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ABSTRACT
Developments in the manufacturing technology of low-cost, high-quality carbon nanotubes 
(CNTs) are leading to increased industrial applications for this remarkable material. One of the 
most promising applications, CNT based transparent conductive films (TCFs), are an alternative 
technology in future electronics to replace traditional TCFs, which use indium tin oxide. Despite 
significant price competition among various TCFs, CNT-based TCFs have good potential for use 
in emerging flexible, stretchable and wearable optoelectronics. In this review, we summarize 
the recent progress in the fabrication, properties, stability and applications of CNT-based TCFs. 
The challenges of current CNT-based TCFs for industrial use, in comparison with other TCFs, are 
considered. We also discuss the potential of CNT-based TCFs, and give some possible strategies 
to reduce the production cost and improve their conductivity and transparency.

1. Introduction

Transparent conductive films (TCFs) are films of opti-
cally transparent and electrically conductive materials. 
Currently, indium tin oxide (ITO) is the dominant 
material used for industrial-scale TCF application. ITO 
not only has excellent properties with a sheet resistance 
of 10 Ω/square at around 90% optical transmittance, 
but also exhibits outstanding stability and compatibil-
ity with both wet and dry device processes. However, 
future optoelectronics require TCF materials which are 
mechanically flexible, lightweight and low fabrication 
cost.[1–5] The growing demand for ITO due to the 
development of solar cells may lead to an increase in 
substantial cost because of the relatively rare element of 
indium. In addition, ITO suffers from poor mechanical 
flexibility, which suppresses its application for emerg-
ing flexible, stretchable and wearable electronic appli-
cations. These significant limitations of ITO have been 

motivating the search for alternative TCF materials for 
industrial use including novel metal oxides, conduct-
ing polymers, metal nanowires, metal grids and car-
bon nanomaterials. The alternative metal oxides can 
use abundant materials such as SnO2:F, CuO2:Al and 
ZnO:Al.[6–8] Similar to ITO, TCF fabrication of these 
oxides requires a vacuum and/or high temperature 
process to achieve high transmittance and low sheet 
resistance. Apparently the price of ITO TCFs is dom-
inated by the cost of mass production rather than the 
cost of indium. Solution processed oxide TCFs have 
been attracting interest as a low-cost technology.[9]

TCFs can be fabricated with poly(3,4-ethylenediox-
ythiophene):poly(styrenesulfonate) (PEDOT:PSS), a 
conducting polymer which has also been widely inves-
tigated as a hole transport layer for organic photovol-
taic (OPV) and organic light-emitting diode (OLED) 
devices.[10,11] Solution-processed PEDOT:PSS films 
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have been demonstrated to show a sheet resistance of 
less than 200 Ω/square at above 80% optical transmit-
tance, while they also exhibit poor thermal stability and 
noticeable blue color.[12–15]

Metal nanowires are becoming a strong alterna-
tive to ITO.[16–20] Due to the high conductivity, the 
nanoscale network of silver nanowires (Ag NWs) can 
obtain a TCF with sheet resistance of 20 Ω/square 
at transmittance of 95%, which is even better than 
ITO. Although silver is more expensive than indium, 
Ag NWs allow a solution-based roll-to-roll technol-
ogy, which significantly reduces the overall cost for 
mass production of TCFs. It has been reported that 
Ag NW TCFs are used as touch sensor for Lenovo 
computers (China).[20] However, the thermal stabil-
ity and chemical stability of metal nanowires need to 
be further investigated. Copper nanowires (Cu NWs) 
are becoming a more promising TCF technology, 
because copper is 100 times cheaper than silver. The 
best TCFs using Cu NWs show a sheet resistance of 
100 Ω/square at transmittance of 95%. The stability 
of Cu NWs against oxidization is a challenge.[21,22]

Graphene exhibits very good electrical and opti-
cal properties in theory, and thus it can be an ideal 
material for TCF application. However, the electrical 
properties strongly depend on the quality of graphene.
[23–30] The best TCFs using four or five layers of 
mechanically exfoliated graphene show a low sheet 
resistance of 8.8 Ω/square at transmittance of 84%.
[31] Solution processed graphene TCFs generally 
show a sheet resistance of above 1000 Ω/square at 
transmittance of 85%.[32–35]

Carbon nanotube (CNT) thin films with thickness 
in the range of 1–100 nm can exhibit high electrical 
conductivity and high optical transparency. Compared 
with other potential TCF materials to replace ITO, 
CNT films not only enable an easier fabrication pro-
cess, but also provide a more stretchable and flexi-
ble platform with stronger mechanical strength. The 
continual progress in the massive production, puri-
fication, dispersion and film deposition processes of 
CNT are leading to a very competitive performance of 
CNT-based TCFs.[36–50] However, there still remain 
challenges to further improve the electrical conduc-
tivity and stability of CNT-based TCFs. Efforts are 
also being made to find new markets for CNTs and 
discover new and promising applications by taking 
advantage of their stretching and folding properties, 
etc. In this paper, we focus on the recent progress 
in fabrication and modification of CNT-based TCFs, 
and discuss the stability of CNT-based TCFs in detail. 
We also highlight some examples of CNT-based TCFs 
in sensing devices, OPV and OLED devices. Finally, 
we give a summary and analysis on the prospects of 
CNT-based TCFs.

2. Fabrication of CNT-based TCFs

In 2004, the first CNT-based TCFs were fabricated by Wu 
et al. [51] and Saran et al. [52] by using filtration-transfer 
and dip-coating methods, respectively. Thousands of 
papers have since been published on this topic. CNT-
based TCFs have been considered as the most promising 
candidate to replace ITO. CNT-based TCFs can be fabri-
cated by dry or wet processes, where the major difference 
is whether or not a dispersant is used.

2.1. Dry processes

CNTs can be produced by chemical vapor deposi-
tion (CVD), laser ablation and arc-discharge meth-
ods. Generally, for dry processes, CVD is modified to 
directly grow the CNT film, or transfer the CNT aerosol 
to film.[53–60] As a result, dry-processed CNT films 
exhibit higher quality with better separated individual 
CNTs, fewer defects and better CNT–CNT contact, 
compared with solution processes. It has been reported 
that dry-processed CNT-TCF showed a sheet resistance 
of 84 Ω/square at 90% transmittance.[61] Moreover, a 
developed CVD technology can fabricate a carbon nano-
bud (CNB: combining CNT and fullerene) film, which 
exhibited 150 Ω/square at 97% transmittance.[62] In 
2010, Feng et al. [44] demonstrated a straightforward 
roll-to-roll process to make flexible and stretchable 
multi-walled CNT TCFs, as shown in Figure 1. They 
developed a drawing process, which converted the ver-
tical alignment of CNTs in 200 mm silicon wafer into 
horizontal alignment, directly forming a freestanding, 
ultrathin, lightweight, transparent, and conductive CNT 
film. A roll-to-roll process was utilized to fabricate CNT/
polymer-sheet composite film. Further doping with 
vacuum-evaporated metal films greatly decreased the 
resistance. In this work, CNT-based TCFs exhibited 
sheet resistances of 208 and 24 Ω/square at 90% and 
83.4% transmittance, respectively. The use of special 
super-aligned CNT arrays limits its wide application, 
while this technique has been proved to be a promising 
route to CNT-based TCFs easily, effectively and cheaply.

