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Social separation early in life can lead to the development of
impaired interpersonal relationships and profound social disorders.
However, the underlying cellular and molecular mechanisms involved
are largely unknown. Here, we found that isolation of neonatal rats
induced glucocorticoid-dependent social dominance over nonisolated
control rats in juveniles from the same litter. Furthermore, neonatal
isolation inactivated the actin-depolymerizing factor (ADF)/cofilin in
the juvenile medial prefrontal cortex (mPFC). Isolation-induced inac-
tivation of ADF/cofilin increased stable actin fractions at dendritic
spines in the juvenile mPFC, decreasing glutamate synaptic AMPA
receptors. Expression of constitutively active ADF/cofilin in the mPFC
rescued the effect of isolation on social dominance. Thus, neonatal
isolation affects spines in the mPFC by reducing actin dynamics, lead-
ing to altered social behavior later in life.

medial prefrontal cortex | social isolation stress | social dominance |
AMPA receptor trafficking | actin dynamics

Individuals exposed early in life to social separation, one form
of neglect, develop impaired interpersonal relationships, in-

cluding aggressive behaviors, and, in many cases, suffer from
psychiatric illness (e.g., depression, borderline personality dis-
order, and dissociative disorder) (1–7). Although there is evi-
dence that functional circuits in the medial prefrontal cortex
(mPFC) regulate social behaviors (8), the effect of social sepa-
ration early in life on neural circuit development in the mPFC is
not well understood.
Prolonged exposure to social isolation early in life can affect

the formation of neural circuits in the neocortex and result in
social dysfunction (2, 9, 10). Synaptic plasticity driven by expe-
rience plays central roles in establishing neural circuits (11–23).
A number of studies have examined the molecular events oc-
curring at synapses during the development of experience-driven
neural plasticity. The synaptic recruitment of glutamate AMPA
receptors (AMPARs) is a crucial mechanism underlying this
process (11, 13–19, 24–27). We recently showed that neonatal
social isolation disrupts the experience-driven synaptic delivery
of AMPARs in the developing rat barrel cortex and results in
defective sensory processing and altered behaviors (9, 10). Other
recent studies also suggest that dysfunction of glutamatergic
neurotransmission is considered to be a core feature of stress-
related mental illness (28, 29).
Actin is present at high concentrations in postsynaptic spines

(30–32). It is the primary cytoskeletal component of synapses
and also regulates the assembly of postsynaptic proteins, in-
cluding AMPARs (30, 31, 33–35). A number of proteins regulate
the dynamics of actin. The actin-depolymerizing factor (ADF)/
cofilin family of actin-binding proteins is essential for actin fil-
ament turnover (36). Notably, ADF/cofilin mediates AMPAR
trafficking during synaptic plasticity, demonstrating the impor-
tance of actin dynamics for AMPAR delivery (33).
Social dominance is crucial for the organization of social

structure (37). Here, we found that isolation of neonatal rats

induced social dominance over nonisolated control animals in
juveniles of the same litter. This behavioral alteration was de-
pendent on the activation of glucocorticoid signaling. Further-
more, neonatal isolation inactivated ADF/cofilin in the juvenile
mPFC. Isolation-induced inactivation of ADF/cofilin resulted in
the reduction of synaptic AMPAR contents correlated with the
accumulation of stable actin fractions at dendritic spines in the
juvenile mPFC. The expression of constitutively active ADF/
cofilin in the mPFC rescued the isolation-induced effect on so-
cial dominance. Thus, neonatal isolation affects spines in the
mPFC by reducing actin dynamics with ADF/cofilin inactivation,
leading to altered social behavior later in life.

