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We study the problem of treatment effect estimation in randomized
experiments with high-dimensional covariate information and show
that essentially any risk-consistent regression adjustment can be
used to obtain efficient estimates of the average treatment effect.
Our results considerably extend the range of settings where high-
dimensional regression adjustments are guaranteed to provide valid
inference about the population average treatment effect. We then
propose cross-estimation, a simple method for obtaining finite-
sample–unbiased treatment effect estimates that leverages high-
dimensional regression adjustments. Our method can be used when
the regression model is estimated using the lasso, the elastic net,
subset selection, etc. Finally, we extend our analysis to allow for
adaptive specification search via cross-validation and flexible non-
parametric regression adjustments with machine-learning methods
such as random forests or neural networks.
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Randomized controlled trials are often considered the gold
standard for estimating the effect of an intervention, as they

allow for simple model-free inference about the average treat-
ment effect on the sampled population. Under mild conditions,
the mean observed outcome in the treated sample minus the
mean observed outcome in the control sample is a consistent and
unbiased estimator for the population average treatment effect.
However, the fact that model-free inference is possible in ran-

domized controlled trials does not mean that it is always optimal:
As argued by Fisher (1), if we have access to auxiliary features that
are related to our outcome of interest via a linear model, then
controlling for these features using ordinary least squares will
reduce the variance of the estimated average treatment effect
without inducing any bias. This line of research has been thor-
oughly explored: Under low-dimensional asymptotics where the
problem specification remains fixed while the number of samples
grows to infinity, it is now well established that regression ad-
justments are always asymptotically helpful—even in misspecified
models—provided we add full treatment-by-covariate interactions
to the regression design and use robust standard errors (2–10).
The characteristics of high-dimensional regression adjustments

are less well understood. In a recent advance, Bloniarz et al.
(11) show that regression adjustments are at least sometimes
helpful in high dimensions: Given an “ultrasparsity” assumption
from the high-dimensional inference literature, they establish that
regression adjustments using the lasso (12, 13) are more efficient
than model-free inference. This result, however, leaves a sub-
stantial gap between the low-dimensional regime—where re-
gression adjustments are always asymptotically helpful—and the
high-dimensional regime where we have only special-case results.
In this paper, we show that high-dimensional regression ad-

justments to randomized controlled trials work under much
greater generality than previously known. We find that any re-
gression adjustment with a free intercept yields unbiased estimates
of the treatment effect. This result is agnostic as to whether the
regression model was obtained using the lasso, the elastic net (14),
subset selection, or any other method that satisfies this criterion.

We also propose a simple procedure for building practical confi-
dence intervals for the average treatment effect.
Furthermore, we show that the precision of the treatment effect

estimates obtained by such regression adjustments depends only on
the prediction risk of the fitted regression adjustment. In particular,
any risk-consistent regression adjustment can be made to yield effi-
cient estimates of the average treatment effect in the sense of refs.
15–18. Thus, when choosing which regression adjustment to use,
practitioners are justified in using standard model selection tools that
aim to control prediction error, e.g., Mallow’s Cp or cross-validation.
This finding presents a striking contrast to the theory of high-

dimensional regression adjustments in observational studies. In a
setting where treatment propensity may depend on covariates,
simply fitting low-risk regression models to the treatment and
control samples via cross-validation is not advised, as there exist
regression adjustments that have low predictive error but yield
severely biased estimates of the average treatment effect (19–
22). Instead, special-case procedures are needed: For example,
Belloni et al. (21) advocate a form of augmented model selection
that protects against bias at the cost of worsening the predictive
performance of the regression model. The tasks of fitting good
high-dimensional regression adjustments to randomized vs. ob-
servational data thus present qualitatively different challenges.
The first half of this paper develops a theory of regularized re-

