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In directed graphs, relationships are asymmetric and these asymmet-
ries contain essential structural information about the graph.
Directed relationships lead to a new type of clustering that is not
feasible in undirected graphs. We propose a spectral co-clustering
algorithm called DI-SIM for asymmetry discovery and directional clus-
tering. A Stochastic co-Blockmodel is introduced to show favorable
properties of DI-SIM. To account for the sparse and highly heteroge-
neous nature of directed networks, DI-SIM uses the regularized graph
Laplacian and projects the rows of the eigenvector matrix onto the
sphere. A nodewise ASYMMETRY SCORE and DI-SIM are used to analyze the
clustering asymmetries in the networks of Enron emails, political
blogs, and the Caenorhabditis elegans chemical connectome. In each
example, a subset of nodes have clustering asymmetries; these
nodes send edges to one cluster, but receive edges from another
cluster. Such nodes yield insightful information (e.g., communication
bottlenecks) about directed networks, but are missed if the analysis
ignores edge direction.

spectral clustering | SVD | Stochastic Blockmodel

Clustering is widely used to study the structure of social, bio-
logical, and technological networks because it provides an

aggregated and simplified representation of the complex interac-
tions. The difficulty of the clustering problem has inspired an
extensive literature devoted to the statistical and computational
issues. Spectral approximation algorithms have become popular
due to their computational speed and empirical performance
across domain areas.
In the clustering literature, the vast majority of the models and

algorithms presumes that the interactions are symmetric or un-
directed. In some settings, the relationships can be well approxi-
mated as symmetric. However, asymmetric or directed relationships
more fully represent the vast majority of interactions. For example,
in the gene regulatory network, one gene drives the transcription of
the other gene. In the power grid network, electricity flows from one
node to the other. In a communication network, one node initiates
the conversation. In other examples, it might be easier to observe
the relationship without direction, but the direction remains of
fundamental importance. For example, in a social network, a busi-
ness searching for “trend leaders” wants to know the direction of
influence in relationships, which is not directly observable. In a
regulatory network, knockout experiments seek to estimate the di-
rection of gene regulation. For many questions of interest, making
the edges undirected does not provide an appropriate approxima-
tion. In all of these examples, the direction of the edges is essential
to the function of the network. Directionality gives asymmetry to a
relationship and the standard notion of clustering is insufficient to
explore and appropriately aggregate asymmetric relationships in our
data examples.
To extend clustering to directed networks, we use Hartigan’s

notion of co-clustering, which he proposed as a way to simulta-
neously cluster both the rows and the columns of a two-way table
(1). In the two-way data table, the rows and columns index dif-
ferent sets. For example, ref. 1 discusses election results with
matrices that are indexed with (state × year) and ref. 2 discusses
co-clusters matrices that are indexed with (document × word).

This paper carries out co-clustering on the adjacency matrix,
where the rows and columns index the same set of nodes. The
adjacency matrix A∈ f0,1gn×n records the pattern of edges in the
network; if there is an edge starting from node i∈ f1, . . . , ng and
ending at node j∈ f1, . . . , ng (i.e., i→ j), then Aij = 1; otherwise,
Aij = 0. So, the ith row of A records how node i sends edges and the
ith column of A records how node i receives edges. Co-clustering
this matrix yields two partitions of the same set of nodes. The row
clusters contain nodes with similar sending patterns and the col-
umn clusters contain nodes with similar receiving patterns.
The proposed co-clustering algorithm DI-SIM is designed for

sparse, heterogeneous, and directed networks. DI-SIM combines two
basic algorithms. First, the singular value decomposition of a
modified version of A generates two lower-dimensional represen-
tations, one representation for the sending relationships and the
other for the receiving relationships; the outcome of this step is of
independent interest for further exploratory analysis via a nodewise
ASYMMETRY SCORE. The second basic algorithm within DI-SIM is the
clustering step via kmeans. By separating the sending and receiving
information, DI-SIM can discover the asymmetries in the relation-
ships and describe the directional communities. Two additional
steps––(i) regularization in the modification of A and (ii) projection
of the lower-dimensional representations––are included in DI-SIM to
improve the performance of the algorithm on sparse networks with
heterogeneous degrees.
We illustrate the utility of DI-SIM through three data examples. In

all three examples, a subset of the nodes have different sending and
receiving clusters. These nodes are bottleneck communicators that
receive edges from one cluster of nodes and send edges to another
cluster of nodes (see Fig. 2); an analysis of Enron emails and a
political blog network finds such bottleneck nodes and illustrates
their unique role in the network. The final example analyzes the
chemical connections between the neurons in Caenorhabditis
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elegans (C. elegans). In this example, 30% of the nodes have dif-
ferent sending and receiving clusters and in an estimated ordering
of the clusters, the majority of the bottleneck nodes have a re-
ceiving cluster label that exceed their sending cluster label; we
interpret this imbalance as a feedforward structure. Next, the paper
introduces a directed Stochastic co-Blockmodel and shows that DI-

SIM performs well under this model. The paper concludes with
a discussion section.

