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Abstract

Although acknowledged to be variable and subjective, manual annotation of cryo-electron 

tomography data is commonly used to answer structural questions and to create a “ground truth” 

for evaluation of automated segmentation algorithms. Validation of such annotation is lacking, but 

is critical for understanding the reproducibility of manual annotations. Here, we used voxel-based 

similarity scores for a variety of specimens, ranging in complexity and segmented by several 

annotators, to quantify the variation among their annotations. In addition, we have identified 

procedures for merging annotations to reduce variability, thereby increasing the reliability of 

manual annotation. Based on our analyses, we find that it is necessary to combine multiple manual 

annotations to increase the confidence level for answering structural questions. We also make 

recommendations to guide algorithm development for automated annotation of features of interest.
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Introduction

The field of electron tomography (ET) has evolved from a theoretical aspiration (Hoppe, 

1974a, 1974b) into an accepted tool for probing structure–function relationships in cells. ET 

is an imaging modality involving the collection of successive two-dimensional (2D) images 

of a 3D sample at various tilt angles, which are then computationally aligned and 
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reconstructed into a 3D volume (tomogram) representative of the original sample. 

Historically, biological samples had to be fixed, dehydrated, stained, and embedded in resin 

in order to be imaged in the electron microscope. Ice embedding was developed to keep 

biological specimens in a frozen-hydrated state for electron microscopy (Taylor & Glaeser, 

1974; Lepault et al., 1983). Recent advances in sample preparation methods, as well as new 

imaging technologies, have made the once impossible task of imaging intact mammalian 

cells by cryo-electron tomography (cryoET) a reality (Koning et al., 2008; Moussavi et al., 

2010; Rigort et al., 2012; Rusu et al., 2012; Shahmoradian et al., 2014; Asano et al., 2015). 

However, both the imaging technique (cryoET) and the native environment of cells pose 

difficulties for the visualization and interpretation of tomographic data sets.

First, as a sufficiently thin sample (penetrable by an electron beam) is tilted in the electron 

microscope, it becomes thicker as the tilt angle increases, reducing the signal-to-noise ratio 

(SNR) of images at higher tilts. This also limits the maximum tilt angle, causing an artifact 

in the reconstructed tomogram commonly referred to as “the missing wedge,” due to the 

shape of its Fourier representation (Frangakis & Förster, 2004; Lučić et al., 2005, 2013; 

Sandberg, 2007). This missing wedge artifact leads to anisotropic resolution and blurring of 

information in real space along the beam direction. Practically speaking, in cellular 

tomography, this artifact renders some molecular features unobservable, and other features 

are of much lower resolution in the Z-direction (Lučić et al., 2005). Second, vitrified 

biological samples are sensitive to electron dose, which limits the number of electrons that 

can be used to image them, resulting in a low SNR for each individual image in a tilt series. 

This makes it difficult to distinguish features of interest from the background noise 

(Frangakis & Förster, 2004; Lučić et al., 2005, 2013; Sandberg, 2007). Third, the native 

intracellular environment is complex because of molecular crowding and the presence of 

pleomorphic and dynamic structures (Sandberg, 2007; Volkmann, 2010; Lučić et al., 2013). 

Together, these factors make it difficult to annotate cellular tomograms either manually or 

automatically.

Recent technological advances, namely automated data collection and processing, have 

made it possible to reconstruct hundreds of tomograms in a short period of time, with some 

published data sets containing over 2,600 tomograms (Zhao et al., 2013). The bottleneck for 

many cryoET studies lies in tomogram segmentation, a technique used to separate 

structurally complex tomograms into their individual components for visualization 

(Volkmann, 2010; Dai et al., 2013; Shahmoradian et al., 2013; Tsai et al., 2014; Darrow et 

al., 2015) or for quantification (Rigort et al., 2012; Rusu et al., 2012). To date, most cryoET 

studies involving intact mammalian cells have focused on annotating a single (or in some 

cases a few) macromolecular complex(es) (Koning et al., 2008; Maurer et al., 2008; Patla et 

al., 2010; Ibiricu et al., 2011; Gilliam et al., 2012; Shahmoradian et al., 2014; Woodward et 

al., 2014; Page et al., 2015; Wang et al., 2015).

