwei Li1, Yangbai Sun1 & Cunyi Fan1

Heterotopic ossification (HO) can result from traumatic injury, surgery or genetic diseases. Here, we 
demonstrate that overexpression of connexin 43 (Cx43) is critical for the development and recurrence 
of traumatic HO in patients. Inhibition of Cx43 by shRNA substantially suppressed the osteogenic 
differentiation of MC-3T3 cells and the expression of osteogenic genes. We employed a tenotomy 
mouse model to explore the hypothesis that Cx43 is vital to the development of HO. Inhibition of Cx43 
by a specific shRNA decreased extraskeletal bone formation in vivo. In addition, we demonstrated that 
ERK signaling activated by Cx43 plays an important role in promoting HO. ERK signaling was highly 
activated in HO tissue collected from patient and mouse models. Importantly, de novo soft tissue HO 
was significantly attenuated in mice treated with U0126. Inhibition of Cx43 and ERK led to decreased 
expressions of Runx2, BSP and Col-1 in vivo and in vitro. Moreover, HO patients with low Cx43 
expression or ERK activation had a lower risk of recurrence after the lesions were surgically removed. 
Our findings indicate that Cx43 promotes trauma-induced HO formation by activating the ERK pathway 
and enhances the expression of osteogenic markers.

Heterotopic ossification (HO), which is commonly observed in cases of traumatic injury, severe burns and 
invasive surgeries, is the aberrant formation of extraskeletal bone in soft tissues such as muscles, tendons, and 
ligaments1. Traumatic HO occurs in response to injuries such as fractures and fracture-dislocations of joints. 
Treatment options for HO are limited because the excess bone growth often recurs following surgical resection, 
and some patients may have HO that is nonresectable because of its location2. For several years, the genetic basis 
of HO has been known to be similar to that of fibrodysplasia ossificans progressiva (FOP), however, the mecha-
nism of HO development is still unclear. The pathophysiology of HO closely resembles the physiologic process of 
fracture healing3. In the case of HO formation, the osteogenesis process is thought to arise from the disordered 
differentiation and proliferation of precursor cells. Previous findings have shown that progenitor cells obtained 
from traumatized muscle tissue, which is prone to developing HO, are similar to bone marrow-derived mesen-
chymal stem cells (MSCs) in morphology and biological function4,5.

A number of research groups have reported several types of evidence showing that the gap junction protein 
connexin 43 (Cx43, also called gap junction protein A1, GJA1) controls bone function and development6,7. Cx43, 
a gap junction channel protein that mediates the communication between adjacent cells or between a cell and its 
extracellular environment, is observed to be upregulated under fracture conditions8. In addition, fracture healing 
is impaired in Cx43-deficient mice, which is consistent with delayed osteoblast differentiation and bone forma-
tion9. These observations suggest that Cx43 facilitates new bone formation. Overexpression of Cx43 in osteoblasts 
promotes the transcriptional activity of Runx2, and Cx43 knockdown suppresses Runx2-dependent transcrip-
tion10. The signaling molecules mediating the action of Cx43 on osteogenesis include the protein kinase C (PKC) 
family member PKCδ​ and the extracellular signal regulated kinases (ERKs), two proteins that were previously 
reported to regulate Runx2 activity in osteoblasts11,12. Given the correlations between Cx43 and bone formation, 
we hypothesized that Cx43 may enhance the development of traumatic HO by interacting with ERK signaling.

In this study, we demonstrated that Cx43 contributes to the development of traumatic HO. Cx43 knockdown 
substantially attenuated the expression of osteogenic marker genes and markedly inhibited the growth of HO 
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in a mouse model. Cx43 promoted osteogenesis through the ERK pathway. Inhibition of ERK also resulted in 
decreased HO development. Moreover, traumatic HO patients with low Cx43 expression and ERK activation 
showed decreased recurrence after surgical removal of the lesions. The data in the present study may provide 
potential therapeutic target for traumatic heterotopic ossification.