Results
Neonatal Isolation Enhances Social Dominance. To investigate the
effect of early social isolation on social behavior, we used a rat
model of neonatal isolation and assessed its effects on social
dominance. Neonatal pups were isolated from their mother and
other siblings for 6 h/d from postnatal day (P) 7 to P11. No
significant difference in the maternal behavior (carry, licking,
arched back, blanket, passive, and off) of dams between isolated
and nonisolated pups was observed at each time point [0900,
1100, 1400, 1630 (just after return to mother), and 1900 hours]
(Fig. S1). The pups were then maintained under normal condi-
tions, and at 4 wk of age (juvenile age) their social behaviors
were assessed using a social dominance tube test (Fig. 1A), which
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measures social dominance or aggressive tendencies without
allowing the animals to injure one another. The aggressive be-
haviors of two rats are analyzed during a brief pairing in a tube-
shaped chamber (Fig. 1B). The more socially dominant rats push
the counterpart rat all the way to the end of the tube. We found
that neonatally isolated rats were more socially dominant com-
pared with their nonisolated littermates [Fig. 1C; isolated rats
won 8 of 10 matches against nonisolated rats (80%)]. In contrast
to the increased social dominance, isolated rats showed no
changes in body weight and locomotive activities in the open
field (Fig. S2A). Further, we detected no significant difference in
the latency of movement in the tube between isolated and non-
isolated rat during eight training trials on each of two successive
days (Fig. S3). We examined two additional dominance tests. Iso-
lation increased rats’ dominance in a food-competition situation
relative to nonisolation (time of occupied food) (Fig. S4A). We also
performed an agonistic behavior test. We found that neonatally
isolated rats exhibited an increased number of offensive behaviors
toward nonisolated rats (Fig. S4B). These results suggested that
neonatal isolation increased social dominance.
We have previously shown that neonatal social isolation acti-

vates glucocorticoid signaling such that the duration of social
isolation and the serum corticosterone levels are positively cor-
related (9). To determine whether the activation of glucocorti-
coid signaling mediates isolation-induced social dominance we
treated pups undergoing social isolation with RU486, a gluco-
corticoid receptor antagonist, and then assessed social domi-
nance at 4 wk of age. We found that treatment with RU486
during isolation prevented the enhancement of social dominance
[Fig. 1D; isolated rats treated with RU486 won 6 of 12 matches
against vehicle-treated nonisolated rats (50%)], suggesting that

the isolation-induced enhancement of social dominance is me-
diated by the activation of glucocorticoid signaling. We detected
no significant difference in social dominance (tube test) between
isolated rats treated with RU486 and nonisolated rats treated
with RU486 [Fig. 1E; nonisolated RU486-treated rats won four
of seven matches against isolated rats treated with RU486
(57%)]. The application of RU486 did not affect body weight
and open field locomotor activity (Fig. S2B).

Neonatal Isolation Decreases Synaptic AMPAR Contents in the
Juvenile mPFC. To investigate the molecular and cellular mecha-
nisms underlying neonatal isolation-enhanced social dominance
we focused on the development of neural circuits in the mPFC,
because this area is critical for regulating social behavior (8).
Thus, we analyzed whether neonatal isolation affects synaptic
AMPAR levels in the juvenile mPFC. We isolated pups as de-
scribed above and then maintained them in a normal environ-
ment until 4 wk of age, at which time acute brain slices were
prepared. The brain slices were subjected to electrophysiological
recording to observe the miniature excitatory postsynaptic cur-
rents (mEPSCs) of layer 2/3 pyramidal neurons. There were no
significant differences in the electrophysiological properties of
neurons between isolated and nonisolated rats (Fig. S5). We
found that the mEPSCs of socially isolated animals exhibited
reduced amplitudes compared with those of nonisolated control
rats (Fig. 2A), similar to the previous finding in the developing
barrel cortex (9). Consistent with these electrophysiological results,
we detected reduced levels of GluA1 in the postsynaptic density
(PSD) fraction of the mPFC from isolated animals compared
with nonisolated animals (Fig. S6A). Further, no significant
difference in the amplitude and frequency of the miniature
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Fig. 1. Social isolation enhances social dominance. (A) Schematic of the tube test. In this example, the left rat pushed the right rat out of the Plexiglas tube,
and the left rat was declared the winner. (B) Captured video images from a representative match. From top to bottom, the beginning to the end of the match
is sequentially indicated. (C) Results of a social dominance tube test. Percentage of wins in the matches between socially isolated and nonisolated rats
(10 matches). (D) Results of social dominance tube test between socially isolated rats treated with RU486 and nonisolated rats treated with vehicle (12 matches).
(E) Results of social dominance tube test between socially isolated rats treated with RU486 and nonisolated rats treated with RU486 (seven matches).
*P < 0.05 (χ2 test).
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inhibitory postsynaptic current (mIPSC) and the NMDA receptor-
mediated mEPSC was observed between isolated and nonisolated
rat mPFC (Fig. S6 B and C). Thus, early social isolation decreased
synaptic AMPAR levels in the juvenile mPFC. The injection of
RU486 during isolation prevented the reduction of mEPSC am-
plitudes in the juvenile mPFC, indicating that this effect was de-
pendent on the activation of glucocorticoid signaling during
neonatal social isolation (Fig. 2B). We found no significant dif-
ference in the mEPSC amplitude and frequency among non-
isolated rats treated with either RU486 or vehicle, or isolated rats
treated with RU486 (Fig. 2B). This result is consistent with other
studies demonstrating the glucocorticoid signaling dependence of
stress-induced alterations in glutamate transmission (9, 28).