2.2. Wet processes

Wet processed CNT-based TCFs are also competitive for 
industrial use. This technology enables a low temperature 
process, where a vacuum is not necessary. Thus, the 
production costs can be greatly reduced. Moreover, it 
broadens the substrate selection. Plastic or other non-
traditional substrates can be used. Figure 2 gives the typical 
procedures for wet processes: (1) preparation of CNT 
dispersion; (2) film deposition; and (3) post treatments 
including removal of surfactant and/or doping. The 
properties of CNT-based TCFs depend on the quality of 
CNT materials, quality of CNT dispersion, morphology 
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of CNT film, dispersant, and doping treatment. Raw  
CNTs are in the form of a black powder. Due to their 
large aspect ratio, large surface area and strong van der 
Waals interaction, CNTs strongly stick together to form 
large bundles. There have been many research reports 
and reviews on the preparation of CNT dispersion.
[63–80] However, it remains a challenge to disperse 
ultra-long CNTs (above 10  μm) without damage or 
shortening. Three major methods can be summarized 
to disperse CNTs in liquid solvents: (1) direct dispersion 
of pristine CNTs in organic solvent; (2) dispersion of 
covalently functionalized CNTs; (3) dispersion of 
pristine CNTs with aid of dispersants such as surfactants 
or polymers. Although use of dispersants increases the 
processing steps, and residual dispersants increase the 
contact resistance between CNTs, dispersant-aid CNT 
dispersion is the most widely used method due to the 
significant advantages for industrial use. We mainly 

review dispersant-aid CNT ink for TCF applications. 
Among a number of studied surfactants, those most 
commonly used for TCF applications are ionic sodium 
cholate (SC), sodium dodecyl sulfate (SDS), sodium 
dodecyl benzene sulfonate (SDBS) and non-ionic 
Triton X-100. These surfactants enable high CNT 
concentrations of up to 20 mg ml–1 in aqueous solvent. 
Low concentrations of the surfactants will not affect the 
electrical conductivity, while the viscosity of CNT ink 
is difficult to control. Polymers can be used to fabricate 
dispersion by wrapping CNTs. By choosing suitable 
polymers, such as cellulose derivatives, surface tension as 
well as viscosity of the dispersion can be widely modified 
for various deposition processes from spin coating to 
screen printing. However, polymer-assisted dispersion 
is not widely reported for TCF applications because it 
is difficult to remove the insulating polymer after film 
deposition. High-temperature annealing or long-term 

Figure 1. (a) freestanding cnT film drawn out from a 230-μm high superaligned cnT (SacnT) array on an 200 mm silicon wafer.  
(b) Scanning electron microscopy (SeM) image of the cnT array on the silicon wafer in side view. (c) SeM image of the cnT film in 
top view. (d) illustration of the roll-to-roll setup for producing composite Tcfs. (e) a reel of cnT/Pe composite Tcf produced by the 
roll-to-roll setup. (reprinted with permission from [44], copyright 2011 Wiley-vch.)
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conduction of a series of simulated CNT networks, 
where CNTs are varied from metallic to semiconducting 
in the simulation. For pure metallic or semiconducting 
CNTs, the current through the film is quite uniform, and 
the conductance is very high. However, for the film con-
taining around 20% metallic and 80% semiconducting 
CNTs, no conduction can be observed.

Chemical modification or doping is a common 
method to enhance the electrical conductivity of CNT 
films. Many dopants including halogen (Br2),[92] acids 
(HNO3, HCl),[93,94] chlorides (FeCl3, SoCl2),[95,96] 
metal oxides (MoOx),[97] and organic molecules [98] 
have been investigated. These dopants encourage the 
charge transfer between them and CNT, and enable 
Fermi level tuning of CNT for the desired electronic 
properties. Moreover, doping treatments can reduce the 
CNT–CNT contact resistance and increase the carrier 
concentration of semiconducting CNT, which can pro-
vide more conductive films than metallic CNTs whether 
or not they are doped.[99,100] However, most dopants 
are not stable to air, temperature, or humidity, resulting 
in unstable electrical properties in CNT films. Therefore, 
the reliability of doping is becoming one of the biggest 
challenges for practical applications.

A multiple-step fabrication process, including dis-
persing CNTs, depositing CNT films, removing sur-
factants and doping CNT films, has been the most used 

solution process are usually needed to remove the 
polymer. Therefore, it may not be applicable for plastic 
substrate or for mass production.

Doping of CNT-based TCFs is generally essential for 
further performance improvement. For instance, with-
out further chemical doping, CNT-based TCFs exhibit 
sheet resistances of 300–1000 Ω/square at around 85% 
transmittance.[81–84] The poor conductivity can be 
attributed to the complexity in CNT films. CNTs are 
usually doped by oxygen or oxygen functional groups, 
which may lead to a serious deterioration in the electri-
cal properties,[85–88] because those covalent bonds on 
the CNT sidewalls cause the localization of the delocal-
ized π electrons occupying a one-dimensional density 
of states. The spacing between CNTs, due to the weak 
van der Waals interaction, may significantly increase 
the overall resistance by a factor as high as 10.[89,90] 
Moreover, CNT films generally contain 33% metallic 
and 67% semiconducting CNTs. Previous reports have 
shown that metallic CNTs conduct well to other metal-
lic CNTs, and semiconducting CNTs also conduct well 
to other semiconducting CNTs, but metallic/semicon-
ducting CNT contacts cause a Schottky barrier, which 
greatly suppresses the electrical transport. Topinka et al. 
[91] investigated this phenomenon with an electronic 
phase diagram, as shown in Figure 3. It showed the influ-
ences of CNT type and configuration on the electrical 

Figure 2. (a) Schematic of typical wet process for fabricating cnT-based Tcfs, which includes cnT dispersion, film deposition and 
post treatment (surfactant removal and/or doping). Two examples for fabricating cnT-based Tcfs: (b) vacuum filtration and alumina 
membrane transfer to make cnT films (reprinted with permission from [80] copyright 2010 american chemical Society); and  
(c) spray coating and post treatments of cnT films (reprinted with permission from [101], copyright 2010 royal Society of chemistry.)
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HPC polymer. This system used flash lamps to deliver 
continuously adjustable, megawatt-intensity, microsec-
ond-resolution pulses of broad-spectrum light to achieve 
a rapid heating and cooling process. This process enabled 
a high-temperature process, while the damage from such 
heating treatment to low-temperature plastic substrate 
could be avoided. After removal of the matrix polymer, 
HNO3 doping resulted in highly conductive CNT-based 
TCFs with sheet resistance of 68 Ω/square at 89% trans-
mittance. The negligible change in sheet resistance after 
200,000 cycles of bending identified the superior flexi-
bility of CNT-based TCFs.