Results
Expression of Cx43 is increased in human heterotopic ossification tissues.  To investigate the 
genes that may be involved in the regulation of HO formation, we used genomic data from 5 patients with elbow 
HO to compare with data from the control bones, which were collected from 5 traumatic amputation patients. In 
particular, we noted upregulation of Cx43 and osteogenic marker genes in the heterotopic ossification samples 
(Fig. 1A). Previous reports have underscored the importance of Cx43 in osteoblast differentiation and skeletal 
development13. Next, the expression levels of Cx43 and osteogenesis-related genes were further confirmed by 
real-time PCR. We verified that the expression of Cx43 and osteogenic markers, including Runx2, alkaline phos-
phatase (ALP), bone sialoprotein (BSP) and collagen-1 (Col-1), were increased in HO patients compared with 
control patients (Fig. 1B). However, no significant difference in Dlx-5 expression was observed between the two 
groups. Furthermore, soft tissues (joint capsule and ligament) around the HO or near the normal joint (used as 

Figure 1.  Expression of Cx43 and osteogenic marker genes was enhanced in HO. (A) Heat map depicting 
the relatedness of the gene expression profiles of normal bones and HO. Hierarchical clustering was applied to 
microarray data, and selected portions of the clustering heat map are presented. Red and green indicate high 
and low gene expression levels, respectively. (B) Total RNA was extracted from normal bones and HO, and the 
expression of Cx43, Runx2, ALP, BSP, Col-1 and Dlx5 mRNA was detected by real-time PCR. (t-test, n =​ 5, 
*p <​ 0.05; NS, not significant).
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normal control) were collected from the HO or traumatic amputation patients. We observed an elevated expres-
sion of Cx43, IL-1, IL-6 and IL-8 in the soft tissue surrounding the HO (Supplementary Fig. 1).

Cx43 promotes osteoblast differentiation by activating the ERK pathway.  Aberrant osteogenesis 
plays an important role in the formation of HO. To determine the effect of Cx43 on osteoblast differentiation, 
expression of Cx43 was inhibited by a Cx43-specific shRNA transfection. The Cx43 shRNA transfection did not 
affect the viability of MC-3T3 and C2C12 cells (Supplementary Fig. 2). The inhibitory effect was confirmed by 
western blot (Fig. 2A). Then, MC-3T3 cells transected with Cx43 shRNA were exposed to osteogenic differentia-
tion medium for 2 weeks. We observed that both calcium deposition and ALP activity were decreased in the Cx43 
knockdown group (Fig. 2B,C). Furthermore, our real-time PCR results showed that Cx43 knockdown inhib-
ited osteogenic marker gene expression (Fig. 2D). A similar result was observed in mouse mesenchymal stem 
cells (Supplementary Fig. 3A–D) Previous studies have suggested that ERK is part of an important downstream 
pathway of Cx43. We then examined whether the ERK pathway played a role in Cx43-induced osteogenesis. 

Figure 2.  Cx43 promotes osteoblast differentiation by activating the ERK pathway. (A) Small hairpin RNAs 
(shRNA) were used to knock down Cx43 expression in MC-3T3 cells, and a scrambled sequence was used as a 
control. The expression of Cx43 was detected by Western blot. (B) MC-3T3 cells transfected with Cx43 shRNA 
were induced in osteogenic medium. Alizarin Red S (week 2) and ALP (week 1) staining was performed.  
(C) Calcium deposits and ALP activity were quantified. (D) mRNA expression of osteogenic marker genes was 
detected by real-time PCR at week 1 and 2. (E) ERK pathway activation and Cx43 expression were examined 
weekly by Western blot. (F) A densitometric analysis of p-ERK expression was performed (t-test, n =​ 3, 
*p <​ 0.05; NS, not significant).
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Our data indicated that ERK signaling was activated during the osteogenesis process, meanwhile expression of 
Cx43 was increased during osteogenesis. However, when Cx43 was knocked down by shRNA, p-ERK expression 
was maintained at a steady-state during osteogenesis (Fig. 2E,F). To exclude the effects of osteogenic medium 
on ERK activation, MC-3T3 cells were incubated in α​-MEM without osteogenic induction, and Cx43 was 
knocked down by shRNA. We observed that activation of the ERK and PKC pathway was inhibited at week 1–3 
(Supplementary Fig. 4A,B). However, inhibition of ERK by U0126 or shRNA had no effect on expression of Cx43 
(Supplementary Fig. 4C).