ADF/Cofilin Is Inactivated in the Juvenile mPFC of Neonatally Isolated
Rats. ADF/cofilin mediates AMPAR trafficking during synaptic
plasticity (33). Therefore, we investigated the possibility that
alterations in ADF/cofilin mediate the decrease of synaptic
AMPAR levels in the juvenile mPFCs of socially isolated ani-
mals. ADF/cofilin is inactivated by phosphorylation of its serine-3
(Ser3) residue and activated by Ser3’s dephosphorylation (33).
To determine whether neonatal isolation alters ADF/cofilin ac-
tivity, we analyzed Ser3 phosphorylation levels in ADF/cofilin
expressed in the juvenile mPFC of socially isolated and control
animals. Synaptoneurosome fractions were isolated from the mPFC
of the two treatment groups at 4 wk of age, and the phosphory-
lation of ADF/cofilin Ser3 was quantified. We detected elevated
ADF/cofilin Ser3 phosphorylation in the socially isolated rats
compared with control animals (Fig. 3A), which was glucocorti-
coid-dependent, because treatment with RU486 during isolation
prevented the increased Ser3 phosphorylation (Fig. 3C). We found
no significant difference in the phosphorylation of ADF/cofilin
between RU486-treated isolated rats and nonisolated rat treated
with RU486 (Fig. 3D). These results suggest that neonatal isolation
inactivated ADF/cofilin via glucocorticoid activation and that this
inactivation is maintained until the juvenile age. Furthermore, we
found increased activation of LIM kinase (LIMK; this kinase is

activated when its threonine-508 is phosphorylated, we detected
increased phosphorylation of threonine-508 of the mPFC of iso-
lated animals compared with nonisolated animals), which phos-
phorylates ADF/cofilin Ser3, in the socially isolated compared with
control rats (Fig. 3B). We hypothesized that neonatal isolation
stress-induced inactivation of ADF/cofilin mediated the decrease
in synaptic AMPARs in the mPFC. To test this hypothesis, we in-
troduced expression vectors for red fluorescent protein (RFP)-ADF/
cofilin Ser3A (Ser3 is mutated to alanine, a constitutive active form
of ADF/cofilin) or RFP alone into the mPFC by in utero electro-
poration and isolated animals, as described above. We then pre-
pared acute brain slices from juveniles at 4 wk of age and recorded
mEPSCs from layer 2/3 pyramidal neurons in the mPFC. We found
that the amplitude of the mEPSCs from socially isolated animals
expressing RFP-ADF/cofilin Ser3A was significantly greater than
that of socially isolated animals expressing RFP (Fig. 3E) and was
comparable to that of nonisolated control animals. This indicated
that the isolation-induced decrease in synaptic AMPARs was me-
diated by ADF/cofilin inactivation (compare Figs. 2A and 3E).