However, the above multiple-step methods are too 
complicated and costly for mass production of TCFs. 

method for CNT-based TCFs. For example, as shown 
in Figure 2, Shim et al. [101] demonstrated a typical 
method to fabricate CNT-based TCFs via spray-coat-
ing SDBS-aided dispersion. After removal of the SDBS, 
solutions of transition metal slats including AuCl3, IrCl3, 
Ni(NO3)3 were utilized for doping, which resulted in 
the best CNT-based TCFs with sheet resistance of  
92 Ω/square at 83.8% transmittance. Kim et al. [94] used 
hydroxypropylcellulose (HPC), a derivative of cellulose 
to dispersing the CNTs. The viscosity of CNT ink can 
be easily controlled by adjusting the concentrations of 
HPC or CNTs. CNT-based TCFs with different thick-
nesses were deposited by a doctor-blade method. They 
developed a photonic curing process to remove the 

Figure 3.  (a) Schematic showing the measurement technique used to image voltage drops in cnT films. (b, c) experimental 
images on nominally identical devices. (d–h) current flows as the ratio of metallic (white) and semiconducting (green) tubes is 
varied. (i) expected conductance as a function of proportion of semiconducting tubes (assuming for simplicity that an unblocked 
semiconducting tube conducts as well as a metallic tube. (reprinted with permission from [91], copyright 2009 american chemical 
Society.)
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doping methods that satisfy the industrial standard for 
accelerated ageing tests.

We summarize the best CNT-based TCFs in Table 1. 
The performances of some CNT-based TCFs are promis-
ing for the replacement of ITO, but other ITO alternatives 
such as metal nanowires and graphene exhibit better 
performance. Figure 4 shows the best transmittance 
and sheet resistance reported in the literature to date 
for CNTs, graphene and metal nanowires. Significant 
progress is still required to improve the performances of 
CNT-based TCFs. However, constructing CNT hybrid 
composites with graphene and/or metal nanowires may 
lead to a breakthrough over the conductivity limits in 
CNT-based TCFs.[104–115]

3. Stability of CNT-based TCFs

The chemical bonding of nanotubes is composed 
entirely of sp2 bonds, similar to graphite. These bonds 
are stronger than the sp3 bonds in diamond, and accord-
ingly provide CNT with outstanding strength. The ther-
mal stability of CNTs is estimated to be up to 2800°C in 
a vacuum and around 750°C in air.[116] However, it is 
quite different in the case of CNT-based TCFs. Doping is 
usually essential for further performance improvement. 
The conductivity of CNT films can be greatly enhanced 
through chemically doping treatment, which results 
in the enhancement of charge carrier and decrease of 
contact resistance of CNT–CNT junction. However, 
doped CNT films become sensitive to air, temperature, 
or humidity. Thus, most of the reported properties of 
CNT-based TCFs are not stable.

3.1. General doping

As efficient p-type dopants, strong acids and inorganic 
solvent such as HNO3 and/or SOCl2 have been widely 
used to fabricate CNT-based TCFs with high conduc-
tivity. Jackson et al. [117] systematically investigated the 
stability of undoped and doped CNT-based TCFs. As 
shown in the top of Figure 5(a), HNO3 molecules and/or 
NOx residues dope the CNTs by intercalating the CNTs 
within the network. The doping effects of HNO3 have 
been shown to be easily reversible, resulting in a quick 
increase in sheet resistance of doped CNT films. On the 
other hand, SOCl2 doping leads to the nucleophilic sub-
stitution of carboxylic acid groups on the sidewalls and 

The choice of surfactants is crucial to simplifying the 
fabrication process. Some acids have been developed for 
dispersing CNTs, so further doping treatment is not nec-
essary. Hecht et al. [102] used chlorosulfonic acid (CSA) 
as a dispersant. CNTs were well dispersed by just stirring 
the solvent mixing with 10 mg and 50 ml CSA for 12 h. 
Sonication, which could introduce damage along CNT 
walls, and dramatically shorten CNT length, was not 
necessary in this work. Vacuum filtration was used to 
collect CNT films, which were then transferred to a plas-
tic substrate. As-prepared CNT-based TCFs exhibited a 
sheet resistance of 60 Ω/square at 90.9% transmittance. 
Moreover, Mirri et al. [103] demonstrated a scalable dip 
coating method to fabricate CNT-based TCFs. They also 
used CSA to disperse the single- and double- walled 
CNTs with high concentrations up to 3 mg ml–1. After 
film deposition, the CSA can be easily removed by coag-
ulation or drying, followed by washing in chloroform. 
Without further doping, the at ∼88% transmittance,  
single- and double-walled films had a sheet resistance of 
∼1300 and 140 Ω/square, respectively. Mirri et al. [103] 
attributed the higher performance for double-walled 
CNTs to the length and quality. The sheet resistances of 
the films are comparable with those after acid doping. 
However, the sheet resistances were sensitive to the air, 
temperature and humidity. After 24 h at 85% relative 
humidity and 85°C, the film sheet resistance increased 
by 220%. More research is needed to develop stable 

Table 1. Summary of the best cnT-based Tcfs. PeT stands for polyethylene terephthalate, and nMP for n-methyl-2-pyrrolidone.

Substrate Dispersant Coating Doping Rs (Ω/sq) T. (%) Ref.
PeT Superacid filtration none 60 90.9 102
glass Superacid dip coating none 140 88 103
PeT SdS Spin coating hno3 80 85 39
PeT hPc doctor blade hno3 68 89 96
glass oleum filtration hno3 76 82 84
Quartz Triton X-100 filtration Socl2 56 78 95
glass nMP Spray coating Moo3 100 85 97
glass hPc doctor blade cui 65 85 104
PeT SdS filtration Silver nanowire 26 90 105

Figure 4. Plot of specular transmittance versus sheet resistance 
for the best performances of cnT-based Tcfs.[96,102,104] 
values for commercial iTo, the best Tcfs using graphene,[28–31] 
ag nW,[19] cu nW [18] and PedoT:PSS [12] are provided for 
comparison.



Sci. Technol. Adv. Mater. 17 (2016) 499 Y. ZhOU AND R. AZUMI

increasing temperatures from 20 to 80°C. However, the 
CNT films treated with HNO3 demonstrated an increase 
in resistance with increasing temperature. The HNO3 
treated film with a layer of PEDOT:PSS has an initial 
sharp increase in resistance with increasing tempera-
ture in comparison to the HNO3 doped film without 
PEDOT:PSS. This could be explained by the interac-
tion of the HNO3 molecules on the surface of the CNT 
film with the PEDOT:PSS layer. The films doped with 
a combination of HNO3 plus SOCl2 showed no change 
in sheet resistance upon heating up to 80°C when the 
film was capped with PEDOT:PSS, while the resistance 
of uncapped doped films increased by more than 13% at 
elevated temperatures. Thus, the capping layer showed 
the ability to stabilize the temperature dependence of 
the sheet resistance.