Inhibition of Cx43 limits HO formation in vivo.  Next, we tested the hypothesis that Cx43 inhibition 
can prevent HO. For this purpose, mice received a tenotomy were subsequently treated with an injection of 
Cx43 shRNA at the lesion site. We observed a reduced amount of early endochondral ossification in mice treated 
with Cx43 shRNA at 3 weeks (Supplementary Fig. 5). Then, the injured limbs were examined by x-ray. The 
tenotomy mice treated with Cx43 shRNA injection demonstrated a reduction in total HO volume at 4 and 8 
weeks after injury (Fig. 3A,B). Consistent with the radiologic data, representative images of 3D μ​CT reconstruc-
tions of a tenotomy mouse showed markedly decreased HO volume after Cx43 shRNA injection (Fig. 3C,D). 
Moreover, the bone mineral density (BMD) of HO was decreased after the Cx43 shRNA treatment (Fig. 3E). 
Tissues from the tenotomy site 8 weeks after injury showed diminished levels of Cx43, pERK and osteogenic 
marker genes, including the early osteogenic gene Runx2 and the later gene BSP (Fig. 3F,G). To test whether 
Cx43 could inhibit the developed HO, tenotomy mice were maintained for 8 weeks and then treated with Cx43 
shRNA injection for another 4 weeks. The x-ray images showed no difference between the two groups at week 12 
(Supplementary Fig. 6).

ERK activation is essential for Cx43-induced HO.  To investigate whether inhibition of the ERK path-
way would limit HO, MC-3T3 cells exposed to U0126 were incubated in osteogenic medium for 2 weeks in vitro. 
When ERK signaling was inhibited by U0126, Alizarin Red S staining showed less calcium deposition (2 weeks) 
and less ALP activity (1 week) (Fig. 4A,B). Similarly, inhibition of ERK signaling by a specific shRNA suppressed 
osteogenic differentiation (Supplementary Fig. 7A,B). Then, tenotomy mice were treated with an injection of 
U0126 at the lesion sites or intraperitoneal injection (IP). Both injection methods decreased the HO formation, 
while no difference was observed between the local and intraperitoneal injection groups (Fig. 4C,D). As observed 
in the mice that received the Cx43 shRNA injection, the 3D μ​CT reconstruction images showed a decreased 
HO volume after the U0126 local injection (Fig. 4E,F). We observed a decreased BMD in the HO after the Cx43 
shRNA injection (Fig. 4G).

Cx43 enhances the expression of osteogenic markers through ERK.  Then, the HO samples from 
the mice were collected and demineralized. The immunohistochemistry results demonstrated that a Cx43 shRNA 
injection caused decreased expression of Cx43, p-ERK, BSP and Col-1. Inhibition of ERK signaling by U0126 
only decreased the expression of p-ERK, BSP and Col-1, while no change in the Cx43 expression was observed. 
These data suggest that Cx43 enhances the expression of osteogenic markers by activating ERK (Fig. 5A,B).

Cx43/ERK signaling is critical for clinical outcomes in HO patients.  To verify the effects of Cx43/
ERK signaling on clinical outcomes, HO lesions were resected from elbow trauma patients (n =​ 20), and bones 
from amputation patients were used as a control (n =​ 15). All bones were demineralized and subjected to an 
immunohistochemical assay. We observed that HO tissues exhibited increased Cx43 and p-ERK expressions 
(Fig. 6A,B). According to the Cx43 and p-ERK staining density, the HO patients were divided into weak  
(<​0.5, n =​ 9) and strong (>​0.5, n =​ 11) groups. The 3D CT showed that strong expression of Cx43 was correlated 
with increased HO volume (Fig. 6C,D; p =​ 0.016). Furthermore, we observed that HO patients with strong Cx43 
expression showed a higher recurrence rate after surgical treatment (Fig. 6E). Similar results were observed in the 
strong p-ERK HO patients (Fig. 6F). In addition, tissues from the mice showed that Cx43 was highly expressed 
in endochondral bone and HO (Supplementary Fig. 8A). Soft tissue around the recurrent HO from the patients 
exhibited a higher Cx43 baseline than soft tissue around the non-recurrent HO (Supplementary Fig. 8B).

Discussion
HO is a pathologic process in patients with severe musculoskeletal trauma and burns and with genetic mutations 
that confer hyperactive ossification. Although the exact mechanism of ectopic bone formation is still unknown, 
progenitor cells capable of osteogenic differentiation are known to play an essential role14. In this study, we lever-
aged our knowledge to demonstrate that Cx43/ERK signaling represents a route for traumatic ectopic bone for-
mation. The present study demonstrates that Cx43/ERK might be essential for ectopic bone formation in a mouse 
model, which is highly consistent with our clinical observations. These findings suggest that targeting Cx43/ERK 
pathway may represent a solution for traumatic HO.