Several software packages have been developed to semi-automate or fully automate the 

process of segmentation (Volkmann, 2002; Nguyen & Ji, 2008; Moussavi et al., 2010; 

Martinez-Sanchez et al., 2011, 2013; Rigort et al., 2012). Many of these programs were 

developed for high-SNR negative stain data sets and when applied to cryoET data they tend 

to perform poorly. Other software packages have been specifically developed to work with 
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cryoET data sets, and while they successfully annotate a particular data set, there are 

difficulties in broadly applying the algorithms to a variety of data sets, especially for native 

cellular environments. For these reasons, many research groups still choose to manually 

segment their data.

It has been estimated that the time to manually segment an entire pancreatic β cell, imaged 

with ET, would exceed 75 man-years, and therefore the comparison between a disease and 

non-disease state would take hundreds of years, effectively making this kind of analysis 

impossible (Volkmann, 2010). In addition to being time-consuming, it is generally well 

accepted in the cryoET field that manual segmentation is error-prone, subjective and variable 

(Lučić et al., 2005, 2013; Sandberg, 2007; Volkmann, 2010; Tsai et al., 2014).

In spite of these limitations, manual segmentation is still commonly used in cryoET to 

visualize biological data sets, to quantify cellular features, and as a “ground truth” for 

comparison with automatic segmentation. It is critical to understand the variability inherent 

in manual segmentation in order to determine the role it should play in structural biology 

research. Numerous studies have used manual annotations to make comparisons with 

various automated segmentation algorithms (Garduño et al., 2008; Nguyen & Ji, 2008; 

Rigort et al., 2012; Rusu et al., 2012). Many groups have taken this a step further by 

evaluating the use of manual annotations as a good “ground truth”. For example, Garduño et 

al. (2008) showed that the variability (precision measurement) between three separate 

manual annotations of plastic-embedded, heavy-metal stained, spiny dendrites was on 

average 84.92% and as low as 83.99%. Rigort et al. (2012), working with cryoET data of 

actin filaments, merged three separate expert manual annotations to create a “ground truth” 

and then compared each individual manual annotation with this “ground truth”, reporting a 

correspondence between 65 and 81%. Moussavi et al. (2010) took yet another approach, 

comparing two manual annotations of bacterial cell membrane with a “ground truth”, which 

was generated by fitting an ellipse to a manual annotation, noting a variation of ~9 nm on 

average between points on the fitted ellipse and points on the manual annotations.

Because of the various non-comparable methods employed, the small number of annotations 

carried out using each method, and the use of a single representative cellular feature in each 

study, it is necessary to conduct a more comprehensive analysis of the variation present in 

manual annotations. Here, we quantify variation in manual segmentations across cellular 

features of varying difficulty (microtubule, mitochondria, and actin), with four to seven 

annotators per sample, using voxel-based segmentation, where overlap is calculated voxel by 

voxel, as opposed to a line-based approach where overlap is determined by the presence or 

absence of a line. In addition, we measure the variability of manual segmentation of actin 

performed a second time by the same annotators a year later. Using these data sets, we 

identify common types of discrepancy between annotations and discuss their implications 

for cryoET. We also compare a recently published semi-automated actin segmentation 

algorithm to our manual segmentations. Lastly, we demonstrate a significant improvement in 

minimizing variability by implementing a new method for merging of manual annotations.
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Materials and Methods

Acetone-cleaned gold EM grids with a thin carbon film (Quantifoil, R2/2, Großlöbichau, 

Germany) were sterilized with ethanol and coated with fibronectin at a final concentration of 

10 μg/mL for 5 min. Trypsinized mouse embryonic fibroblast (MEF) cells were re-

suspended in Ringer’s solution (150 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 20 

mM HEPES) at pH 7.4 containing 25 μM Rho kinase inhibitor (Y27632, Calbiochem, 

Darmstadt, Germany) and incubated for 30 min at 37°C and 5% CO2. MEF cells were added 

to fibronectin-coated EM grids at a final concentration of 50,000 cells/mL and incubated at 

37°C and 5% CO2 until lamellipodia formation was visually observed by light microscopy 

(8–45 min). The sample was then washed in Ringer’s solution, 15 nm bovine serum albumin 

(BSA)-coated gold fiducials were applied to the grid, and the grid was plunge frozen (EM 

GP, Leica, Wetzlar, Germany).