3.2. Doping with MoOx

Development of stable and reliable doping is there-
fore becoming the biggest challenge for practical 
application of CNT-based TCFs. In 2012, Hellstrom 
et al. [97] reported an interesting charge-transfer 
interaction between CNT networks and MoOx, and 

tips of the CNT with more electronegative acyl chlo-
rides. Although the acyl chlorides groups are covalently 
bonded to CNTs, the bonding structures are known to 
be very reactive, resulting in a poor overall stability. 
The best results for CNT-based TCFs using strong-acid 
doping are not stable. The stability problem could be 
more severe during the actual device process, which 
may contain chemical treatment, solution deposition, 
vacuum evaporation, and/or high-temperature anneal-
ing. Figure 5(b) shows the evolution of the stability of 
undoped and doped CNT-based TCFs upon exposure 
to air atmosphere. The sheet resistance of the undoped 
film was stable at 300 Ω/square over 400 h, while doped 
films showed a significant increase in the sheet resist-
ance. The percentage increase in the sheet resistance of 
HNO3-doped film was larger than that of SOCl2 doped 
films, while the sheet resistance of HNO3-doped film was 
still lower after 400 h. Moreover, they also investigated 
the effects of heating on the doping stability, as shown 
in Figure 5(c). The sheet resistances of undoped CNT 
films with or without PEDOT/PSS decreased slightly 
with increasing temperature. The CNT films treated 
with SOCl2 also showed a temperature dependent elec-
trical resistance which decreased by up to 10% with 

Figure 5. (a) (top) Simple space filling model of intercalated hno3 molecules within a cnT unit, and (bottom) nucleophilic substitution 
of carboxylic acid groups on the sidewalls and tips of the cnT with acyl chlorides via chemical treatment with Socl2. (b) absolute 
sheet resistance versus time in air of four cnT-based Tcfs. (c) Sheet resistance increases with temperature for undoped, Socl2-, hno3- 
doped cnT-based Tcfs. (reprinted with permission from [117], copyright 2008 Wiley-vch.)
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MoOx in water. This is an interesting work using nan-
oparticles of semiconductor rather than thin film or 
metallic nanoparticles to achieve efficient electrical 
transport in CNT networks. The excellent stability 
makes CNT-MoOx hybrids extremely attractive can-
didates for practical transparent electrodes.

3.3. Doping with copper halides

Recently, we have demonstrated a doping technology 
to build interconnecting nodes in CNT networks 
with copper-halide crystallites.[104] The technique is 
schematically illustrated in Figure 7(a). Thin films of 
copper halides can be prepared by either vacuum- or 
solution-based processes. A pulse photonic curing 
system was used to produce a rapid heating and cooling 
process at a microsecond timescale. This rapid heating 
and cooling process enabled the manipulation of 
copper-halide crystallites, which not only resulted in the 
formation of CNT-CNT interconnecting nodes, but also 
improved charge transfer doping. Figure 7(b–j) shows 
the formation mechanism, and their corresponding 
atomic force microscopy (AFM) images. As-evaporated 
CuI film exhibited polycrystalline geometry with sphere-
like grains. The photonic curing process with optimized 
parameters was developed to remove polymer dispersant 
and construct halide nodes. These CuI crystallites 
were individually located at the cross points of two 
or more CNT bundles. Besides the novel structure, 
doping with copper halides significantly decreased the 

developed a stable p-type doped CNT-MoOx bilayer 
TCFs. Figure 6(a) illustrates the basic process for 
fabricating CNT-MoOx hybrid films. MoOx films 
with a thickness of less than 10 nm were essentially 
transparent in the visible as initially deposited by 
vacuum evaporation. After annealing at 450–500°C 
in Ar, the CNT-MoOx hybrid films exhibited a sheet 
resistance of 100 Ω/square at 85% transmittance. 
Further depositing a PEDOT:PSS layer resulted in 
sheet resistances of 80 Ω/square at 83% transmittance. 
Scanning electron microscopy images showed that 
after annealing the MoOx layer dewetted from glass 
supporting substrates and did not remain continu-
ous. This indicated that MoOx nanoparticles, rather 
than continuous film, enhanced the charge transfer 
doping, which led to a great improvement in the elec-
trical conductivity. Interestingly, CNT-MoOx hybrid 
films exhibited good thermal stability. Figure 6(c) 
gives the relative variations of various stressors on 
the sheet resistance of CNT-MoOx hybrid films, com-
pared with similar data on CNT films doped with 
2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimeth-
ane (F4-TCNQ), and to alternative dopants in the 
literatures. It seems that MoOx was the most stable of 
the strong CNT dopants. In ambient conditions over 
20 days, sheet resistances changed slightly. Apparently, 
CNT-MoOx hybrids had good chemical stability over 
F4-TCNQ doped samples subject to every chemical 
test performed except for 1  h immersion in water. 
This instability is most likely due to the solubility of 

Figure 6. (a) Schematic showing the fabrication of cnT-Moox Tcfs. (b) SeM micrograph of an annealed cnT-Moox composite film. 
(c) variations of Moox- and f4-TcnQ-doped cnT films to different thermal and chemical stressors. (d) Summary showing sheet 
resistances and transmittances of Tcfs. (reprinted with permission from [97], copyright 2012 american chemical Society.)
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In order to understand such technology, we have fur-
ther investigated the effects of different doping methods 
including HNO3 solution, I2 vapor and CuI solid.[118] 
Figure 8 shows the surface morphology of the undoped 
CNT films. CuI doping led to a unique CNT-CuI hybrid 
film. The effects of environments such as vacuuming or 
heating were also investigated. For undoped films, the 
resistances increased by a factor of 1.2–1.4 after vacuum-
ing, and further increased after heating. Vacuuming and 
heating can remove the weakly absorbed dopant mol-
ecules. Desorption of the gaseous molecules could be 
the reason for the increased resistance in undoped films 
by vacuuming. For HNO3 doping, vacuuming processes 
led to a threefold increase in resistance. Further, a more 
than fivefold increase induced by heating suggested that 
CNT films lose almost all of the HNO3 induced dopant 
molecules. CNT-CuI hybrid films exhibited extremely 
stable electrical performances; the resistance was only 

intensity of D-band signals. The blueshifts indicated 
p-type doping, where charges transferred from CNTs 
to halides occurred, corresponding to a downshift of 
Fermi level toward the valence band of CNT. The CuI-
HPC/halide films exhibited an initial sheet resistance 
of over 106 Ω/square, while the photonic curing led to a 
remarkable improvement in their electrical conductivity. 
With introduction of halide nodes, the CNT films 
exhibited 90–110 and 55–65 Ω/square at 90% and 85% 
transmittance, respectively. Similar results were obtained 
for the CNT films containing CuCl, CuBr or CuI. On the 
other hand, un-doped CNT films exhibited stable sheet 
resistances. After HNO3 doping, CNT film exhibited 
an initial sheet resistance of 65 Ω/square at 83% 
transmittance, and it was rapidly increased to 130 Ω/
square after 24 h exposure to air. The CNT-halide films 
showed extremely stable sheet resistance values after air 
exposure for more than 1000 h at room temperature.