Previous studies have elucidated the genetic basis of HO as fibrodysplasia ossificans progressiva (FOP), a 
genetic disease that causes progressive HO. Genetic mutations in the ACVR1 gene conferring hyperactivity is 
regarded as the most important cause for FOP15,16. Although the genetic basis of FOP has been known for several 
years, the identity of the precursor cells that actually differentiate along the osteogenic lineage to form HO remain 
unclear17. Several studies have demonstrated that vascular endothelial cells could be a candidate for the cellular 
origin of HO18,19, while other studies provide strong evidence that tissue-resident MSCs or progenitor cell pop-
ulations are the original cells in HO20,21. In trauma and wounds, MSCs in the tissue and circulation contribute 
to wound and fracture healing, which requires osteogenic differentiation of MSCs22. A recent study showed that 
activated matrix metalloproteinase 9 contributes to HO23. Agarwal S et al. found that pharmacologic inhibition 
of Hif1α​ abolished HO formation21.
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Gap junctions, which are specialized intercellular membrane channels, are highly dynamic structures that are 
regulated by kinase-mediated signaling pathways and interactions with other proteins24. In the bone tissue, the 
most abundantly expressed gap junction protein is Cx43, which is expressed in osteoblasts, osteocytes and osteo-
clasts25. Previous studies have shown that alterations in Cx43 expression or function modulate the expression of 

Figure 3.  Inhibition of Cx43 limits HO formation in vivo. Tenotomy mice were injected with Cx43 shRNA or 
scrambled RNA weekly at the lesion site. (A) HO was visualized by a weekly radiograph. (B) The HO volumes 
were quantified. (C) At week 8, a three-dimensional reconstruction (Left), cross-section (Right upper) and sagittal 
section (Right below) of microCT scans of Cx43 shRNA- and control RNA-treated tenotomy mice were obtained. 
The red, green and blue lines represent the cross, sagittal and coronal plane in other sections, respectively. (D) The 
HO volumes were quantified. (E) The bone mineral density (BMD) of HO was qualified. (F) Expression of Cx43, 
p-ERK, ERK, Runx2, BSP and β​-actin was examined by Western blot. (G) A densitometric analysis of Cx43, p-ERK, 
Runx2 and BSP protein expression was performed. (t-test, n =​ 3, *p <​ 0.05).
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osteoblast genes26,27. It has been shown that Cx43 expression is essential for normal osteoblastic gene expression 
and function in osteoblastic cell lines28. Thi et al. demonstrated that mineralization is impaired in osteoblastic 
cells isolated from Cx43 knockout mice29. In addition, osteogenic differentiation markers including Runx2, oste-
ocalcin (OCN), collagen 1 and BSP are decreased in osteoblastic cells isolated from Cx43 knockout mice and in 
osteoblast cells overexpressing Cx45, which acts as an antagonist for Cx4330,31. Evans KN et al. showed that mul-
tiple osteogenesis-related genes are upregulated in traumatic HO32. These studies suggested that Cx43 might play 

Figure 4.  ERK activation is essential for Cx43-induced HO. (A) MC-3T3 cells were induced in osteogenic 
medium and exposed to U0126 for 2 weeks. Calcium deposits were detected by Alizarin Red S at week 2, and 
ALP staining was performed at week 1. (B) Calcium deposits and ALP activity was quantified. (C) Tenotomy 
mice were treated by intraperitoneal or local injection of U0126 every 3 days. Local injection of DMSO was 
served as the control. HO was visualized by a weekly radiograph (One-way ANOVA, n =​ 5, *p <​ 0.05 vs the 
control; no significant difference was observed between the intraperitoneal and local injection groups).  
(D) The HO volumes were quantified. (E) At week 8, three-dimensional reconstruction (Left), cross-section 
(Right upper) and sagittal section (Right below) of microCT scans of the tenotomy mice. The red, green and 
blue lines represent the cross, sagittal and coronal plane in other sections, respectively. (F) The HO volumes 
were quantified. (G) The bone mineral density (BMD) of HO was qualified. (t- test, n =​ 3, *p <​ 0.05).
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an important role in HO formation. Using a model of trauma-induced HO, we provided evidence that overex-
pression of Cx43 plays an important role in the development of HO, in which Cx43 exerts its effects by promoting 
the expression of the osteogenic markers.