Method: DI-SIM

To co-cluster the adjacency matrix A∈ f0,1gn×n of a directed
graph with n nodes, DI-SIM first normalizes the rows and columns
by the row and column sums, plus a regularizer. Define the reg-
ularized graph Laplacian L∈Rn×n as

Lij =
Aijffiffiffiffiffiffiffiffiffiffiffi
Oτ

iiP
τ
jj

q =
h
ðOτÞ−1=2AðPτÞ−1=2

i
ij
, [1]

where Pτ,Oτ ∈Rn×n are diagonal matrices with Pτ
jj =
P

kAkj + τ and
Oτ

ii =
P

kAik + τ. The regularization parameter τ≥ 0 is set to the
average out-degree,

P
i,kAik=n.

In the data examples below, the number of clusters K is selected
in two different ways. In the first and third examples, K is selected
by inspecting the singular values of L (Fig. 1). In the second ex-
ample, prior knowledge indicates a reasonable choice of K. Should
prior knowledge indicate a differing number of sending clusters ky
and receiving clusters kz, DI-SIM allows for this. If ky < kz, then SI
Appendix, Theorem C.1 highlights how it is more difficult to esti-
mate the receiving clusters (and vice versa if ky > kz).
As a way to explore and understand a directional network, we

propose a nodewise ASYMMETRY SCORE that provides a preliminary
diagnostic to highlight individual nodes with highly asymmetric
patterns. Let the columns of XL,XR ∈Rn×K contain the top K left
and right singular vectors of L, respectively. In an undirected
graph, XL =XR because A=AT. Deviations from equality between
XL and XR can be measured for each node; denote

aiðKÞ=
 XK

ℓ=1

�½XL�iℓ− ½XR�iℓ
�2!1=2

, [2]

as the ASYMMETRY SCORE for node i. The left singular vectors de-
scribe the sending patterns of the nodes and the right singular
vectors describe the receiving patterns. As such, a node with a large
ASYMMETRY SCORE has different sending and receiving patterns.

Our proposed DI-SIM algorithm is given below. The name DI-SIM

has two meanings. First, because DI-SIM co-clusters the nodes, it
estimates two distinct (but related) notions of stochastic equiva-
lence. In this sense, DI-SIM means two similarities and two parti-
tions. Second, DI- denotes that this algorithm is specifically for
directed graphs. DI-SIM is pronounced “dice ‘em.” The algorithm
differs from other, more standard, spectral algorithms in three
ways. First, the algorithm regularizes the graph Laplacian with τ.
This step is essential for the convergence of L in spectral norm;
this result is given in SI Appendix, Theorem E.1. Second, step 3 of
the algorithm projects the rows of the singular value matrices onto

the unit sphere using kxk2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i=1x
2
i

q
, for x∈Rd. This type of

projection was first proposed and studied in ref. 3. SI Appendix,
Theorem F.1 extends results from ref. 4 to show that this step is
essential for DI-SIM when there is degree heterogeneity within the
co-clusters. DI-SIM is a generalization of previous algorithms be-
cause, if the graph is undirected, then XL =XR and these singular
vectors are also eigenvectors.
The regularization of L comes from inflating the diagonals ofOτ

and Pτ by τ. This form of regularization follows the form proposed
by Chaudhuri (5). An alternative regularization scheme, proposed
by Amini et al. (6) and studied in refs. 7 and 8, directly adds τ=n to
each element of A (call this matrix Aτ) and replaces A with Aτ in
Eq. 1. The Google pageRank algorithm uses a slightly different
form of the regularization (9). Particularly when the graph is
sparse, regularization helps the Laplacian concentrate around its
mean matrix. It has been empirically observed to drastically im-
prove clustering results, as in ref. 6.

DI-SIM. Input: Adjacency matrix A∈ f0,1gn×n, regularizer τ≥ 0 (De-
fault: τ= average node degree), number of row clusters ky, number
of column clusters kz.