Figure 7.  (a) Schematic showing the photonic curing process for fabricating cnT-copper halide hybrids. formation mechanism 
of the interconnecting nodes, and corresponding atomic force microscopy (afM) images of (b) as-deposited hPc-dispersed cnT,  
(c–j) as-deposited cnT-hPc/cui films during the photonic curing. raman spectra of (k) cnT and cnT-copper halide films after 
photonic curing. Properties of cnT-copper halide films as transparent electrodes: (i) sheet resistance versus transmittance, (m) 
durability of sheet resistance in air at room temperature. (reprinted with permission from [104], copyright 2015 elsevier.)
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MoOx are typical wide-bandgap semiconductors with 
deep work function of above 5.2 eV, being close to the 
highest occupied molecular orbital (HOMO) of organic 
donor molecules. MoOx is also used as an electron 
acceptor for doping organic semiconductor and CNTs, 
while CuI can act a structural template to control the 
molecular growth to improve the OPV cells.[119–121] 
Those strong and stable doping technologies may push 
the application of CNT-based TCFs in OPV devices.

4. Application of CNT-based TCFs

TCFs are a widely used technology in daily life for various 
optoelectronics. Although ITO is dominating the current 
market in practical applications of TCFs, more and more 
commercial products using ITO alternatives including 
CNTs, metal mesh as well as metal nanowire are appear-
ing. In this section, we review recent progress, and discuss 
the challenges in sensing devices (touch panel), OPV and 
OLED devices which use CNT-based TCFs.

4.1. Sensing devices

Touch panels, i.e. input devices on the top of electronic 
displays, are the most widely used sensing devices. 
Touch panels have been widely used as a direct human/

increased by factors in a range of 1.1–1.5. The detailed 
temperature dependence was also investigated. The con-
tact resistance rather than the resistance of individual 
CNT was more dominant in thinner films. The contact 
resistances decreased with temperature, because carriers 
crossed the potential barrier between CNTs more easily 
at higher temperature. Therefore, thinner undoped films 
seem to be more semiconducting. Moreover, a hysteresis 
loop was observed in the forward-reverse temperature 
cycle. This may be attributed to the variations in contact 
resistance due to desorption of molecules intercalated 
in CNT bundles at high temperature. Doping sup-
pressed the potential barrier for carrier transfer between 
CNTs, and, consequently, doped CNT films became 
more metallic. Higher temperature activated the ionic 
dopants intercalating the CNT bundles, and simultane-
ously removed the volatile dopants from CNTs. Overall, 
CNT-CuI hybrid films exhibited the smallest hysteresis, 
demonstrating their excellent stability.

These results suggest that semiconductor nanoparti-
cles can be promising dopants, and can be used to form 
a stable hybrid composite with CNTs, but do not degrade 
the electronic and transport properties of CNTs. In par-
ticular, the processing feasibility and excellent reliability 
indicate a good outlook for CNT-CuI hybrid films in 
practical applications. On the other hand, both CuI and 

Figure 8. afM images of cnT films spin-coated with spin speeds of (a) 5000 rpm, and (c) 1000 rpm and their corresponding cnT-cui 
hybrid films (b) and (d). The resistance variations of cnT networks (e–h) and the temperature dependent conductivity (i–l) of cnT 
films with different doping treatments. (reprinted with permission from [118], copyright 2015 american institute of Physics.)
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hybrid of CNT and conductive elastomers, as shown 
in Figure 9. The percolating networks between con-
ductive CNTs and PEDOT improved the tunability of 
strain sensitivity, stability, and optical transparency. Such 
wet-processed sensors exhibited enough sensitivity to 
detect small strains induced by emotional expressions 
such as laughing and crying, as well as eye movement. 
The sensor can become an interface between humans 
and robots, and can help machines read human feeling 
and emotion. The rapid development of robots and arti-
ficial intelligence will further motivate studies on sensing 
devices used CNT-based TCFs.

4.2. OPV devices

OPV cells including hybrid perovskite photovoltaics have 
attracted much interest in both academic and industrial 
fields, due to their potential as a promising source of 
renewable energy. In recent decades, significant progress 
in OPV cells has been achieved by the development of 
molecules and device fabrication processes. However, 
those works have mostly been carried out on ITO coated 
glass substrates. The brittle ITO film is not applicable 
for future OPV cells, which should be flexible on plas-
tic substrates in order to differentiate them from con-
ventional crystalline Si PV cells. Therefore, establishing 
the fabrication process on flexible electrodes is of great 
importance for boosting OPV cells for daily use.

As shown in Table 1, even the best CNT-based TCFs 
exhibit a sheet resistance of 60 Ω/square at 90.9% trans-
mittance. Considering that commercial ITO exhibits a 
sheet resistance of 10 Ω/square at 90.9% transmittance, 
such high sheet resistance is not acceptable for efficient 
OPV cells. CNT-based TCFs have been widely inves-
tigated for OPV applications.[145–165] Table 2 sum-
marizes the best OPVs fabricated on CNT-based TCFs, 
and the best OPV cells on ITO-free TCFs. Typically, 
PEDOT:PSS is deposited on CNT-based TCFs as a 
hole transport layer. Because the rough CNTs exhibit 
hydrophobic characteristics, a PEDOT:PSS coating can 
smoothen the surface and improve the wettability of 
CNT films. Moreover, high-conductivity PEDOT:PSS 
(such as Clevios PH 1000) is often introduced to improve 
the conductivity of CNT-based TCFs. Therefore, most of 
the reported OPV device structures are substrate/CNT 
(without high-conductivity PEDOT:PSS)-based TCFs /
PEDOT:PSS/polymer: phenyl-C61-butyric-acid-methyl 
ester (PCBM)/Al, where polymer includes poly(3-hex-
ylthiophene-2,5-diyl) (P3HT) or poly({4,8-bis[(2-ethyl-
hexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl}
{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]
thiophenediyl}) (PTB7), and LiF or TiO2 is used as an 
electron extraction layer. The substrate can use transpar-
ent plastic materials (PEN: polyethylene naphthalate) to 
realize flexible and/or stretchable OPV cells. The high 
sheet resistance of CNT-based TCFs usually leads to a 

device communication tool in various digital devices 
such as tablets and smart phones, and demand for them 
is rapidly growing. Touch panels can be resistive-type 
or capacitive-type. A resistive touch panel contains sev-
eral layers, the most important of which are two layers 
of TCFs separated by a thin space, while a capacitive 
touch panel contains an insulator and a layer of TCF.
[122] Resistive touch panels usually need TCF with 
higher transmittance (>95%), while capacitive touch 
panels need TCF with smaller sheet resistance (<300 
Ω/square). Touch panels have no special requirements 
for surface roughness or the work function of TCFs, 
and the requirement for sheet resistance is not strict. 
Touch panels may be one of the most promising practical 
applications for CNTs-based TCFs.[122–128] However, 
other low-cost technologies including metal mesh and 
metal nanowires are also receiving increased attention. 
Therefore, besides the performances of transmittance/
sheet resistance, the price is becoming a crucial factor 
for the choice of TCFs.