Neonatal Isolation Increases the Stable Actin Fraction at Spines of the
Juvenile mPFC. Because ADF/cofilin regulates actin dynamics
(36), we next asked whether isolation stress alters actin dynamics
at layer 2/3 spines in the juvenile mPFC. We introduced an ex-
pression vector for GFP-tagged actin, using in utero electroporation
to deliver it into the cortical area that develops into the mPFC;
treated pups were subjected to neonatal isolation. When the rats
were 4 wk old, acute brain slices were prepared and subjected to
FRAP (fluorescence recovery after photobleaching) analysis.
In this analysis, an individual spine in layer 2/3 of the mPFC

was rapidly photobleached using high-intensity laser illumination
with a two-photon laser-scanning microscope (excitation wave-
length of 910 nm). The time course of the subsequent fluores-
cence recovery in the photobleached spine was used to evaluate
actin dynamics. The mechanism of actin turnover involves poly-
merization at the barbed end and depolymerization at the pointed
end (32). In the case of fluorescent proteins such as tdTomato,
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Fig. 2. Social isolation alters glutamatergic transmission in the mPFC by glucocorticoid activation. (A) (Left) Representative mEPSC traces obtained from layer 2/3
pyramidal neurons in the mPFC of socially isolated or nonisolated juvenile rats. (Right) Graphs depicting the average mEPSC amplitude and frequency (n = 6
neurons nonisolated and n = 10 neurons isolated). (B) (Left) Representative mEPSC traces obtained from layer 2/3 pyramidal neurons in the mPFC of RU486-
treated socially isolated rats, vehicle-treated controls, and RU486 treated controls. (Right) Graphs depicting the average mEPSC amplitude and frequency (n = 9
neurons nonisolated with vehicle, n = 8 neurons isolated with RU486, and n = 6 neurons nonisolated with RU486) [amplitude, ANOVA F(2, 20) = 0.070; frequency,
ANOVA F(2, 20) = 1.072]. *P < 0.05 (A, unpaired Student’s t test and B, ANOVA post hoc Fisher’s PLSD test). Error bars represent SEM. n.s., not statistically
significant.
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which diffuse freely, the fluorescence levels are rapidly and com-
pletely recovered (Fig. S7A). However, if a portion of the protein is
bound to scaffolding proteins, the fluorescence recovery is partial,
and there will be an unrecoverable fraction. The presence of stable
actin filaments with reduced turnover also results in an increased
unrecoverable fraction during FRAP analysis.
We detected a significant increase in the unrecoverable frac-

tion of GFP-actin in the photobleached spines obtained from
socially isolated animals compared with control nonisolated an-
imals (Fig. 4 A and B), indicating that early social isolation in-
creased the stable immobilized fraction of actin. Notably, we

detected no difference in the time constant (τ) of fluorescence
recovery (Fig. 4B) and spine size (Fig. S7B) between isolated and
nonisolated animals. We also analyzed the spine shape in the
mPFC of either isolated or nonisolated animals with Golgi
staining. The number of mushroom-type, mature spines was
greater in the isolated rat mPFC than in the nonisolated rat
mPFC. Furthermore, the number of immature, stubby-type
spines was greater in the nonisolated rat mPFC than in that of
isolated rat. No significant difference in the number of total
spines and filopodia spines was observed between isolated and
nonisolated rat mPFC (Fig. S8). These findings suggested that
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there may be two fractions of actin filaments: one that was un-
affected by isolation and exhibited normal turnover and another
that was altered by isolation and ceased dynamic turnover,
resulting in the increased unrecoverable fraction after photo-
bleaching without changing spine size. The increase in the stable
immobilized fraction of actin in response to neonatal isolation
was glucocorticoid signaling-dependent, because the application
of RU486 during neonatal isolation blocked this effect (Fig. 4 C
and D; no significant difference in the actin dynamics was ob-
served among nonisolated with vehicle, isolated with RU486,
and nonisolated rats with RU486).
We next investigated whether ADF/cofilin inactivation medi-

ated the isolation-induced increase in stable actin. We introduced
expression vectors for GFP-actin and the RFP-tagged ADF/cofilin
Ser3A constitutive active mutant by in utero electroporation (33)