gression adjustments with high-dimensional Gaussian designs. This
analysis enables us to highlight the connection between the pre-
dictive accuracy of the regression adjustment and the precision of
the resulting treatment effect estimate and also to considerably
improve on theoretical guarantees available in prior work. In the
second half of the paper, we build on these insights to develop
cross-estimation, a practical method for inference about average
treatment effects that can be paired with either high-dimensional
regularized regression or nonparametric machine-learning methods.
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As datasets get larger and more complex, there is a growing in-
terest in using machine-learning methods to enhance scientific
analysis. In many settings, considerable work is required to make
standard machine-learning methods useful for specific scientific
applications. We find, however, that in the case of treatment ef-
fect estimation with randomized experiments, regression adjust-
ments via machine-learning methods designed to minimize test
set error directly induce efficient estimates of the average treat-
ment effect. Thus, machine-learning methods can be used out of
the box for this task, without any special-case adjustments.
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1. Setting and Notation
We frame our analysis in terms of the Neyman–Rubin potential
outcomes model (23, 24). Given n i.i.d. observations ðXi,Yi,WiÞ,
i= 1,  2,  . . . ,  n, we posit potential outcomes Y ð1Þ

i and Y ð0Þ
i ; then,

the outcome that we actually observe is Yi =Y ðWiÞ
i . We focus on

randomized controlled trials, where Wi is independent of all
pretreatment characteristics,n

Xi,Y
ð0Þ
i ,Y ð1Þ

i

o
⊥Wi. [1]

We take the predictors to be generated as Xi ∼Fð · Þ∈Rp and
assume a homoskedastic linear model in each arm,

Yi = cðWiÞ +Xi · βðWiÞ + «
ðWiÞ
i , cðwÞ ∈R, βðwÞ ∈Rp, [2]

for w= 0,   1, where «
ðWiÞ
i is mean-zero noise with variance σ2;

more general models are considered later. We use the notation
n0 = jfi :Wi = 0gj and n1 = jfi :Wi = 1gj. We study inference about
the average treatment effect τ=E½Y ð1Þ−Y ð0Þ�. In our analysis,
it is sometimes also convenient to study estimation of the condi-
tional average treatment effect

τ=
1
n

Xn
i=1

E

h
Y ð1Þ
i −Y ð0Þ

i

���Xi

i
= �X ·

�
βð1Þ − βð0Þ

�
+ cð1Þ − cð0Þ.

[3]

As discussed by ref. 17, good estimators for τ are generally good
estimators for τ and vice versa. In the homogeneous treatment
effects model Yi = c+Xi · β+Wiτ+ «i, τ and τ coincide.
All technical derivations can be found in the Supporting In-

formation, A. Proofs.

2. Regression Adjustments with Gaussian Designs
Suppose that we have obtained parameter estimates ĉðwÞ, β̂ðwÞ,
w∈ f0,1g for the linear model Eq. 2 via the lasso, the elastic net,
or any other method. We then get a natural estimator for the
average treatment effect:

τ̂= �X ·
�
β̂ð1Þ − β̂ð0Þ

�
+ ĉð1Þ − ĉð0Þ. [4]

In the case where β̂ðwÞ is the ordinary least-squares estimator for
τ̂, the behavior of this estimator has been carefully studied by
refs. 8 and 10. Our goal is to characterize its behavior for generic
regression adjustments β̂ðwÞ, all while allowing the number of
predictors p to be much larger than the sample size n.
The only assumption that we make on the estimation scheme

is that it be centered: For w∈ f0,1g,
�Yw = �Xw · β̂

ðwÞ+ ĉðwÞ; [5]

i.e., the mean of the predicted outcomes matches that of the observed
outcomes; and β̂ðwÞ is translation invariant and depends only on

F β =
�
Xi−�XWi,Yi−�YWi,Wi

�n
i=1. [6]

Here, �Xw and �Yw denote the mean of the outcomes Yi and fea-
tures Xi over all observations with Wi =w. Algorithmically, a simple
way to enforce this constraint is to first center the training samples
Xi →Xi − �XWi, Yi →Yi − �YWi, run any regression method on these
centered data, and then set the intercept using Eq. 5; this is done by
default in standard software for regularized regression, such as glmnet
(25). We also note that ordinary least-squares regression is always
centered in this sense, even after common forms of model selection.
Now, if our regression adjustment has a well-calibrated in-

tercept as in Eq. 5, then we can write Eq. 4 as

τ̂= �X ·
�
β̂ð1Þ − β̂ð0Þ

�
+
�
ĉð1Þ − ĉð0Þ

�
= �Y 1 − �Y 0 +

�
�X − �X1

�
· β̂ð1Þ −

�
�X − �X0

�
· β̂ð0Þ.