Endochondral ossification is a common process in HO formation33. Previous studies showed that activation of 
β​-catenin stimulates endochondral ossification34. Consistent with their findings, we observed upregulated Wnt-3a 
expression in the gene chip. These data suggest that Wnt/β​-catenin may play a role in HO formation. Moreover, 
our histologic analysis showed that Cx43 inhibition decreased early endochondral ossification. However, once 
the HO was completely developed, inhibition of Cx43 could not decrease the mature ectopic bones. These data 
suggest that inhibition of Cx43 at the early stage of HO may be benefit for the treatment of HO. Additionally, we 
demonstrated that HO patients with lower expression of Cx43 exhibit less recurrence after the surgical resection. 
These results suggested that Cx43 base line may affect the primary and recurrent HO formation.

Cx43-mediated regulation of osteoblast differentiation and gene expression involves transcription factors 
Runx2 and Osterix (Sp7), both of which are master regulators of osteogenesis35. Disruption of the Cx43 channels 
by overexpression of Cx45 or by specific inhibitors in osteoblast cells decreases activation of ERK signaling36,37. 
Moreover, decreased ERK activity leads to reduced phosphorylation and DNA binding to the transcription 
factors, resulting in reduced transcription of the osteogenic marker genes38,39. Similarly, our data showed that 
ERK signaling was activated and that Runx2 expression was enhanced in the HO tissues. Our findings indicate 
that Cx43 and osteogenic medium have different effects on ERK activation. On one hand, p-ERK expression 
was enhanced during osteogenesis, but on the other hand, inhibition of Cx43 decreased the ERK activation. 
Although Cx43 shRNA did not completely abolish the p-ERK expression, it maintained the p-ERK expression 
at the un-differentiated level and inhibited osteoblast differentiation. These data indicated that a decreased or 
no changed p-ERK expression would not induce osteogenesis. Although inhibition of Cx43 or ERK signaling 
decreased the formation of HO (approximately 50%), it could not completely prevent the HO. Therefore, surgical 

Figure 5.  Inhibition of Cx43 and ERK signaling decreases osteogenic marker gene expression in vivo. (A) Tenotomy 
mice were treated by local injection of Cx43 shRNA or intraperitoneal injection of U0126. HO tissues were decalcified, 
and expression of Cx43, p-ERK, ERK, Runx2 and BSP was detected by immunohistochemistry at week 8. (B) Cx43, 
p-ERK, Runx2 and BSP expression in the HO tissues was quantified.
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Figure 6.  Cx43/ERK signaling is critical for clinical outcomes in traumatic HO patients. (A) Normal 
bones (n =​ 15) and HO tissues (n =​ 20) were decalcified. Expression of Cx43 and p-ERK was detected by 
immunohistochemistry. (B) Quantification of Cx43 and p-ERK expression. (C) A typical radiographic three-
dimensional reconstruction CT scan is shown for elbow HO with weak and strong expression of Cx43.  
(D) The volumes of the HO with weak and strong Cx43 expression were quantified. (t-test, *p <​ 0.05). (E) The 
overall recurrence-free survival of patients with weak and strong expression of Cx43 is shown. (F) The overall 
recurrence-free survival of patients with weak and strong expression of p-ERK is shown. (log-rank test).
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resection of the ectopic bones is necessary in some cases. Moreover, inhibition of Cx43 would result in delayed 
fracture healing, impaired angiogenesis and tissue regeneration7. These observations suggest that application of 
Cx43 in HO treatment may cause disorders in other organs/tissues. Thus the clinical application of Cx43 would 
be limited under certain situations.

In summary, we have identified an important mechanism that may determine the progression and develop-
ment of traumatic HO. We show that increased expression of Cx43 enhances the transcription of Runx2 and oste-
ogenic differentiation in a manner that promotes HO progression. In examining the routes of Cx43-dependent 
activation of ERK, we have demonstrated the relevant function of Cx43/ERK signaling in HO development. We 
have demonstrated that pharmacotherapy with Cx43 or ERK inhibitors, such as shRNA or U0126, can markedly 
reduce extraskeletal bone formation in a traumatic model of HO. Using patient data and human HO specimens, 
we confirmed that elevated levels of Cx43 and p-ERK increase the risk of recurrence after surgical resection. The 
results reveal a new mechanism of HO formation and identify a potential therapeutic target.