and assessed the fraction of stable GFP-actin in the mPFC of
socially isolated and control animals by FRAP analysis. The un-
recoverable fraction of GFP-actin in the socially isolated animals
expressing Ser3A was significantly reduced compared with that of
socially isolated animals treated with control vector (Fig. 4 E and F)
and was comparable to that of the nonisolated control animals
(compare Fig. 4 B and F). These results indicate that the isolation-
induced increase in the stable actin fraction is mediated by ADF/
cofilin inactivation. The level of endogenous total ADF/cofilin was
comparable between RFP-tagged constitutively active ADF/cofilin-
transfected and untransfected neurons (Fig. S9A). To assess the
effect of the overexpression of the constitutively active ADF/
cofilin on spine morphology we cotransfected GFP and RFP-
tagged ADF/cofilin Ser3A in the mPFC of the normal animal
with in utero electroporation. At 4 wk of age, we prepared acute
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Fig. 4. ADF/cofilin inactivation mediates the increased stable actin fraction at spines in the juvenile mPFC of socially isolated rats. (A and C) FRAP analysis of
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brain slices and examined the spine morphology by the observation
of GFP (38–41). No significant differences were observed in the
spine shape and size of the mPFC neurons with overexpression of
constitutively active ADF/cofilin (Fig. S9 B, C, andD). In addition,
no significant differences were observed in the basal dendrite
length and branches of the mPFC neurons with overexpression of
constitutively active ADF/cofilin (Fig. S9 E and F).

The Isolation-Induced Increase in Stable Actin Interferes with the
Synaptic Delivery of AMPARs. To investigate the relationship
between the increased stable actin fraction and the decreased
synaptic AMPAR levels in the socially isolated animals we
cointroduced expression vectors for superecliptic pHluorin
(SEP) fused to the N terminus of GluA1 and tdTomato-tagged
actin into the mPFC by in utero electroporation. We then iso-
lated rat pups as described above and prepared acute brain slices

at 4 wk of age. The expression of SEP-GluA1 is selectively de-
tected at the cell surface due to the strong fluorescence of SEP at
pH 7 and above, and its fluorescence is diminished when it is
localized to acidic secretory compartments. We performed
FRAP analysis on the brain slices to evaluate the tdTomato-actin
dynamics at individual spines at layer 2/3 of the mPFC. We then
chemically induced long-term potentiation (cLTP) by briefly
exposing the slices to the potassium channel blocker tetraethy-
lammonium (TEA) (33) 90 min after FRAP analysis. mEPSC
amplitude was increased in slices obtained from the control
nonisolated animals by TEA cLTP induction but not in those
from the socially isolated animals (Fig. S10). Consistent with this
finding, chemically-induced LTP increased the surface expres-
sion of GluA1 in the spines of the control animals but not in
those of the socially isolated animals (Fig. 5 A and B). Notably,
we found a negative correlation between the amount of stable
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actin and the LTP-induced increase in surface GluA1 at indi-
vidual spines from the socially isolated animals but not from
control rats (Fig. 5C). These findings suggest that the isolation-
induced increase in stable actin interferes with the synaptic de-
livery of AMPARs.

ADF/Cofilin Inactivation Mediates Isolation-Induced Enhancement of
Social Dominance. Next, we evaluated the relationship of the
isolation-induced cellular and molecular events at spines to the
changes in social dominance. We injected lentivirus expressing
ADF/cofilin Ser3A-IRES-Venus or IRES-Venus into layer 2/3 of
the mPFC of socially isolated rats at the juvenile age (Fig. 6A).
To characterize the infected cells, we performed immunohisto-
logical staining of the infected area using either an anti-CaMKII
or anti-GABA antibody for pyramidal neurons or interneurons,
respectively. The majority of infected neurons were CaMKII-
positive pyramidal neurons, whereas only a small fraction con-
sisted of GABA-positive interneurons (Fig. S11). Notably, the
ADF/cofilin Ser3A-expressing, socially isolated rats exhibited
significantly less social dominance than the control vector-treated,
socially isolated animals and exhibited social dominance compa-
rable to that of vector-expressing, nonisolated animals [Fig. 6 B
and C; isolated rats with S3A (mPFC) won two of eight matches
against isolated rats with vector (mPFC) (25%) and won five of
nine matches against nonisolated rats with vector (mPFC) (55%)],
suggesting that the ADF/cofilin inactivation in the mPFC of so-
cially isolated animals was responsible for their increased social
dominance. Injection of the same amount of ADF/cofilin Ser3A
virus into the M2 motor cortex had no effect on social dominance,
thus suggesting that the effect was mPFC-specific [Fig. 6D; iso-
lated rats with S3A (M2) won five of six matches against non-
isolated rats with vector (M2) (83%)]. These data indicate that the
isolation-induced inactivation of ADF/cofilin increases the stable
fraction of actin, leading to decreased synaptic AMPAR levels at
spines of the mPFC and the enhancement of social dominance.