[7]

To move forward, we focus on the case where the data-
generating model for ðXi,   YiÞ is Gaussian; i.e., Xi ∼Nðm,   ΣÞ for
some m∈Rp and positive-semidefinite matrix Σ∈Rp×p, and
Yi −E½YijXi,Wi�∼Nð0, σ2Þ. For our purpose, the key fact about
Gaussian data is that the mean of independent samples is in-
dependent of the within-sample spread; i.e.,�

Xi−�XWi,Yi−�YWi

�n
i=1 ⊥

�
�X0, �X1, �Y 0, �Y 1

�
, [8]

conditionally on the treatment assignments W1,   . . . ,  Wn. Thus,
because β̂ðwÞ depends only on the centered data Xi − �XWi and
Yi − �YWi, we can derive a simple expression for the distribution
of τ̂. The following is an exact finite sample result and holds no
matter how large p is relative to n; a key observation is that �X − �Xw
is mean zero by randomization of the treatment assignment,
for w= 0,   1.

Proposition 1. Suppose that our regression scheme for ĉðwÞ and β̂ðwÞ is
centered and that our data-generating model is Gaussian as above.
Then, writing kvk2Σdv⊤Σ  v for v∈Rp,

τ̂− τjn0, n1, β̂ð0Þ, β̂ð1Þ =d Nð0,AÞ,

A=
	
1
n0

+
1
n1


	
σ2 +

���bβ−β���2
Σ



,

β=
n1   βð0Þ + n0   βð1Þ

n
, bβ= n1   β̂ð0Þ + n0   β̂ð1Þ

n
.

[9]

If the errors in β̂ð0Þ and β̂ð1Þ are roughly orthogonal, then���bβ−β���2
Σ
≈
n21
n2

���β̂ð0Þ− βð0Þ
���2
Σ
+
n20
n2

���β̂ð1Þ−βð1Þ���2
Σ

[10]

and, in any case, twice the right-hand side is always an upper
bound for the left-hand side. Thus, the distribution of τ̂ effec-
tively depends on the regression adjustments β̂ðwÞ only through
the excess predictive error��β̂ðwÞ−βðwÞ��2Σ =E

�	
ðX −mÞ ·

�
β̂ðwÞ − βðwÞ

�2����β̂ðwÞ
  , [11]

where the above expectation is taken over a test set example X.
This implies that, in the setting of Proposition 1, the main prac-
tical concern in choosing which regression adjustment to use is to
ensure that β̂ðwÞ has low predictive error.
The above result is conceptually related to recent work by

Berk et al. (3) (also ref. 26), who showed that the accuracy of
low-dimensional covariate adjustments using ordinary least-
squares regression depends on the mean-squared error of the
regression fit; they also advocate using this connection to provide
simple asymptotic inference about τ. Here, we showed that a
similar result holds for any regression adjustment on Gaussian
designs, even in high dimensions; and in the second half of this
paper we discuss how to move beyond the Gaussian case.

Risk Consistency and the Lasso. As stated, Proposition 1 provides
the distribution of τ̂ conditionally on β̂ðwÞ and so is not directly
comparable to related results in the literature. However, when-
ever β̂ðwÞ is risk consistent in the sense that

R
�
β̂ðwÞ

�
d
��β̂ðwÞ−βðwÞ��2Σ → p0, [12]

for w= 0,   1, we can asymptotically omit the conditioning.
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Theorem 2. Suppose that, under the conditions of Proposition 1, we
have a sequence of problems where β̂ðwÞ is risk consistent (Eq. 12),
and P½W = 1�→ π. Then,ffiffiffi

n
p ðτ̂− τÞ⇒N

	
0,

σ2

πð1− πÞ


, [13]

or, in other words, τ̂ is efficient for estimating τ (15–18).
In the case of the lasso, Theorem 2 lets us substantially im-

prove over the best existing guarantees in the literature (11). The
lasso estimates β̂ðwÞ as the minimizer over β ofX

fi:Wi=wg

1
2
�
Yi − �Yw −

�
Xi − �Xw

�
· β
�2

+ nwλkβk1, [14]

for some penalty parameter λ> 0. Typically, the lasso is used
when we believe a sparse regression adjustment to be appropri-
ate. In our setting, it is well known that the lasso satisfies
R
�
β̂ðwÞ