Materials and Methods
Patients and specimens.  Twenty patients who underwent surgical resection for elbow lesions between 
January 2010 and December 2015 were evaluated in this study, and the control bones were collected from 15 
patients who received traumatic amputation (tibia, femur, radius and ulna). The patients, with a median age of 32 
years (range: 21–62 years), were healthy without metabolic, inherited or other diseases that may affect the current 
study. No significant difference was observed in composition regarding age or sex in these two groups (p >​ 0. 05). 
The mature HO lesions were removed by surgery 8–10 months after the injury. The control bones from the ampu-
tation patients were collected 2–4 hours after the injury during surgery. After surgery, all the patients were exam-
ined with x-rays or CT monthly, and the follow-up time was 25 weeks. Approval for this study was obtained from 
the ethics committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, and written informed 
consent was obtained from the patients or their legal guardians. The experiment was performed in accordance 
with approved guidelines.

RNA isolation and gene expression profiling.  Soft tissues and epiphyses were removed, epiphyses 
were cut off, and diaphyses were flushed with phosphate-buffered saline solution (PBS) to remove bone mar-
row and blood. All the samples were shock-frozen in liquid nitrogen, pulverized, and dissolved in Trizol (Life 
Technologies, Carlsbad, CA, USA). Total RNA was isolated from all bone or HO samples using a Trizol isolation 
kit according to the manufacturer’s instructions. Quantity and quality measurements were carried out using a 
NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA) and an Agilent 2100 
Bioanalyzer (Agilent Technologies, Santa Clara, California, USA). All samples were then subjected to down-
stream genome-wide microarray analysis. All of the hybridization experiments were performed using Affymetrix 
HG-U133 Plus 2.0 GeneChips according to the manufacturer’s recommendations. The raw data were normalized 
using Genespring GX11 Software (Agilent Technologies, Santa Clara, CA, USA) with default parameters (MAS5 
Summarization Algorithm, median of all samples as baseline transformation).

Cell Culture.  The preosteoblast cells MC-3T3 and C2C12 skeletal muscle cells were obtained from the 
Chinese Academy of Sciences (Shanghai, China). Cells were cultured in α​-MEM (1000 mg/L glucose) with 10% 
fetal bovine serum (FBS). After confluency was reached, the culture medium was changed to an osteogenic dif-
ferentiation medium (OM), which contained 10% FBS, 50 μ​M L-ascorbic acid, 10 mM glycerol-2-phosphate, and 
100 nM dexamethasone.

shRNA transfection.  MC-3T3 cells were transfected with lentiviral particles loaded with either small hair-
pin RNA (shRNA) against Cx43 or ERK (Santa Cruz Biotechnology, Santa Cruz, CA; Cat No. sc-35091–SH for 
Cx43, Cat No. sc-44206-SH for ERK) or a scrambled control (Santa Cruz Biotechnology, Santa Cruz, CA). The 
shRNA plasmids consisted of a pool of 3 to 5 lentiviral vector plasmids, each encoding target-specific 19–25 nt 
shRNAs designed to knockdown gene expression. The control shRNA plasmid encoded a scrambled shRNA 
sequence designed to not lead to the specific degradation of any known cellular mRNA. The cells were subse-
quently exposed to 3 μ​g/ml of puromycin (Sigma, USA) for 1 month. The several available clones were expanded 
and maintained in 1 μ​g/ml of puromycin to remove cells without shRNA expression.

Cell viability analysis.  MT-3T3 and C2C12 cells were seeded in 96-well plates at a density of 1 ×​ 104 per 
well and treated as follows: the culture medium was discarded, and the cells were rinsed 3 times with PBS. 
Subsequently, the viable cells were quantitated using a cell counting kit-8 (CCK-8, Dojindo, Japan) according to 
the manufacturer’s instructions. Briefly, the cells were incubated in α​-MEM medium containing 10 μ​l of CCK-8 
solution at 37 °C for 2.5 hours. Then, the optical density (OD) at 450 nm was determined using a microplate 
reader (BIOTEK, Vermont, USA), and the ratio of viable cells was calculated.