Discussion
Human individuals who experienced childhood social separation,
one form of neglect, tend to exhibit aggressive behaviors and
impaired interactions within groups (2, 6, 7), which may result
from an increased fear of other people (42). Notably, such in-
dividuals exhibit a reduced prefrontal cortical volume, suggesting
that its impairment may underlie their aggressive behaviors (2).
Here, we showed that rats experiencing neonatal isolation sub-
sequently exhibited increased social dominance over nonisolated
controls in the same litter, which may be due to enhanced aggres-
sion similarly to human patients exposed to early neglect such as
social separation. Our mechanistic studies indicate that the neonatal
social isolation-induced inactivation of ADF/cofilin results in the
decrease of synaptic AMPAR contents via increased stable actin
fractions at spines of the mPFC, leading to enhanced social domi-
nance. Thus, our study reveals a molecular and cellular mechanism
that underlies the alteration of social behavior in animals exposed to
neonatal isolation, and that may also underlie the enhanced ag-
gressiveness observed in people exposed to early neglect.
Previous studies reported that stress-induced alterations such

as synaptic transmission and neuronal cell morphology in the
nervous system are glucocorticoid-dependent (9, 10, 28, 43).
Furthermore, human studies have demonstrated the importance
of glucocorticoid signaling in stress-related mental disorders
(44–46). In this study we found that neonatal isolation stress
increased the stable fraction of actin, which is glucocorticoid-
dependent. Thus, we added a new molecular alteration dependent
on stress-induced glucocorticoid activation. Because actin dy-
namics are known to be crucial for a variety of synaptic functions
(30), the altered actin dynamics at the spines in the juvenile
mPFC of neonatally isolated animals could explain stress-
induced neocortical dysfunction.

The question regarding the function of the “stable actin fraction”
remains, however. If the intense light-treated “nonfluorescent”
GFP-actin at spines is fully replaced by “fluorescent” GFP-actin
in the FRAP experiment, the bleached fluorescence should be
fully recovered as a fluorescent protein alone (Fig. S7A). How-
ever, we found that the fluorescence recovery was partial at spines
in the juvenile mPFC of neonatally isolated animals. In addition,
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the increase of the stable actin fraction in isolated animals was
mediated by the inactivation of ADF/cofilin, which is required for
dynamic actin turnover. Thus, the increased stable actin fraction
could be due to the decrease of the actin dynamics, and the stable
actin fraction might be the actin fibers with reduced dynamics.
Indeed, a negative correlation was found between the chemical
LTP-induced increase of the surface presentation of GluA1 and
the amount of the stable actin fraction at spines of isolated ani-
mals but not of nonisolated animals. Although it remains to be
determined whether the reduced dynamic actin is the increased
fraction of stable actin, the stable actin fraction could be in-
terfering with synaptic AMPAR delivery.
A recent elegant study showed that higher synaptic efficacy in the

mPFC results in the higher social ranking of rodents housed in a
normal environment (8). This apparent discrepancy could be due to
the malfunction of multiple brain areas in rats exposed to social
isolation early in life (9, 10, 47). It will be interesting to determine how
the alteration of neuronal function across multiple areas following
neonatal isolation affects mPFC-mediated effects on social domi-
nance. A previous report studying the limbic system exhibited that
repeated social defeat chronic stress reduced expression of RAC1,
which could lead to up-regulation of ADF/cofilin activity (38). This
opposite effect of chronic stress on ADF/cofilin activity between the
neocortex and the limbic system could be the underlying mechanism
of altered social behaviors of socially isolated rats. That is, the balance
of the molecular and cellular actions between the neocortex and the
limbic system might be crucial for expression of social behaviors.

Methods and Materials
Animals and Neonatal Social Isolation. Sprague-Dawley (SD) rats (Charles River
Laboratories) in multiple colonies that each contained five males and five
females were used. Rats were housed in plastic Ekon cages andmaintained on
a 14-h light/10-h dark cycle (full light at 0500 hours and full darkness at
1900 hours). The temperature and humidity were held constant at 22 °C ±
1 °C and 55 ± 5%, respectively. Food and water were provided for ad libitum
consumption. Procedures were performed in strict compliance with the an-
imal use and care guidelines of Yokohama City University.