�
=OP

�kΣk2op��βðwÞ��0 logðpÞ=nw�, provided the penalty pa-
rameter λ is well chosen and Σ does not allow for too much
correlation between features (27, 28).
Thus, whenever we have a sequence of problems as in Theorem

2 where βðwÞ is k-sparse, i.e., βðwÞ has at most k nonzero entries,
and k logðpÞ=n→ 0, we find that τ̂ is efficient in the sense of Eq.
13. Note that this result is much stronger than the related result of
ref. 11, which shows that lasso regression adjustments yield effi-
cient estimators τ̂ in an ultrasparse regime with k � ffiffiffi

n
p

=logðpÞ.
To illustrate the difference between these two results, it is well

known that if k � ffiffiffi
n

p
=logðpÞ, then it is possible to do efficient

inference about the coefficients of the underlying parameter vector
β (29–31), and so the result of ref. 11 is roughly in line with the rest
of the literature on high-dimensional inference. Conversely, if we
have only k � n=logðpÞ, accurate inference about the coefficients
of β is in general impossible without further conditions on the co-
variance of X (32, 33). However, we have shown that we can still
carry out efficient inference about τ. In other words, the special
structure present in randomized trials means that much more is
possible than in the generic high-dimensional regression setting.

Inconsistent Regression Adjustments. Even if our regression ad-
justment β̂ðwÞ is not risk consistent, we can still use Proposition 1
to derive unconditional results about τ̂ whenever

R
�bβ�d���bβ−β���2

Σ
→ p R∞. [15]

We illustrate this phenomenon in the case of ridge regression,
where regression adjustments generally reduce—but do not elim-
inate—excess test-set risk. Recall that ridge regression estimates
β̂ðwÞ as the minimizer over β ofX

fi:Wi=wg

1
2
�
Yi − �Yw −

�
Xi − �Xw

�
· β
�2

+ nwλkβk22. [16]

The following result relies on random-matrix theoretic tools for
analyzing the predictive risk of ridge regression (34).

Theorem 3. Suppose we have a sequence of problems in the setting of
Proposition 1 with n,   p→∞ and p=n→ γ ∈ ð0,∞Þ, such that the
spectrum of the covariance Σ has a weak limit. Following ref. 34,
suppose moreover that the true parameters βð0Þ and βð1Þ are inde-
pendently and randomly drawn from a random-effects model with

E
�
βðwÞ

�
= 0 and Var

�
βðwÞ

�
=
α2

p
Ip×p,   with  α> 0. [17]

Then, selecting β̂ðwÞ in Eq. 4 via ridge regression tuned to minimize
prediction error, and with P½W = 1�→ π, we get

ffiffiffi
n

p ðτ̂− τÞ⇒Nð0, SÞ,

S= 2σ2 +
α2

γ

 
π

v0
�
− γσ2

α2ð1− πÞ
�+ 1− π

v1
�
−γσ2

α2π

�
!
, [18]

where the vwð−λÞ are the companion Stieltjes transforms of the
limiting empirical spectral distributions for the treated and control
samples, as defined in the proof.
To interpret this result, we note that the quantity vwð−λÞ can

also be induced via the limit (35, 36)

1
nw

tr

0@ 1
nw

X
fi:Wi=wg

XiX⊤
i + λInw×nw

!−1
1A→ p vwð−λÞ,    for  λ> 0.

Finally, we note that the limiting variance of τ̂− τ obtained via
ridge regression above is strictly smaller than the corresponding
variance of the unadjusted estimator, which converges to
ðσ2 + ðπ2 + ð1− π2ÞÞα2trðΣÞ=pÞ=ðπð1− πÞÞ; this is because opti-
mally tuned ridge regression strictly improves over the “null”
model β̂ðwÞ= 0 in terms of its predictive accuracy.