In 2013, Foxconn Electronics (Hon Hai Precision 
Industry, China) announced that they developed a tech-
nology (CNTouch) for manufacturing touch panels. This 
technology, invented by Feng [44], uses a straightfor-
ward drawing process to directly transfer the vertical 
alignment of double walled CNTs in 200 mm silicon 
wafer into a substrate. CNTouch can provide a low-cost 
process for mass production of touch panels using CNT-
based TCFs. Currently, the Tianjin production lines of 
CNTouch are able to produce three million 102 mm pan-
els per month and its production lines in Guiyang, China 
are currently able to deliver about three million 127 mm 
panels per month. More and more companies are con-
sidering these low-cost touch panels, and some products 
such as Huawei (Shenzhen, China) and HTC (Taiwan, 
China) smartphones may have already used these touch 
panels. Also in 2013, Canatu developed a CNB technol-
ogy to manufacture touch panels in Finland. The key 
benefits of CNB TCFs are high flexibility, cost compet-
itiveness, and optical transmission. Interestingly, both 
Foxconn and Canatu use dry processes to manufacture 
CNT-based TCFs. Although these technologies use very 
special CNTs, very low-cost processes have been devel-
oped for mass production of CNT-based TCFs, which 
may lead to them being competitive among other TCFs.

As well as the application for touch panels, various 
sensing devices using CNT-based TCFs have been 
attracting special interest as wearable electronics. Since 
the electrical properties of CNT networks can be very 
sensitive to temperature, humidity, light, gas, pressure 
and strain, they can transfer the variation of the envi-
ronment into electronic signals.[129–143] In particular, 
they can describe abstract experiences such as human 
action, feeling and emotion with digital signals. In 2015, 
Roh et al. [144] reported a stretchable, transparent strain 
sensor for human–machine interfaces comprising a 
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Figure 9.  (a) Schematic illustration of stretchable transparent strain sensors. (b) Schematic illustration of the strain sensor. 
SWcnT stands for single-walled cnT, PdMS for polydimethylsiloxane and PU for polyurethane. (c) Top-view fe-SeM image and 
(d) transmittance spectra of the three-layer stacked sensor. Time-dependent responses of the sensor attached to the (e) forehead 
and (f ) skin near the mouth when the subject was laughing and of the sensor attached on the (g) forehead and (h) skin near the 
mouth when the subject was crying. (reprinted with permission from [144], copyright 2015 american chemical Society.)
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transparent electrodes. We developed a full solu-
tion process to fabricate CNT-CuI hybrid films by 
utilizing a photonic curing process.[153] OPV cells 
were fabricated with using tetraphenyldibenzoperi-
flanthene (DBP) as a donor and fullerene (C60) as an 
acceptor. Diindenoperylene (DIP) was introduced 
to construct a cascade-type cell architecture.[166] 
OPV cells on a series of CNT-CuI films were fabri-
cated to understand the effects of transmittance and 
the resistance on performances in detail, as shown 
in Figure 11. Comparing to a reference cell fabri-
cated on ITO, all of the cells on CNT-CuI exhib-
ited smaller open-circuit voltage (VOC), and FF, 
but larger short-circuit current (JSC). Large leakage 
current and high sheet resistance of CNT-CuI elec-
trode were the possible reasons. The increase in the 
external quantum efficiency (EQE) spectra, from 
400 to 650  nm, identified that cascade structure 
was successfully established on CNT-CuI, and the 
DBP/C60 contact area was larger on CNT-CuI film. 
The OPV cells on series of CNT-CuI films exhibited 
very similar IQE spectra in whole wavelength, indi-
cating that the sheet resistance of CNT-CuI played 
a negligible role in the efficiencies in exciton disso-
ciation, charge transfer and charge collection. As a 
result, the best cell fabricated on the CNT-CuI film 
with 80% transmittance exhibited JSC of 7.3 mA cm–2, 
VOC of 0.77 V, FF of 0.53, leading to a PCE of 3.0%, 
being close to the cell (3.4%) on conventional ITO. 
It was the first efficient OPV cell based evaporating 
small molecules on CNT-based TCFs, which was 
comparable to other OPV cells using metal nano-
wires or graphene as TCFs. Overall, constructing 
a nanostructured template is an efficient strategy 
for improving the OPV cells whether or not ITO is 

degradation in overall efficiency of OPV cells, compared 
with the reference cells on ITO substrate. In particular, 
acid-doped CNT-based TCFs exhibit unstable sheet 
resistances, which will degrade during the device pro-
cess. Note that the best OPVs usually used thick CNT 
films in order to achieve smaller sheet resistance. The 
results imply that a sheet resistance less than 50 Ω/square 
is required for efficient OPV cells with a high fill factor 
(FF).

Stable dopants are of significance for CNT-based 
TCFs in OPV applications. MoOx and CuI could be 
promising candidates. In 2015, Jeon et al. [152] fabricated 
a series of OPV cells on CNT-based TCFs, as shown in 
Figure 10. They used dry-processed CNT-based TCFs, 
which was sandwich-doped with two layers of MoOx. 
As a result, the sheet resistance became 84 Ω/square 
at 65% transmittance. Doping with MoOx not only 
greatly improved the conductivity of CNT films, but also 
modified the work function of CNTs for efficient hole 
extraction. Thus, the CNT-MoOx films were regarded as 
electron-blocking transparent electrodes. The OPV cells 
showed power conversion efficiencies (PCE) of 2.4% and 
6.0% using P3HT:PCBM and PTB7:PCBM as active lay-
ers, respectively. Although these PCE values were 80% 
of those for ITO-based OPV cells, it was the most effi-
cient OPV cells on CNT-based TCFs in literature to date. 
When PET substrate was used, the OPV cell exhibited a 
PCE of 3.9%, which was capable of withstanding a severe 
cyclic flex test. It showed that stable CNT-based TCFs 
can be used for polymer OPV cells with high efficiency, 
being comparable to ITO devices.

On the other hand, the stability problem could 
be more severe during actual device process, espe-
cially in vacuum process. Very few papers report 
the vacuum-evaporated OPV cells using CNT as 

Table 2. Summary of the best oPv cells on cnT-based Tcfs and other iTo-free Tcfs. BcP stands for bathocuproine, go for graphene 
oxide and Pei for polythyleneimine.