For the neonatal social isolation experiments, three male pups were iso-
lated from their mother and siblings for 6 h/d, from 1000–1600 hours, from P7
to P11. During the isolation period, each male pup was placed alone in a
smaller cage, with a heating pad at 35 °C, in an adjacent room.

Social Dominance Tube Test. Animal social dominance was tested as previously
described (8, 48) in a transparent Plexiglas tube measuring 45 cm in length
and 4 cm in (inside) diameter, a size just sufficient to permit one juvenile rat
to pass through without reversing direction. For training, each rat was re-
leased at alternating ends of the tube and allowed to run through the tube.
Each animal was given eight training trials on each of two successive days.
For the social dominance test, animals were placed at opposite ends of the
tube and released. A subject was declared the “winner” when its opponent
backed out of the tube. The maximum test time was set to 2 min.

Drug Treatment. Systemically administered drugs were injected s.c. RU486
(8 μg/g of body weight; Sigma-Aldrich) was injected twice a day during the
neonatal isolation period.

Electrophysiology. Rats were anesthetized with an isoflurane–oxygen mixture,
and the brain was removed. The brain was quickly transferred into ice-cold
dissection buffer gassed with 5% (vol/vol) CO2/95% (vol/vol) O2 as described
previously (9). Coronal brain slices were cut (350 μm; Leica VT1000) in dis-
section buffer. The slices were then incubated in artificial cerebrospinal fluid
(ACSF) as described previously (9).

Patch recording pipettes (3–7MΩ) were filled with intracellular solution as
described previously (9, 49, 50). To record the mEPSC or mIPSC from the PrL
(prelimbic cortex) of the mPFC, the recording chamber was perfused with
ACSF with 0.5 μM TTX and low magnesium (1 mM), containing 100 μM pic-
rotoxin (for mEPSC) or 10 μMNBQX (for mIPSC). For recording NMDA-mEPSCs,
the recording chamber was perfused with ACSF with zero magnesium,
containing 0.5 μM TTX, 0.1 mM picrotoxin, and 10 μM NBQX. The mEPSCs,
mIPSCs, or NMDA-mEPSCs were detected and analyzed using the Mini
Analysis Program 6.0.7 (Synaptosoft).

Western Blotting. mPFC samples were rapidly dissected and stored at −80 °C.
Synaptoneurosome fractions were prepared as previously described (9).
Frozen samples were homogenized in ice-cold homogenization buffer
(10 mM Hepes, 1.0 mM EDTA, 2.0 mM EGTA, 0.5 mM DTT, 0.1 mM PMSF,
10 mg/L leupeptin, and 100 nM microcystin). The tissue was homogenized
in a glass/glass tissue homogenizer, and the homogenates were passed
through two 100-μm-pore nylon mesh filters, and then through a 5-μm-pore
filter. The filtered homogenates were centrifuged at 3,600 × g for 10 min at
4 °C. The resulting pellets were resuspended in 100 μL of boiling homoge-
nization buffer with 1% SDS, followed by immunoblotting. The signal in-
tensity of each band was measured by MultiGauge (Fujifilm). The net signal
was obtained by subtracting the background signal obtained from the re-
gion adjacent to the band.

Constructs. GFP-actin and tdTomato-actin were PCR-amplified and subcloned
into the pCAGGS-EX and pEF-BOS vectors, respectively. pCALNL-GluA1 and
pCAG-ERT2CreERT were gifts from R. Malinow, University of California, San
Diego, La Jolla, CA. The cofilin Ser3A cDNA-mRFP construct was a gift from
J. Zheng, EmoryUniversity School ofMedicine, Atlanta. The cofilin Ser3A cDNA
was PCR-amplified and subcloned into the pEF-BOS and flap-Ub promoter-
IRES-Venus-WRE vectors.