3. Practical Inference with Cross-Estimation
In the previous section, we found that—given Gaussianity
assumptions—generic regression adjustments yield unbiased esti-
mates of the average treatment effect and also that low-risk re-
gression adjustments lead to high-precision estimators. Here, we seek
to build on this insight and to develop simple inferential procedures
about τ and τ that attain the above efficiency guarantees, all while
remaining robust to deviations fromGaussianity or homoskedasticity.
Our approach is built around cross-estimation, a procedure

inspired by data splitting and the work of refs. 37 and 38. We first
split our data into K equally sized folds (e.g., K = 5  or  10) and
then, for each fold k= 1,  . . . ,   K , we compute

τ̂ðkÞ = �Y ðkÞ
1 − �Y ðkÞ

0 +
�
�X ðkÞ − �X ðkÞ

1

�
· β̂ð1,−kÞ

−
�
�X ðkÞ − �X ðkÞ

0

�
· β̂ð0,−kÞ.

[19]

Here, �Y ðkÞ
1 , �Y ðkÞ

0 , etc., are moments taken over the kth fold,
whereas β̂ð1,   −kÞ and β̂ð0,   −kÞ are centered regression estimators
computed over the K − 1 other folds. We then obtain an aggregate
estimate τ̂=

PK
k=1τ̂

ðkÞ   nðkÞ=n, where nðkÞ is the number of obser-
vations in the kth fold. An advantage of this construction is that an
analog to the relation Eq. 8 now automatically holds, and thus our
treatment effect estimator τ̂ is unbiased without assumptions. Note
that the result below references both the average treatment effect
τ and the conditional average treatment effect τ.

Theorem 4. Suppose that we have n independent and identically
distributed samples satisfying Eq. 1, drawn from a linear model Eq.
2, where Xi has finite first moments and the conditional variance of
Y ðwÞ
i given Xi may vary. Then, E½τ̂jX1,   . . . ,Xn�= τ. If, moreover,

the β̂ðw,   −kÞ are all risk consistent in the sense of Eq. 12 for
k= 1,   . . . ,   K , and both the signals Xi · βðwÞ and residuals Yi −
E½YijXi,Wi =w� are asymptotically Gaussian when averaged, then
writing σ2w =E½Var½Y ðwÞ

i

���Xi��, we haveffiffiffi
n

p ðτ̂− τÞ⇒N
	
0,

σ20
1− π

+
σ21
π
+
��βð1Þ−βð0Þ��2Σ
 . [20]

In the homoskedastic case, i.e., when the variance of Y ðwÞ con-
ditionally on X does not depend on X, then the above is efficient.
With heteroskedasticity, the above is no longer efficient because
we are in a linear setting and so inverse-variance weighting could
improve precision; however, Eq. 20 can still be used as the basis
for valid inference about τ.
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Confidence Intervals via Cross-Estimation. Another advantage of
cross-estimation is that it allows for moment-based variance es-
timates for τ̂. Here, we discuss practical methods for building
confidence intervals that cover the average treatment effect τ.
We can verify that the variance of τ̂ðkÞ is Vk after conditioning on
the β̂ðw,   −kÞ and nðkÞw , with

Vk =
X

w∈f0,  1g

1

nðkÞw

Var
�
Y ðwÞ −X ·bβð−kÞ����bβð−kÞ. [21]

Now, the above moments correspond to observable quantities on
the kth data fold, so we immediately obtain a moment-based
plug-in estimator V̂ k for Vk. Finally, we build α-level confidence
intervals for τ as

τ∈ τ̂± z1−α=2V̂ ,   V̂ =
XK
k=1

	
nðkÞ

n


2

V̂ k, [22]

where z1−α=2 is the appropriate standard Gaussian quantile. In the
setting of Theorem 4, i.e., with risk consistency and bounded second
moments, we can verify that the τ̂ðkÞ are asymptotically uncorrelated
and so the above confidence intervals are asymptotically exact.