(1) Compute the regularized graph Laplacian

L= ðOτÞ−1=2AðPτÞ−1=2.

(2) Compute the top K left and right singular vectors
XL ∈Rn×K , XR ∈Rn×K, where K =minfky, kzg.

(3) Normalize each row of XL and XR to have unit length. That is,
define X*

L ∈Rn×K , X*
R ∈Rn×K, such that

�
X*
L

�
i =

½XL�i��½XL�i
��
2

,
�
X*
R

�
j =

½XR�j���½XR�j
���
2

,

where ½XL�i is the ith row of XL and similarly for ½X*
L�i, ½XR�j, ½X*

R�j.
(4) (Optional) If ky = kz =K, run k means on the rows of

X* =

 
X*
L

X*
R

!
∈R2n×K

with K centers or centroids. Using these K centers, cluster the rows
of X*

L into a partition, and similarly cluster the rows of X*
R into

another partition.

(5) If not using step 4, run kmeans separately on rows of X*
L and

X*
R, using ky and kz clusters, respectively.

It is natural to ask whether a sending cluster is aligned with a
specific receiving cluster in some way; perhaps it sends most of its
edges to one receiving cluster, or many of its members appear
together in the same receiving cluster, or both. If ky ≠ kz, such an
alignment can be examined in a post hoc analysis. If ky = kzdK,
then another option exists. Step 4 of the algorithm runs k means
only once, on all 2n points at the same time, akin to techniques in

Fig. 1. (Left) Top 15 singular values of L. There are two eigengaps. The first
eigengap suggests K = 2 using the singular values in solid black. The second
eigengap suggests K = 5 by adding the singular values in solid gray. (Right)
ASYMMETRY SCOREs aiðKÞ as defined in Eq. 2 for K = 2 and K = 5. For K = 2, the
outlier is Enron’s Director for Regulatory and Government Affairs, Jeff
Dasovich. For K = 5, the outlier is Bill Williams, who is discussed in the text.
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correspondence analysis. Each node is mapped to two points in RK.
Optional step 4 ignores the labeling (i.e., sending or receiving) and
runs k means on all 2n points, leading to a combined clustering of
all 2n points into K clusters. After this, the sending and receiving
labels are used to find both the sending and receiving clustering;
this induces a one-to-one correspondence between the sending and
receiving clusters that result from step 4. Let u be the label of a
cluster. Step 4 implicitly encourages a clustering in which the nodes
in sending cluster u send several edges to nodes in receiving clus-
ter u. If cluster u contains only sending points or only receiving
points, then this structure is not present for this cluster.

Results
This section uses ASYMMETRY SCORE and DI-SIM to find asymmetries
in three networks. The first is a communication network at Enron.
The data and analyses can be found at https://github.com/karlrohe/
disim. The second is a hyperlinked network of political blogs. The
final example is a network of chemical connections among the
neurons in C. elegans.

Bottleneck Communicators at Enron. In the popular Enron email
network, DI-SIM finds two individuals with sending patterns which
are exceedingly different from their receiving patterns. The email
pattern of these “bottleneck communicators” suggests that they
relay information from one part of the network to another. The
defunct corporation Enron went bankrupt on 2 December 2001
because “its reported financial condition was sustained sub-
stantially by an institutionalized, systematic, and creatively
planned accounting fraud” (10). This example examines a com-
munication network formed with a portion of the corporation’s
emails that were made publicly available as a result of the federal
investigation into corporate misconduct.
The emails used in the following analysis form a communication

network for 154 employees of Enron between 1998 and 2002 (11).
The weighted adjacency matrix A∈R154×154 contains elements Aij
equal to the number of emails that i sends to j over the entire time
period. Fig. 1 shows that two employees have outlying ASYMMETRY

SCOREs. The outlier for K = 2 is Enron’s Director for Regulatory
and Government Affairs, Jeff Dasovich. Using K = 5, the outlier is
an energy trader at Enron named Bill Williams.
In addition to having large ASYMMETRY SCOREs, Dasovich and