U2OS cell culture and grid preparation was based on Maimon et al. (2012) with slight 

modifications. Briefly, gold EM grids with SiO2 thin film (Quantifoil, R1/4) were ethanol 

sterilized and plasma cleaned for 10 s (Solarus Model 950, Gatan, Pleasanton, CA, USA). 

U2OS cells were cultured on the grids for ~36 h at 37°C and 5% CO2. The sample was then 

washed in phosphate buffered saline (PBS), 15 nm BSA-coated gold fiducials were applied 

to the grid, and the grid was plunge frozen (Leica EM GP).

Tilt series were collected from ±55° with a step size of 4° using a JEM2100 (JOEL, Tokyo, 

Japan) with a Gatan US4000 CCD camera (model 895, Gatan, Pleasanton, CA, USA) at 

12,000 × magnification (9.6 Å/pixel sampling) with a total dose of ~70 e/Å2. Tilt series were 

reconstructed using IMOD (Kremer et al., 1996) and regions of interest from two 

tomograms were selected (Fig. 1b, Supplementary Movie 1, EMD-8173; Fig. 1d, 

Supplementary Movie 2, EMD-8174) and annotated using Amira or Avizo (http://fei.com) 

with Wacom tablets. Four unique annotators segmented the mitochondria data set for U2OS 

cells (EMD-8174), whereas seven operators annotated the actin (EMD-8173) and 

microtubule (EMD-8173) data sets for MEF cells. Annotators were provided with previously 

published cryoET examples of the features to be annotated and if necessary, a tutorial on 

using the annotation software in advance. Where noted, experts are defined as having at least 

one year of experience in segmenting cellular features from cryoET data. Three annotators 

re-segmented the same actin data set one year later. Some annotators chose to filter the actin 

or mitochondria data sets using various methods such as nonlinear anisotropic diffusion 

(NAD) filtering in IMOD (Frangakis & Hegerl, 2001), mean or median filtering in pyCoAn 

(Volkmann, 2002; van der Heide et al., 2007), or low-pass filtering in EMAN2 (Tang et al., 

2007).

Annotations were first analyzed using the arithmetic module in ZIBAmira (Rigort et al., 

2012) with the following equation:
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where a and b are two different, binary segmentations. This quantifies the number of voxels 

assigned exclusively to a, exclusively to b, or shared by both. Using these outputs, similarity 

scores were calculated as pairwise Dice coefficients (Fig. 2a) as in the following equation:

Similarity between more than two segmentations was computed using a modified Dice 

coefficient (Fig. 2b; shown for triplets but extendable to quartets, quintets, and sextets):

where |A| is the cardinality of voxels (the segmented voxels) in one segmentation and A′ its 

complement (non-segmented voxels). This can be thought of as the intersection between 

each set of two circles and the intersection of all circles in a Venn diagram (Fig. 2). 

Essentially, each voxel that is common between annotations is counted once for each 

annotation that contains it, hence the multipliers that are required in the numerator. In both 

equations (the Dice coefficient and the modified Dice coefficient), the output ranges between 

0 and 1 (i.e., 0–100% similarity), where the value corresponds to the percentage of voxels 

that have been segmented by at least two people.

The microtubule and mitochondria segmentations were analyzed using the pairwise Dice 

coefficient, whereas the actin segmentations were further grouped into all possible sets of 

unique pairs (n = 21), triplets (n = 35), quartets (n = 35), quintets (n = 21), and sextets (n = 

7; Supplementary Table 1). The Dice coefficient (Fig. 2a) was computed for pairs, whereas 

the modified Dice coefficient (Fig. 2b) was computed for the triplet and larger sets.