ALP and Alizarin Red S staining.  For ALP staining, cells were stained with 5-bromo-4-chloro-3-indolyl- 
phosphate/nitro-blue tetrazolium solution (Sigma-Aldrich) for 45 minutes at 37 °C to visualize ALP activity. For 
the Alizarin Red S staining, the cells were washed 3 times with PBS and fixed with 4% paraformaldehyde for 
10 min at room temperature. After 3 washes with deionized water, the calcium mineral deposits were stained for 
10 min with 2% Alizarin Red S (pH 4.2), rinsed with water, and visualized by light microscopy.

Quantitative measurement of alkaline phosphatase activity.  The cells were washed twice with PBS 
and lysed with 1% Triton X-100 supplemented with protease and kinase inhibitors, followed by freeze–thaw 
cycles. ALP activity was assayed using p-nitrophenylphosphate (Sigma-Aldrich) as a substrate. Lysates were incu-
bated with 100 μ​l of 3 mg/ml substrate solution for 30 min at 37 °C, and the reaction was stopped with 20 mM 
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NaOH. The protein content was measured by BCA (Thermo Scientific, Rockford, IL) according to the manufac-
turer’s instructions. ALP activity was then expressed as Sigma unit/min/mg of protein.

Quantitative analysis of mineralization.  The calcium deposits from osteoblast cells were washed 3 times 
with PBS and incubated for 24 h at 4 °C in 0.5 M HCl. Then, the calcium content in the HCl supernatants was 
measured using the Calcium Colorimetric Assay Kit (BioVision, Mountain View, CA, USA).

Western blot.  The cells were washed in ice-cold PBS before lysis with a cell lysis buffer (Cell Signaling 
Technology, MA, USA). All samples were clarified by centrifugation at 12,000 rpm for 10 minutes at 4 °C. 
Then, the protein concentrations were determined using the BCA Protein Assay (Thermo Scientific, IL, USA). 
Equal amounts of total protein lysates were separated by SDS-PAGE, and bands were transferred to a nitrocel-
lulose membrane. The membranes were blotted with the following primary antibodies: p-ERK (Cell Signaling 
Technology, Cat No. 4370, 42 kD), ERK (Cell Signaling Technology, Cat No. 9102, 42 kD), β​-actin (Cell Signaling 
Technology, Cat No. 4970, 45 kD), Cx43 (Abcam, Cat No. ab11370, 43 kD), Runx2 (Abcam, Cat No. ab23981, 
57 kD) and BSP (Abcam, Cat No. ab125227, 35 kD). Bound antibodies were detected with an Odyssey Infrared 
Imaging System (LI-COR Biosciences, Lincoln, NE, USA). Densitometric analysis of the protein bands was per-
formed with Image-Pro Plus 4.5 software (Media Cybernetics, Silver Spring, MD).

RNA isolation and quantitative real-time PCR.  Total RNA was prepared using Qiagen RNeasy Mini 
Kit (Qiagen, Valencia, CA, USA) for cellular extracts. cDNA was then generated from 1 μ​g of RNA using the 
iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA) according to the manufacturer’s instructions. Quantitative 
real-time expression analysis was performed using an ABI 7500 Sequencing Detection System and SYBR 
Premix Ex Taq (Takara, Japan). Relative expression of mRNA was determined after normalization using the  
Δ​Ct method. The following primers were used: GAPDH, 5′​-ATGGGGAAGGTGAAGGTCG-3′​ (forward) and  
5′​-GGGGTCATTGATGGCAACAATA-3′​ (reverse); Runx2, 5′​-CCGCCTCAGTGATTTAGGGC-3′​ (forward) 
and 5′​-GGGTCTGTAATCTGACTCTGTCC-3′​ (reverse); ALP, 5′​-TGAGGGTGTGGCTTACCAG-3′​ (forward) 
and 5′​-GATGGACGTGTAGGCTTTGCT-3′​ (reverse); BSP, 5′​-CAGGGAGGCAGTGACTCTTC-3′​ (forward) 
and 5′​-AGTGTGGAAAGTGTGGCGTT-3′​ (reverse); and Col-1, 5′​-GAAAAGGGTACATCGGGTGAG-3′​ (for-
ward) and 5′​-GAACCCATCGAGTCCTGGT-3′​ (reverse).