Cross-Validated Cross-Estimation. High-dimensional regression ad-
justments usually rely on a tuning parameter that controls the
amount of regularization, e.g., the parameter λ for the lasso and
ridge regression. Although theory provides some guidance on how
to select λ, practitioners often prefer to use computationally in-
tensive methods such as cross-validation.
Now, our procedure in principle already allows for cross-val-

idation: If we estimate β̂ð0,   −kÞ in Eq. 19 via any cross-validated
regression adjustment that relies only on all but the kth data folds,
then τ̂ðkÞ will be unbiased for τ. However, this requires running
the full cross-validated algorithm K times, which can be very
expensive computationally.
Here, we show how to obtain good estimates of τ̂ using only a

single round of cross-validation. First, we specify K regression folds,
and for each k∈ f1,   . . . ,   Kg and w∈ f0,1g we compute �Xk,  w and
�Yk,  w as the mean of all observations in the kth fold with Wi =w.
Next, we center the data such that ~Xi =Xi − �Xk, Wi and ~Y i =
Yi − �Yk, Wi for all observations in the kth fold. Finally, we estimate
β̂ðw,   −kÞ by running a standard out-of-the-box cross-validated algo-
rithm (e.g., cv. glmnet for R) on the ð~Xi,   ~Y i,  WiÞ triples with the
same K folds as specified before and then use Eq. 19 to compute τ̂.
The actual estimator that we use to estimate β̂ð0Þ and β̂ð1Þ in our

experiments is inspired by the procedure of Imai and Ratkovic
(39). Our goal is to let the lasso learn shared “main effects” for the

treatment and control groups. To accomplish this, we first run a
2p-dimensional lasso problem,

β̂,   γ̂ = argminβ,  γ

�
λðkβk1 + kγk1Þ

+
X�

~Y i −
�
~Xi · β+ ð2Wi − 1Þ~Xi · γ

��2�
, [23]

and then set β̂ð0Þ = β̂− γ̂ and β̂ð1Þ = β̂+ γ̂. We simultaneously tune
λ and estimate τ by cross-validated cross-estimation as discussed
above. When all our data are Gaussian, this procedure is exactly
unbiased by the same argument as used in Proposition 1; and
even when X is not Gaussian, it appears to work well in our
experiments.

4. Nonparametric Machine-Learning Methods
In our discussion so far, we have focused on treatment effect
estimation using high-dimensional, linear regression adjustments
and showed how to provide unbiased inference about τ under
general conditions. Here, we show how to extend our results
about cross-estimation to general nonparametric regression ad-
justments obtained using, e.g., neural networks or random forests
(40). We assume a setting where

E½Y ðwÞjX = x�= μðwÞðxÞ

for some unknown regression functions μðwÞðxÞ, and our goal is to
leverage estimates μ̂ðwÞðxÞ obtained using any machine-learning
method to improve the precision of τ̂, as*,†

τ̂=
1
n

Xn
i=1

�
μ̂ð1,   −iÞðXiÞ− μ̂ð0,   −iÞðXiÞ

�
+

X
fi:Wi=1g

Yi − μ̂ð1,   −iÞðXiÞ
n1

−
X

fi :Wi=0g

Yi − μ̂ð0,   −iÞðXiÞ
n0

,

[24]

where μ̂ðw,   −iÞ is any estimator that does not depend on the ith
training example; for random forests, we set μ̂ðw,   −iÞðXiÞ to be the
“out-of-bag” prediction at Xi. To motivate Eq. 24, we start from
Eq. 7 and expand out terms using the relation
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Fig. 1. Simulation results with β= ð1,   0,   0,   . . . ,   0Þ, P½W = 1�= 0.2, ρ= 0, and
p=500. All numbers are based on 1,000 simulation replications. Left panel
shows both the average variance estimate V̂ produced by each estimator (solid
lines) and the actual variance Var[τ̂] of the estimator (dashed-dotted lines);
note that V̂ is directly proportional to the squared length of the confidence
interval. Right panel depicts realized coverage for both 95% confidence in-
tervals (solid lines) and 99% confidence intervals (dashed lines).
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Fig. 2. Simulation results with β proportional to a permutation of
ð1,   2−1,   3−1,   . . . ,   p−1Þ, kβk2 = 2, P½W = 1�= 0.5, ρ= 0.8, and p= 500. All
numbers are based on 1,000 simulation replications. The plots are produced
the same way as in Fig. 1.