For our second analysis, all the unique pair (n = 21) and triplet (n = 35) sets of actin were 

merged. Each of the merged sets was then computationally modified to remove voxels that 

were selected by only one annotator (Fig. 3). These new modified merged sets are described 

by the following two terms: “Pairs Drop One” refers to the voxels agreed upon by both 

annotators in the merged pair sets; “Triplets Drop One” refers to voxels agreed upon by at 

least two annotators in the merged triplet sets. Using these merged and modified data sets as 

input, we computed the similarity of mutually exclusive sets using the pairwise Dice 

coefficient (Supplementary Table 2). As there were seven annotations of actin, mutually 

exclusive pairs involving more than three annotations were not possible.

In all box and whisker plots, the whiskers represent the minimum and maximum data 

present, and the diamonds represent the average. Unpaired t-tests in GraphPad (GraphPad 

QuickCalcs, 2015) were used to determine the statistical difference between Dice 

coefficients generated during this analysis. Where average similarity scores are presented, 

standard deviations are reported.
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Results

Three common subcellular components (microtubules, mitochondria, and actin filaments; 

Fig. 1) were chosen for our study based on several considerations, such as their SNR, ease of 

recognition by direct visualization, and structural complexity. Combined, these 

considerations produce an increasing level of difficulty from microtubules to mitochondria 

to actin. Because of their consistent and characteristic features, microtubules are easily 

recognized and annotatable (Fig. 4a). The outer membranes of mitochondria have high 

contrast; however, the cristae generally have lower contrast, together producing a sample 

with intermediate annotation difficulty (Fig. 4b). Finally, the low contrast, abundance, and 

lack of characteristic structural features to distinguish actin from other cytoskeleton 

filaments make their annotation a subjective and difficult task (Fig. 4c). The variation 

between all annotations of the same sample was visualized using a coloring system where 

red represents the most agreed upon voxels and purple represents the least agreed upon 

voxels (Fig. 4). The qualitative descriptions of sample difficulty outlined above were 

reflected in the similarity scores for each sample (Fig. 5). Specifically, microtubules showed 

the most agreement, with an average voxel-based similarity of 69 ± 5%, whereas 

mitochondria have an average similarity of 43 ± 9% and actin of only 27 ± 6%. When the 

same annotator segmented the same actin data set after one year, the agreement was between 

29 and 54%, which was more consistent than the agreement between two different 

annotators.

Upon visual analysis of the various annotations, it became clear that multiple types of 

discrepancy contributed to a lower similarity score, across all samples. Five common types 

of error were identified. First is a type of error that is specific to actin, where annotators 

treated branch points differently (Fig. 6a). Second, incidental overlap occurs between two 

annotators who annotated completely different features that happen to overlap by chance 

when compared (Fig. 6b). Third, width variations in the final annotations are caused by the 

annotators’ choice of “brush size” in the segmentation software (Fig. 6c). Fourth, length 

variations are due to person-to-person differences in deciding where an object ends (Fig. 6d). 

Fifth, missing data can occur when there are ambiguities in the connectivity of an object 

(Fig. 6e). Many of these error types are generally considered minor because the annotators 

agree that a feature is present, but disagree on the details of the feature, such as its length or 

connectivity, etc. However, incidental overlap stands out in contrast to this, representing 

complete disagreement between annotators on the presence or absence of a feature. 

Although many of these discrepancies are present throughout all samples annotated, 

incidental overlap is most commonly found in the more complex samples, with lower SNR.

In order to relate our results to previously published results, we processed the actin data set 

using the semi-automated actin annotation software in ZIBAmira, and also used an expert, 

manual merging method (Rigort et al., 2012). In both cases, we find these methods perform 

similarly when used on our data. It is important to note that our similarity scores are lower 

due to the use of voxel-based metrics as opposed to line-based metrics. A composite 

annotation was created from three annotations of actin, performed independently by our 

three experts, with no further modifications. Each individual annotation was then compared 

with the composite data set (Figs. 7a–7d). This is comparable with the methodology used by 
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various groups to create a “ground truth” for comparison with automated annotation 

software (Garduño et al., 2008; Nguyen & Ji, 2008; Moussavi et al., 2010; Rigort et al., 

2012; Rusu et al., 2012). Using the Dice coefficient as a stringent test of agreement, we find 

that the individual, expert annotations agree with the composite data set from 38 to 57%. 

