Skip to main content
. 2016 Oct 25;113(45):12673–12678. doi: 10.1073/pnas.1614732113

Table S1.

Coverage rates for 95% nominal confidence intervals obtained by cross-validated cross-estimation with the joint lasso procedure, Eq. 23

p
60 500
n
Signal Noise Correlation Design 80 200 80 200
Dense σ=0.1 ρ=0 Gauss. X 0.94 0.96 0.95 0.95
σ=0.1 ρ=0 Bern. X 0.95 0.95 0.94 0.95
σ=0.1 ρ=0.9 Gauss. X 0.94 0.94 0.94 0.95
σ=0.1 ρ=0.9 Bern. X 0.93 0.95 0.93 0.92
σ=1 ρ=0 Gauss. X 0.95 0.95 0.92 0.94
σ=1 ρ=0 Bern. X 0.93 0.95 0.94 0.93
σ=1 ρ=0.9 Gauss. X 0.93 0.94 0.93 0.94
σ=1 ρ=0.9 Bern. X 0.95 0.96 0.92 0.94
Geometric σ=0.1 ρ=0 Gauss. X 0.94 0.95 0.93 0.94
σ=0.1 ρ=0 Bern. X 0.92 0.95 0.94 0.96
σ=0.1 ρ=0.9 Gauss. X 0.95 0.94 0.95 0.95
σ=0.1 ρ=0.9 Bern. X 0.94 0.93 0.95 0.94
σ=1 ρ=0 Gauss. X 0.94 0.94 0.94 0.94
σ=1 ρ=0 Bern. X 0.95 0.94 0.95 0.95
σ=1 ρ=0.9 Gauss. X 0.91 0.96 0.94 0.95
σ=1 ρ=0.9 Bern. X 0.95 0.97 0.94 0.95
Sparse σ=0.1 ρ=0 Gauss. X 0.94 0.96 0.94 0.95
σ=0.1 ρ=0 Bern. X 0.95 0.95 0.92 0.94
σ=0.1 ρ=0.9 Gauss. X 0.92 0.95 0.93 0.96
σ=0.1 ρ=0.9 Bern. X 0.93 0.95 0.92 0.97
σ=1 ρ=0 Gauss. X 0.94 0.93 0.94 0.95
σ=1 ρ=0 Bern. X 0.94 0.93 0.93 0.95
σ=1 ρ=0.9 Gauss. X 0.95 0.94 0.93 0.95
σ=1 ρ=0.9 Bern. X 0.94 0.94 0.94 0.94

All numbers are aggregated over 500 simulation runs; the above numbers thus have a standard sampling error of roughly 0.01. Bern., Bernoulli; Gauss., Gaussian.