*We note that Eq. 24 depends on μ̂ð0,   −iÞðXiÞ and μ̂ð1,   −iÞðXiÞ implicitly only through
μ̂
ð−iÞðXiÞ=n1=nμ̂

ð0,   −iÞðXiÞ+n0=nμ̂
ð1,   −iÞðXiÞ. It may thus also be interesting to estimate

μ̂
ð−iÞðXiÞ directly using, e.g., the “tyranny of the minority” scheme of Lin (8).

†A related estimator is studied by Rothe in the context of classical nonparametric regres-
sion adjustments, e.g., local regression, for observational studies with known treatment
propensities. [Rothe C (2016) The value of knowing the propensity score for estimating
average treatment effects, (IZA), discussion paper 9989.]
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�
�X − �X1

�
· β̂ð1Þ =

1
n

Xn
i=1

μ̂ð1ÞðXiÞ− 1
n1

X
fi:Wi=1g

μ̂ð1ÞðXiÞ, [25]

where μ̂ð1ÞðxÞ= x · β̂ð1Þ + ĉð1Þ, etc. The remaining differences be-
tween Eq. 24 and Eq. 7 are due to the use of out-of-bag estima-
tion to preserve randomization of the treatment assignment Wi
conditionally on the corresponding regression adjustment. We
estimate the variance of τ̂ using the formula

V̂ =
X

w∈f0,   1g

X
fi:Wi=wg

�
Yi − n0

n μ̂
ð1,  −iÞðXiÞ− n1

n μ̂
ð0,  −iÞðXiÞ

�2
nwðnw − 1Þ . [26]

Formal Results. The following result characterizes the behavior of
this estimator, under the assumption that the estimator is
“jackknife compatible,” meaning that the expected jackknife
estimate of variance for μ̂ðwÞ converges to 0. We define this
condition in Supporting Information, A. Proofs and verify that it
holds for random forests.

Theorem 5. Suppose that μ̂ is jackknife compatible. Then, the esti-
mator τ̂ in Eq. 24 is asymptotically unbiased, E½τ̂jX1,   . . . ,Xn�=
τ+ oð1= ffiffiffi

n
p Þ. Moreover, if the regression adjustments μ̂w are risk

consistent in the sense that‡ 1=n
Pn

i=1ðμ̂ðw,   − iÞðXiÞ− μðwÞðXiÞÞ2 → p0,
and the potential outcomes Y ðwÞ

i have finite second moments, then τ̂
is efficient and ðτ̂− τÞ=ðV̂ Þ1=2 is asymptotically standard Gaussian.
We note that there has been considerable recent interest in

using machine-learning methods to estimate heterogeneous treat-
ment effects (42–45). In relation to this literature, our present goal
is more modest: We simply seek to use machine learning to reduce
the variance of treatment effect estimates in randomized experi-
ments. This is why we obtain more general results than the papers
on treatment heterogeneity.

5. Experiments
In our experiments, we focus on two specific variants of treat-
ment effect estimation via cross-estimation. For high-dimensional
linear estimation, we use the lasso-based method Eq. 23 tuned by
cross-validated cross-estimation. For nonparametric estimation,
we use Eq. 24 with random forest adjustments. We implement
our method as an open-source R package, crossEstimation, built
on top of glmnet (25) and randomForest (46) for R. Supporting
Information, B. Additional Simulation Results and Table S1 have
additional simulation results.

Simulations. We begin by validating our method in a simple
simulation setting with Y =Xβ+Wτ+ «, where «∼Nð0,   1Þ. In
all simulations, we set the features X to be Gaussian with
autoregressive AR-ρ covariance. We compare our lasso-based
cross-estimation with both the simple difference-in-means esti-
mate τ̂= �Y 1 − �Y 0 and the proposal of Bloniarz et al. (11) that
uses lasso regression adjustments tuned by cross-validation. Our
method differs from that of Bloniarz et al. (11) in that we use a
different algorithm for confidence intervals and also that we use
the joint lasso algorithm Eq. 23 instead of computing separate
lassos in both treatment arms.
Figs. 1 and 2 display results for different choices of β, ρ, etc.,

while varying n. In both cases, we see that the confidence in-
tervals produced by our cross-estimation algorithm and the
method of Bloniarz et al. (11) are substantially shorter than
those produced by the difference-in-means estimator. Moreover,

our confidence intervals accurately represent the variance of our
estimator (compare solid and dashed-dotted lines in Figs. 1 and
2, Left) and achieve nominal coverage at both the 95% and 99%
levels. Conversely, especially in small samples, the method of
Bloniarz et al. (11) underestimates the variance of the method
and does not achieve target coverage.