Next, the semi-automated actin annotation was compared with the seven manual annotations 

using the Dice coefficient as a similarity score (Fig. 7e). On average, the semi-automated 

annotation displayed 30 ± 5% agreement with the individual manual annotations, which is 

not statistically significantly different when compared with the average Dice coefficient of 

the manual annotations. Importantly, we also found that the operators do not need high 

levels of background experience in either biology or annotation software. The annotations 

here were carried out by a mixture of both biological and Avizo novices and experts, with no 

discernable differences when comparing similarity scores (data not shown).

In the interest of reducing the variability among manual annotations, we have 

combinatorially merged unique sets of either two or three actin annotations, computationally 

removed the voxels that were chosen by only one annotator, and again used Dice coefficients 

to compare all unique modified sets of pairs or triplets (Pairs Drop One and Triplets Drop 

One, respectively). Using these merging and comparing methods, the similarity scores for 

the Pairs Drop One comparisons decreased significantly (p < 0.0001), when compared with 

the mean pairs similarity score, with an average score of 20 ± 4% (Fig. 8). However, the 

similarity scores for the Triplets Drop One increased significantly (p < 0.0001) when 

compared with the mean pairs similarity score, with an average agreement of 36 ± 3% (Fig. 

8).

To identify a more robust method for generation of a “ground truth”, the seven manual actin 

annotations were categorized into all possible unique pairs triplets, quartets, quintets, and 

sextets. These sets were assessed for agreement using the Dice or modified Dice coefficient 

as a similarity score, as described in the Materials and Methods section. Using these 

measures, it is clear that agreement increases with the number of annotations included (Fig. 

9). As more annotations are added, the improvements in similarity score are statistically 

significant (p < 0.0001). However, the statistical significance of the change in similarity 

score is smaller between quintets and sextets (p < 0.05).

Discussion

It is well known in the cryoET field that manual segmentation is highly variable. In this 

study, we have systematically evaluated the variability of manual segmentation using three 

different samples (microtubules, mitochondria, and actin) and a higher number of 

annotations than previous studies (n = 7, 4, 7, respectively). Based on these manual 

annotations, we have identified average Dice coefficient-based similarity scores for each 

sample and for the same annotator after one year with a difficult sample. This has allowed us 

to assess the reproducibility of manual annotation by various annotators across samples, and 

also by the same annotator over time. In addition, we have identified various types of 

discrepancy between manual annotations.

Hecksel et al. Page 7

Microsc Microanal. Author manuscript; available in PMC 2016 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When measuring the similarity of manual segmentations two main approaches have been 

used previously. First, in line-based segmentations, each object is represented by a line or 

series of lines. A similarity score is then calculated by comparing how many of these lines 

are in the same position with a similar length. Repeated measurements can be taken using 

the same or different annotators. Generally, agreement on both line placement and length are 

given a margin of error, meaning two lines are not required to exactly overlap for them to be 

considered representative of the same data. Because of this, line-based comparisons can be 

less stringent and yield a higher similarity score. The second measure, voxel-based 

similarity, is much more stringent, requiring each annotation to include the exact same 

voxels in order to receive a 100% similarity score. Even if two annotations include the same 

feature of interest, small variations caused by operator choices, unsteady hands, etc., can 

lead to a reduction in the overall similarity score. For our analysis we use the voxel-based 

method, as opposed to the line-based method, to minimize ambiguity. However, this causes 

the similarity scores presented in this study to be generally lower than in other studies that 

have used line-based methods for calculating similarity (Fig. 7).

The goal of this study was to assess the extent of variability when multiple people were 

given the same data set and asked to segment a certain feature of interest. Each operator was 

allowed to make subjective choices when annotating a tomogram. The voxel-based 

measurement approach captures the differing effects of individual choices. Some of this 

variability can be addressed by standardizing certain annotation choices by lab or annotation 

group. For example, the pen width chosen by each operator can have a major effect on the 

agreement between the final annotations, but can be easily standardized. Additional 

parameters that could impact the results are the magnification at which the annotation is 

performed, and any pre-annotation binning and/or filtering of the tomogram.