Device structure
CNT-Based TCFs 

method + doping Rs (Ω/sq) T. (%) Area (mm2) PCE (%) Ref.
glass/cnT/PedoT:PSS/P3hT:PcBM/ca/al Spray + acid 60 70 3 3.1 145
glass/cnT/PedoT:PSS/P3hT:PcBM/lif/al Spray + acid 128 90 n/a 2.3 146
glass/cnT/PedoT:PSS/P3hT:PcBM/ca/al Spray + acid 56 65 4 4.1 147
glass/cnT/PedoT:PSS/P3hT:PcBM/lif/al dip + acid 188 92 4 2.0 148
glass/cnT/PedoT:PSS/P3hT:PcBM/lif/al filtration + Moo3 326 90 9 2.4 152
glass/cnT/PedoT:PSS/PTB7:PcBM/lif/al filtration + Moo3 84 65 9 6.0 152
PeT/cnT/PedoT:PSS/PTB7:PcBM/lif/al filtration + Moo3 84 65 9 3.9 152
PeT/Pani:cnT/PedoT:PSS/f82T/c60/al dip + meta-cresol 295 89 n/a 2.3 149
PeT/cnT/PedoT:PSS/ P3hT:PcBM/al filtration + none 200 85 4 2.5 150
glass/cnT:PedoT:PSS/Peie/Zno/PBdT-

TT-cT:PcBM/v2o5-go/ag
Spin +PedoT:PSS 40 85 19.7 7.5 154

glass/cnT/PedoT:PSS/diP/dBP/c60/BcP/al Blade + cui 70 80 6 3.0 153
glass/cnT/PedoT:PSS/perovskite/PcBM/al filtration + acid 25 70 9 6.3 167
PeT/cnT/PedoT:PSS/perovskite/PcBM/al filtration + acid 25 70 9 5.4 167
fTo/Tio2/perovskite/spiro/cnT lamination + none 2000 60 16 6.3 168
glass/cunW/PedoT:PSS/f4ZnPc:c60/BPhen/

al
Spray 25 83 16 3.1 169

glass/agnW:PedoT:PSS/PedoT:PSS/poly-
mer (not commercial):Pc71BM/Tio2/al

rod 8 92 15 7.4 170

Pen/Pei/ag/PedoT:PSS/PedoT:PSS/
Pei:PTB7-Th:Pc70BM/Moox/ag

- 9 90 4.6 9.8 172

PeT/ag mesh:PedoT:PSS/ PedoT:PSS/per-
ovskite/PcBM/al

nano-imprinting 3 85 10 14.0 173
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4.3. OLED devices

OLED is attracting more and more interest in solid-state 
lighting devices and digital displays in devices such as 
television screens, computer monitors and various port-
able devices. OLED is a light-emitting diode, where the 
emissive electroluminescent layer is an organic film that 
converts electrical current to light. This organic film is 
sandwiched with two electrodes, at least one of which 
is transparent.

CNT-based TCFs have been widely investigated 
for flexible OLED devices.[82,174–194] Generally, the 
requirements of sheet resistance and transmittance for 
OLED devices is less strict than in OPV devices. Similar 
to OPV, there are two main OLED devices using either 
small molecules or polymers. Multiple-layer architecture 
including hole and electron injection is usually used to 
improve the device performance and operation lifetimes. 
Here, PEDOT:PSS is usually used to modify the surface 
of CNT-based electrodes. In 2006, three groups 
[82,174,175] reported small-molecule and polymer 
OLED devices fabricated on CNT-based electrodes, 
respectively. Figure 12(a) shows a schematic of a small-
molecule OLED device.[175] They deposited CNT 

used. In particular, by capitalizing on the structural 
characteristics (one-dimensional nanostructures) 
of non-traditional electrodes including CNT, metal 
nanowires may provide a new strategy for efficient 
OPV cells.

Beside the OPV cells, lead-based perovskite solar 
cells can be fabricated on CNT-based TCFs.[167,168] 
Apparently, for the efficiency game in OPV applica-
tions, CNT-based TCFs are not promising.[169–173] 
In particular, the flexible organic/inorganic perovskite 
cells exhibited a PCE of 14% on hybrid TCFs with 
metal mesh-PEDOT:PSS, which had a very small sheet 
resistance of 3 Ω/square at 85% transmittance.[173] It 
is necessary to further improve CNT-based TCFs with 
sheet resistances of below 50 Ω/square at transmittance 
of above 90%. Constructing hybrid structures with 
CNT and metal nanowires is a promising technology. 
Moreover, in order to achieve the required flexibility 
and stretchability, vacuum-evaporated metal electrodes 
should be also replaced with flexible electrodes. The 
issues of low-cost fabrication process and device stabil-
ity should be addressed. Overall, it remains a large space 
for realizing the actual OPV application on CNT-based 
TCFs.

Figure 10. (a) P3hT-based cells and (b) the most optimized PTB7-based device. (c) Photograph of the flexible oPv on cnT-based 
Tcfs. J–V curves of the: (d) P3hT:mix-PBM-based devices and (e) PTB7:Pc71BM-based devices. (reprinted with permission from [152], 
copyright 2015 american chemical Society.)
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a hole transport layer (HTL), and 50-nm thick tris- 
(8-hydroxyquinoline) aluminum (Alq3) as an electron 
transport and emissive layer. The maximum achieved 
brightness is 6000 cd m–2 for the ITO-OLED compared 
to roughly half, 2800  cd  m–2, for the CNT-OLED. 
Considering that CNT film exhibited a low transmittance 
of 44%, the CNT-OLED device had similar emission 
performances with ITO-OLED device.

films by typical filtration and transferring processes. 
CNT films with a thickness of 130 nm exhibited a sheet 
resistance of 60 Ω/square at 44% transmittance. The 
organic stack structure was optimized for maximum 
luminance efficiency and consisted in 10-nm thick 
copper phthalocyanine (CuPc) as a hole injection 
buffer layer (HIL), 50-nm thick N,N′-bis-(1-naphthyl)-
N,N′-diphenyl-1,1-biphenyl-4,4′-diamine (NPB) as 

Figure 11.  (a) device structure, afM images of the cnT-cui hybrid (b) before and (c) after deposition of PedoT:PSS film. (d) J–V 
characteristics under 1-sun illumination and (e) eQe of the oPv cells on cnT-cui. (reprinted with permission from [153], copyright 
2016 royal Society of chemistry.)

Figure 12. (a) Schematic of the oled device on cnT-based electrode and corresponding cross sectional scanning electron microscopy 
image. (b) Sheet resistance as a function of the optical transmittance. current density and luminance as a function of applied voltage 
for oleds fabricated on (c) cnT and (d) iTo anodes. (reprinted with permission from [175], copyright 2006 american institute of 
Physics.)
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Deposition of a doped PEDOT:PSS film on the 
nanostructured CNT further homogenized the sur-
face and enlarged the work function, which was 
expected to enhance the hole injection effects. By 
using an efficient phosphorescent ionic transition 
metal complex as a light emitting material, they 
achieved an efficacy up to 9 cd/A.