Mice.  The animal experimental protocols were approved by the Animal Research Committee of Shanghai Jiao 
Tong University Affiliated Sixth People’s Hospital. The experiment was performed in accordance with approved 
guidelines. Four-week-old male BALB/c mice received an Achilles tenotomy (n =​ 12 per group) with sharp dis-
section at the midpoint in the left leg. A 1-cm incision was made on the lateral aspect of the Achilles tendon with 
a surgical knife. Subsequently, the Achilles tendon was exposed from its origin on the distal end of the gastrocne-
mius to the insertion at the calcaneus. The Achilles tendon was then divided sharply at its midpoint. The incision 
was then closed with absorbable sutures. Then, mice received an injection of 2 μ​g of Cx43 shRNA complexed 
with 2 μ​l of Lipo 2000 dissolved in 10 μ​l of α​-MEM. Sham mice received an injection of 2 μ​g of scrambled shRNA 
plasmid complexed with 2 μ​l of Lipo 2000 as a negative control. All mice were treated weekly with an shRNA or 
scrambled shRNA local injection in the lesion in the tendon. For the in vivo p-ERK inhibition experiment, mice 
were treated by local injection of U0126 (Calbiochem, CA, USA; 100 μ​g/mouse) in the lesion in the tendon every 
3 days, and DMSO was used as a negative control. The mice were maintained for 8 weeks, and the injured limbs 
were harvested after euthanasia.

Micro-CT and x-ray analysis.  The left tibias dissected from mice were fixed with 4% paraformaldehyde for 
24 h, then scanned and analyzed with a SkyScan microcomputed tomography system (Kontich, Belgium) with 
a 9-μ​m pixel size. The X-ray voltage and current were set to 80 kV and 80 μ​A, respectively. The region of interest 
(ROI) was defined to include the entire tibia, and two-dimensional (2D) image stacks were visually inspected 
to ensure that all heterotopic bone was included within the ROI. The Nrecon reconstruction software (NRecon 
v.1.4.4, SkyScan) was used to create 2-D images. For the reconstruction parameters, ring artifact correction and 
smoothing were fixed at zero and the beam hardening correction was set at 0%. The contrast limits were applied 
following the manufacture’s instructions. The lower limit was zero and the upper limit was at the top end of the 
brightness spectrum. Following the reconstruction, the volume of interest (VOI) was selected within the recon-
structed images to calibrate the standard unit of X-ray computed tomography density (Hounsfield unit, HU) 
using CTAn analysis software (v.1.6.0, SkyScan). The HU values of two BMD phantom rods were measured and 
converted from HU to BMD values (g/cm3). The bone volume of HO was also analyzed using CTAn. Analysis of 
x-ray was performed with a image-pro plus 4.5 software (Media Cybernetics, Silver Spring, MD). The HO area 
was calculate and normalized to the control group.

Histology.  At 8 weeks post-tenotomy, animals were euthanized, and the tenotomized limbs were fixed in 4% 
paraformaldehyde. HO tissues from patients were collected in surgical operations. All of these specimens were 
decalcified in a 10% EDTA solution for 1 month, were embedded in paraffin and were cut into 5-μ​m sections for 
staining. Immunohistochemical staining was carried out with primary antibodies against Cx43 (Abcam, Cat No. 
ab11370), p-ERK (Cell Signaling Technology, Cat No. 4370), ERK (Cell Signaling Technology, Cat No. 9102), 
Runx2 (Abcam, Cat No. ab23981) and BSP (Abcam, Cat No. ab125227) with a 1:1,000 dilution of an appropriate 
secondary antibody. Protein expression was visualized with a DakoCytomation Envision staining kit. Sections 
were stained with 0.1% Safranin-O and 0.02% Fast Green (Sigma-Aldrich, Oakville, ON, Canada) according to the 
manufacturer’s instructions. The mean density of the positive area was measured by Image Pro Plus 6.0 (IPP) image 
analysis software. Three random slides were selected, and five random fields of images per sample were taken.
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Statistical analyses.  The data are represented as the mean ±​ standard deviation (SD). Comparisons 
between groups were performed using Student’s t-test, and one-way ANOVA was used for multiple comparisons. 
Recurrence-free survival rates were compared using Kaplan–Meier survival curves. Statistical significance was 
set at p <​ 0.05.
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