To put this study in context with the previous literature, we first compared our baseline 

similarity scores with the previously published method for semi-automatic segmentation and 

evaluation of agreement and variability. When three expert actin annotations were merged, a 

line-based correspondence of each individual annotation to the merged data set of between 

65 and 81% was found (Rigort et al., 2012). Further, using ZIBAmira, a semi-automated 

segmentation program, yielded a similar result of 60% correspondence compared with the 

merged data set (Rigort et al., 2012). As expected, the voxel-based similarity score used here 

is lower than the line-based methods. However, the range of agreement between each 

individual “expert” annotation of actin and the merged annotation is similar (38–57%) as 

compared with previously published results (65–81%; Rigort et al., 2012). The data 

presented here spans 19% points, and is generally ~25% points lower in the voxel-based 

approach (Fig. 7). This indicates that the manual annotations presented here are in 

agreement with both the semi-automated actin annotation software and with previously 

published manual annotations.

We tested two methods for reducing the variability in annotation. In the first method, we 

merged the annotations in sets of either pairs or triplets and removed the voxels that were not 

agreed upon by at least two annotators (Fig. 3). This merging method showed some promise, 

producing significantly higher similarity scores in the triplet sets (Fig. 8). However, 
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calculating the value of including more annotations (i.e., testing larger, mutually exclusive 

groupings) would require an even larger annotation data set.

In the second method, we computed similarity scores between pairs, triplets, quartets, and 

sextets of the actin annotations to quantify the improvement in variability gained from 

adding additional annotators (Fig. 9). As discussed previously, we measured low variability 

among annotations for the microtubule, whereas variability for actin was relatively high. We 

found that actin annotation requires six separate annotators to achieve the level of 

consistency seen with the microtubule (69%). Thus, the merging of at least six separate 

annotations, only including voxels agreed upon by two or more annotators, may be 

appropriate for creating a “ground truth”. This ground truth might be appropriate for 

algorithm development, because the high cost (i.e., human hours) is justified by its reliability 

and reusability. However, due to time, money, and sanity constraints, six separate manual 

annotations is not feasible for biological studies that require more than a few tomograms. In 

this case, three annotations may be sufficient as the improvement in similarity scores is 

largest between two and three annotators and diminishes thereafter (Fig. 9). Therefore, this 

may be an adequate compromise.

Conclusions

In summary, manual annotations will never be perfect representations of the data, but 

combining multiple manual annotations can better approximate the truth, yielding more 

precise results. Depending on the purpose, more or fewer of these manual annotations 

should be used. In general, the number of annotators should be chosen based on a balance 

between improvements in consistency versus sample difficulty and granularity of the 

biological question. Our approach, including multiple methods of similarity assessment and 

multiple annotators, is a first step toward developing validation protocols for annotation in 

cryoET.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Raw cellular tomograms including features to be annotated. Single slices through raw 

tomograms of intact mammalian cells (a,c). Boxed regions in (a) and (c) represent areas of 

interest selected for annotation (displayed in b,d). Actin and a single microtubule were 

annotated from (b) and red inset respectively, whereas mitochondria was annotated from (d). 

Scale bars are 100 nm.

Hecksel et al. Page 12

Microsc Microanal. Author manuscript; available in PMC 2016 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Summary of Dice coefficient usage. Dice coefficient is a pairwise similarity score that we 

used to calculate overlap between two separate segmentations. This concept can be 

represented mathematically by the equations given and visually by a pairwise Venn diagram 

(a). In order to compare more than two segmentations at once, the Dice coefficient was 

modified to include all regions of overlap. An example equation and visualization is shown 

for a triplet comparison (b), but was extended up to sextets.
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Figure 3. 
Schematic representation of pairs, Pairs Drop One, and Triplets Drop One. Pairwise Dice 

coefficient scores were calculated between two unmodified annotations (top row). In 

addition, two sets of modified annotations were created by either merging two of the original 

annotations and keeping only those voxels that were agreed upon by both of the annotators 