CNT-based TCFs enable easy fabrication of 
OLED and related devices on a plastic substrate. 
Martinez-Sarti [186] reported a flexible light-emit-
ting electrochemical cell using CNT-based TCFs as 
an anode, as shown in Figure 13. The CNTs were 
synthesized by an integrated aerosol method, and 
then dry-transferred on to the plastic substrates. 

Figure 13. (a) Schematics of the flexible device layout built on the PeT/cnTs/PedoT:PSS conducting substrate and SeM image of 
cnT films; iTMc stands for ionic transition metal complex (b) global luminance versus time. (reprinted with permission from [186], 
copyright 2016 elsevier.)

Figure 14. (a) Schematic view of oled display. (b) SeM image of parallel cnT strips with a width of 5 μm. (c) a photo showing the 
36 pixels. (d) The letters “n”, “T”, and “U” are displayed sequentially on this oled display. (reprinted with permission from [210], 
copyright 2015 nature Publishing group.)
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25 years, but only during last few years have practical 
applications begun. Currently, the price of commercial, 
research grade CNT ranges from less than 1 US dollar 
per gram (multi-walled CNT) to hundreds of dollars per 
gram (single-walled CNT). The commercialization of 
CNTs, which have become cheaper and cheaper, is driv-
ing their practical application at industrial scale. More 
and more companies are making an attempt to intro-
duce CNTs to upgrade their products. TCFs are a very 
promising field for CNTs, because of the rapid growth 
and development of customer electronics. According to 
[211] the market for TCFs will reach 1.2 billion dollars 
in 2025. Although ITO films will still dominate various 
applications of TCFs for a long period in the future, ITO 
alternative technologies such as metal nanowires and 
metal mesh are expected to expand their share in the 
coming years. CNT-based TCFs have to face a serious 
competition with ITO and alternative technologies.

It has been theoretically and experimentally proved 
that CNTs have a high intrinsic electrical conductivity 
close to metal, but it remains a challenge to transfer 
such high conductivity of individual CNTs to a network 
(film). Honghai and Canatu, the first two companies to 
manufacture CNT-based TCFs, have been developing 
dry processes to directly transfer their special CNTs 
onto substrate. They can manufacture high-quality CNT-
based TCFs simply in mass production with a low-cost 
process. Many other studies in both academia and indus-
try are using wet processes to fabricate CNT-based TCFs. 
The wet process is also promising since it not only allows 
the use of commercial CNTs with different qualities and 
prices, but also enables various deposition methods for 
desired applications. General wet processes contain sev-
eral steps to deposit CNT films. Firstly, CNT aggregates 
with strong van der Waals binding energies should be 
dispersed or mixed in a solution. An ideal dispersion 

Besides acting as a transparent electrode, CNT films 
can act as a hole injection layer to enhance the device 
efficiency, and also as a transistor to drive OLED dis-
plays.[195–210] OLED displays can use either pas-
sive-matrix (PMOLED) or active-matrix (AMOLED) 
addressing detailed schemes. AMOLED requires a thin-
film transistor to not only switch each individual pixel 
on or off, but also allow higher resolution and larger 
display sizes. Transistors using semiconducting CNTs 
can drive AMOLED pixels at low operating voltage. Zou 
et al. [210] reported CVD-grown CNT network thin film 
transistor (TFT) driver circuits for static and dynamic 
AM OLED displays with 6  ×  6 pixels, as shown in Figure 14. 
The high device mobility of ~45 cm2 V−1s−1 and the high 
channel current on/off ratio of ~105 of the CNT-TFTs 
enabled good control of the OLED pixels. The results 
suggest that CNT-TFTs are promising backplane build-
ing blocks for future OLED displays.

These various applications make CNT one of the 
most promising materials in OLED devices. CNT-TFTs 
exhibit higher mobility, channel current and longer 
lifetime than other TFTs using either silicon or organic 
semiconductors. Combination with CNT-based TCFs 
will significantly simplify the process for OLED displays. 
However, both of CNT-TFTs and CNT-based TCFs 
require easy but stable doping to improve or modify the 
electronic properties, which is also a main challenge for 
various devices using CNT thin films.

5. Summary and prospective

CNTs are allotropes of carbon with a one-dimensional 
cylindrical nanostructure. These one-dimensional car-
bon molecules have many outstanding properties, which 
have attracted much interest in various fields of materials 
science and technology. CNTs have been studied for over 

Figure 15.  various applications of cnT-based Tcfs with a transmittance of above 85%. Pristine cnTs exhibit 300–500 Ω/square, 
while modification/doping will decrease the sheet resistance to 50–200 Ω/square. high-quality cnTs (i.e. ultra-long cnTs) may 
further reduce the sheet resistance to 10–50 Ω/square. finally, incorporating with metal nanowires/nanoparticles can be efficient for 
boosting the conductivity for oPv applications. (The photographs of touch screen, oled [213] and oPv [214] are reused via google 
advanced image Search (free to use or share).)
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will reduce the sheet resistance to 50–100 Ω/square, 
thus enabling liquid-crystal display (LCD) and OLED 
applications. Besides the inorganic semiconductors, 
organic molecules are expected to be stable and strong 
dopants. In particular, conducting polymers can also be 
used to disperse CNTs in solution. The development of 
organic molecules will push the revolution of fabrication 
process of CNTs. High-quality CNTs with a length of 
above 10 μm may further reduce the sheet resistance to 
10–50 Ω/square. Current dispersion technology, using 
high-energy ultra-sonication, will unavoidably shorten 
the length of CNTs. Dispersing ultra-long CNTs with 
an aid of turbulent flow may also work for TCFs.[212] 
Finally, constructing a hybrid structure with CNTs and 
other high-conductivity materials can greatly improve 
the conductivity over the potential of CNTs for OPV 
applications. Strategically low price of commercial 
CNT-based TCFs will boost studies in both academia 
and industry, which will promote CNT-based TCFs in 
more and more products. Additionally, for the emerging 
flexible and wearable devices including sensing, lighting 
and energy harvesting devices, CNT-based TCFs can 
provide a platform which is more durable compared to 
other TCFs. TCFs are not a final product; many pro-
cesses including high-temperature treatment, acid or 
alkaline treatment are further required. For example, 
for OLED displayers, TFTs using poly-silicon or oxides 
need a high temperature anneal above 200°C. Moreover, 
for hybrid perovskite solar cells, diffusion of iodine ions 
could erode the metal electrodes. In those cases, CNT-
based TCFs will be a better choice rather than metal 
nanowire. On the other hand, CNT-based TCFs can be 
very stretchable and foldable. These special properties 
are motivating researchers of CNT-based TCFs to make 
further efforts to open a new field for future wearable 
optoelectronics.
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