In Utero Electroporation of mPFC Neurons. Layer 2/3 progenitor cells were
transfected by in utero electroporation. E17-timed pregnant SD rats (Charles
River Laboratories) were anesthetized with an isoflurane–oxygen mixture.
Approximately 0.5 mL of DNA solution containing fast green was pressure-
injected by mouth through a pulled-glass capillary tube into the left lateral
ventricle of each embryo. The head of each embryo was placed between
tweezer electrodes with the anode contacting the right hemisphere. Elec-
troporation was achieved with five square pulses (duration 50 ms, frequency
5 Hz, voltage 80 V; BEX Co.).

Analysis of FRAP Data. Images were obtained using a two-photon laser-
scanning microscope (FV-1000MPE; Olympus) with a water immersion ob-
jective (25× 1.05 N.A.; Olympus). FRAP analysis was performed using a macro
function of the stimulus setting menu in the Fluoview software, to control
sequential image acquisition and the emission of a photobleaching laser
pulse to the ROI (region of interest). A single dendritic spine of a layer 2/3
neuron in the rat PrL of the mPFC was set as the ROI. Two prebleaching
images were acquired, and the spine fluorescence was then photobleached
with a two-photon laser at 910 nm. The recovery of fluorescence was traced
for an additional 6 min by acquiring images at 20-s intervals. Minimum laser
power was used to prevent photobleaching during the pre- and post-
bleaching stages. Background fluorescence was subtracted from the fluores-
cence of the target spine. The intensity of bleached spines was normalized to
the baseline fluorescence and normalized to neighboring nonphotobleached
spines at each time point. The GFP-actin or tdTomato-actin signals were fitted
to a single exponential curve using the following equation (Igor Pro; Wave-
metrics):

F = Ft=∞ +Aexp
�
−
t
τ

�
,

where Ft=∞ represents the unrecoverable fluorescence, considered to be
a fixed population of fluorescent protein, and τ is the time constant
for recovery.

Cre Recombinase Activation by 4-Hydroxytamoxifen. The 4-hydroxytamoxifen
(4-OHT; Sigma-Aldrich) was dissolved in ethanol at 20mg/mL and dilutedwith
nine volumes of sesame oil (Sigma-Aldrich). Diluted 4-OHT (2 mg/mL) was
intraperitoneally injected into each rat 2 d before FRAP analysis (500 μL
per animal).

Chemically-Induced LTP and Imaging of SEP-GluA1. LTP induction was per-
formed with a modified version of a previous method (33). For chemical
stimulation, brain slices were incubated in ACSF at room temperature, fol-
lowed by stimulation with 25 mM TEA (Sigma) in ACSF for 10 min, and finally
followed by ACSF alone once more.

Images were captured before and 30 min after TEA cLTP induction using a
two-photon laser-scanning microscope (FV-1000MPE; Olympus) with a water
immersion objective (25× 1.05 N.A.; Olympus). SEP and tdTomato were
excited at 910 nm with a Ti:sapphire laser (Mai Tai DeepSee; Spectra-Physics).
Green and red fluorescent signals were separated by a set of dichroic mirrors
and filters (Olympus). The SEP and tdTomato fluorescence in spines and den-
drites was measured as integrated green and red fluorescence, respectively,
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after background and leak subtraction. The ratio of the SEP fluorescence in-
tensity of the spine head to the dendritic shaft was measured on manually
selected spine head and dendritic shaft areas.

In Vivo Infection of mPFC or M2 Neurons. Rats were deeply anesthetized with
an isoflurane–oxygen mixture. The skin overlying the skull was cut and
gently pushed to the side. The anterior fontanel was identified and a region
3 mm anterior, 1.5 mm lateral was gently pierced with a dental drill. The
recombinant lentivirus was pressure-injected through a pulled-glass capillary
(Narishige) into the PrL of the mPFC [anteroposterior (AP), +3.0 mm;
mediolateral (ML), +0.4 mm; and dorsoventral (DV), −3.0 mm to bregma) or
M2 motor cortex (AP, +3.0 mm; ML, +1.5 mm; and DV, −1.0 mm to bregma).
After injection, the skin was repositioned and its integrity was restored with
cyanoacrylate glue. Rats were kept on a heating pad during the procedures
and returned to their home cage after regaining movement.

Statistics. For comparison between means, we used the χ2 test, unpaired Stu-
dent’s t test, ANOVA post hoc Fisher’s protected least significant difference (PLSD)
test, or repeated measures ANOVA. All data are expressed as the mean ± SEM.
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