(Pairs Drop One; middle row) or merging three of the original annotations and keeping only 

those voxels that were agreed upon by at least two annotators (Triplets Drop One; bottom 

row). In both cases, the Dice coefficient was used in a pairwise fashion to compare the 

newly modified annotations.
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Figure 4. 
Summation of annotations demonstrates inherent variability between annotations of the 

same feature. Projection images through ~180 nm slabs from a tomogram of intact 

mammalian cells (top) and merged annotations of each feature of interest (bottom). Red 

indicates voxels that were selected by all of the annotators, whereas purple indicates voxels 

that were selected by a single annotator (n = 7 for microtubule and actin, n = 4 for 

mitochondria). Note that purple indicates voxels from multiple individuals’ annotations, 

which have no agreement with anyone else’s annotations. Microtubules, a high contrast, 

easily annotated sample, show high agreement between annotators (a). Mitochondria, an 

intermediate sample with variations in contrast between outer membrane and cristae, shows 

some regions of high agreement, mainly at the outer membrane, and some of low, mainly in 

the dense regions internal to the mitochondria (b). Actin, a low contrast, difficult to annotate 
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sample, shows many regions of low agreement (c). Scale bar is 25 nm for (a), Scale bar is 

100 nm for (b) and (c).
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Figure 5. 
The mean similarity score is dependent on the complexity of the feature being annotated. 

Box and whisker, and scatter plots of pairwise, voxel-based similarity scores for various 

samples. The average similarity scores are 69 ± 5, 43 ± 9, and 27 ± 6% for microtubules, 

mitochondria, and actin, respectively. Because of the high contrast and simplicity of 

microtubules, they represent a best-case scenario.
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Figure 6. 
Five common types of discrepancy in annotation of cellular features. Subjective choices 

made by each annotator lead to inconsistencies in the final annotation both visually and 

quantitatively. Subjectivity during segmentation of various features within the data leads to 

different actin branch points (a), incidental overlap (b; black arrows), length variations (d), 

and missing data (e), whereas annotation pen size can lead to width variations (c). In most 

cases, small variations occur in segmenting the same features (c–e), but in some cases, large 

variations occur when disparate features are segmented and happen to overlap (a,b). Green 

indicates voxels in one annotation, blue indicates voxels in a second annotation, and red 

indicates voxel agreement between the two annotations. Examples (a), (b), and (c) are from 

actin, whereas (d) is from microtubule and (e) is from mitochondria, however, it is important 

to note that excluding (a), these discrepancies can be found in all of the cellular features 

being annotated. Scale bars are 25 nm.
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Figure 7. 
Voxel-based similarity scores are comparable with previously published similarity results. 

To recreate the similarity results previously reported, but in terms of voxel-based similarity, 

three expert annotations of actin were merged (d) and each individual annotation (a–c) was 

then compared in a pairwise fashion with the combined data set. The individual annotations 

ranged from 38 to 57% in their similarity to the combined data set, a similar range as 

previously reported (Rigort et al., 2012). Voxel-based similarity scores (Dice coefficient) 

between a semi-automated annotation using ZIBAmira and seven manual actin 

segmentations show 30 ± 5% agreement, indicating the semi-automated annotation software 

is performing in the range of manual annotations (e).
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Figure 8. 
Merging annotations and removing questionable voxels improves variability. To improve 

similarity and decrease variability, actin annotations were merged in two different ways. 

Pairs Drop One keeps only the voxels agreed upon by both annotations in each pair, whereas 

Triplets Drop One keeps the voxels agreed upon by at least two annotations in each triplet. 

In both cases, the kept voxels are then compared with another similarly merged data set 

using a pairwise Dice coefficient similarity score. When compared with the average pairs 

Dice coefficient, dropping the voxels that are not agreed upon by both pairs of modified 

merged annotations significantly decreases the similarity (right). However, applying a 

similar methodology to merged sets of triplets significantly improves the variability of 

merged sets of triplets when compared with pairs. **p < 0.0001.
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Figure 9. 
Including more annotations improves variability, to a point. Using the seven manual actin 

annotations, every unique combination of pairs through sextets was created and sampled to 

determine the number of voxels in agreement with at least one other annotation. As more 

annotations are included, this metric increases significantly with each addition, beginning to 

plateau between quintet and sextet groups. *p < 0.05, **p < 0.0001.

Hecksel et al. Page 21

Microsc Microanal. Author manuscript; available in PMC 2016 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9