Understanding Attitudes Toward Welfare. We also consider an ex-
perimental dataset collected as a part of the General Social
Survey.§ The dataset is large (N = 28,646 after preprocessing), so
we know the true treatment effect essentially without error: The
fraction of respondents who say we spend too much on assistance
to the poor is smaller than the fraction of respondents who say
we spend too much on welfare by 0.35. To test our method, we
repeatedly drew subsamples of size n= 2,000 from the full
dataset and examined the ability of both lasso-based and random-
forest–based cross-estimation to recover the correct answer. We
had p= 12 regressors.
First, we note that both variants of cross-estimation achieved

excellent coverage. Given a nominal coverage rate of 95%, the
simple difference-in-means estimator, lasso-based cross-estima-
tion, and random-forest cross-estimation had realized coverage
rates of 96.3%, 96.5%, and 95.3%, respectively, over 1,000 rep-
lications. Meanwhile, given a nominal target of 99%, the realized
numbers became 99.0%, 99.0%, and 99.3%. We note that this
dataset has non-Gaussian features and exhibits considerable
treatment effect heterogeneity.
Second, Fig. 3 depicts the reduction in squared confidence

interval length for individual realizations of each method. More
formally, we show boxplots of V̂ lasso=rf=V̂ simple, where V̂ is the
variance estimate used to build confidence intervals. Here, we
see that although cross-estimation may not improve the precision
of the simple method by a large amount, it consistently improves
performance by a small amount. Moreover, in this example,

random forest lasso
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Fig. 3. Reduction in squared confidence interval length achieved by ran-
dom forests and a lasso-based method, relative to the simple difference-
in-means estimator. Confidence intervals rely on cross-estimation. The plot
was generated using 1,000 simulation replications.

‡With random forests, ref. 41 provides such a risk-consistency result.

§Subjects were asked whether we, as a society, spend too much money either on “wel-
fare” or on “assistance to the poor.” The questions were randomly assigned and the
treatment effect corresponds to the change in the proportion of people who answer
“yes” to the question. This dataset is discussed in detail in ref. 43; we preprocess the data
as in ref. 47.
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random forests result in a larger improvement in precision than
lasso-based cross-estimation.

6. Discussion
In many applications of machine-learning methods to causal
inference, there is a concern that the risk of specification search,
i.e., trying out many candidate methods and choosing the one
that gives us a significant result, may reduce the credibility of
empirical findings. This has led to considerable interest in
methodologies that allow for complex model-fitting strategies
that do not compromise statistical inference.
One prominent example is the design-based paradigm to

causal inference in observational studies, whereby we first seek
to build an “observational design” by looking only at the features
Xi and the treatment assignments Wi and reveal the outcomes Yi
only once the observational design has been set (48, 49). The
observational design may rely on matching, inverse-propensity

weighting, or other techniques. As the observational design is
fixed before the outcomes Yi are revealed, practitioners can
devote considerable time and creativity to fine-tuning the design
without compromising their analysis.
From this perspective, we have shown that regression adjust-

ments to high-dimensional randomized controlled trials exhibit a
similar opportunity for safe specification search. Concretely,
imagine that once we have collected data from a randomized
experiment, we provide our analyst only with class-wise centered
data: Wi, Xi − �XWi, and Yi − �YWi. The analyst can then use these
data to obtain any regression adjustment they want, which we will
then plug into Eq. 4. Our results guarantee that—at least with a
random Gaussian design—the resulting treatment effect esti-
mates will be unbiased regardless of the specification search the
analyst may have done using only the class-wise centered data.
Cross-estimation enables us to mimic this phenomenon with
non-Gaussian data.
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