Williams also have large in- and out-degrees.* As such, their posi-
tions in the network allow them to relay information from one part
of the network to another. For example, the diagram in Fig. 2 gives a
schematic illustration of a network with a bottleneck communicator
(not from Enron data). For the node in the middle of this figure, the
edge directions are particularly salient. Similarly, if one ignores edge
direction in the Enron data, then the bottleneck analysis in Fig. 2
would be infeasible; it is exactly the disparity between sending and
receiving patterns that identifies the bottleneck nodes.
Although such network patterns do not necessarily imply crim-

inal activity, the analysis identifies Enron employee Bill Williams as
a clear outlier. Using evidence not associated with the data pre-
sented here, Williams was convicted of creating artificial energy
shortages by ordering power plants to temporarily shut down. The
New York Times reported on 4 February 2005 and quoted from
audio recordings of Bill Williams telling a power plant to shut
down. The day after that audio recording, roughly half a million
Californians suffered from rolling blackouts (12).† Williams’ com-
munications with the power plant make him a bottleneck com-
municator. However, the network analyzed herein does not contain

people outside of Enron. As such, Williams was identified for
playing the bottleneck communicator for other activities within
Enron. The data in this section have been extensively pre-
processed by Zhou et al. (13) and Perry and Wolfe (14).

Asymmetric Linking Among Political Blogs. Political blogs typically
send and receive hyperlinks to and from blogs of the same political
persuasion (15). However, the following analysis shows that in a
network of political blogs from the 2004 US presidential election, a
small number of blogs appear to have been doing opposition re-
search, where they link to blogs that hold different political views
and receive links from blogs of the same persuasion. This analysis
does not find any “straw man blogs” which link to blogs of the
same political persuasion, but receive a disproportionate share of
edges from blogs across the political divide.
To create the network analyzed herein, Adamic and Glance (15)

curated a list of the top 1,494 political blogs and, in February 2005,
(i) recorded the front page of each blog and (ii) identified the hy-
perlinks that point to other blogs on the list. From these links, the
authors (15) created a directed network.‡ Each blog was identified
as liberal or conservative. Some of these labels were manually
identified and some of the labels were self-reported to one of sev-
eral blog directories. Whereas these labels may be subject to various
types of errors, they are generally consistent with the network
connectivity and the names of the blogs (e.g., xtremerightwing.net/
vs. loveamericahatebush.com). We will refer to these labels as the
reported labels. To refer to the blogs on either side of the political
partition, we will use the terms {Kerry, liberal} interchangeably and
the terms {Bush, conservative} interchangeably. Karrer and New-
man (16) and others estimated the political partition from the
network alone. This previous analysis of the network symmetrized
the edge directions.
We restrict our analysis to the 1,222 blogs in the largest connected

component. This contains 586 liberal blogs and 636 conservative
blogs. Although this network is sparse (the average degree is 16),
clustering is feasible because there are roughly 10 times as many
edges between blogs of the same party than between blogs of dif-
ferent party affiliations.
Because there are two political parties, we set ky = kz = 2 and run

DI-SIM with the optional step 4. The resulting sending and receiving
partitions are roughly similar, with both partitions roughly aligning
with the political divide in the reported labels (liberal vs. conser-
vative). Subsequent analysis is restricted to the blogs that have at
least three incoming edges and at least three outgoing edges. There
are 549 such blogs and here again, both partitions of these blogs
(sending and receiving) broadly agree with the reported labels of
Kerry vs. Bush. This suggests that most blogs send and receive
edges with blogs that share the same political views.
However, 6 of the 549 blogs are clustered into different sending

and receiving clusters. These bottleneck blogs send hyperlinks to
conservative blogs and receive hyperlinks from liberal blogs, or
vice versa. Although many of the blogs are defunct, some are still
functioning. SI Appendix, Table S1 presents some information on
the content of these six blogs (as of this writing). This information,
along with the Bush/Kerry labeling of the blogs provided in the
data set, indicates that the actual beliefs of these bottleneck blogs

Fig. 2. In this diagram, there are two clusters and a bottleneck node between
the two clusters.

*In the weighted graph, Aij is number of emails from i to j. Using weighted degrees,
Dasovich has the largest out-degree and Williams has the 10th largest out-degree. Da-
sovich has the 9th largest in-degree and Williams has the 45th highest in-degree (out of
n= 154).

†www.nytimes.com/2005/02/04/us/tapes-show-enron-arranged-plant-shutdown.html. ‡See ref. 15 for a more complete description of how the list of 1,494 blogs was curated.
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matches their receiving memberships (not their sending mem-
berships). One possible reason that they send so many links to the
opposition is that they are doing “opposition research,” where
they link to blogs that they dislike so that they may criticize it. We
found no evidence of any asymmetric blogs receiving links from
the opposite party. This suggests that the incoming edges appear
to be more informative for detecting the actual political persua-
sion of a political blog.
Of the six bottleneck blogs, only one receives links from Bush

blogs and sends links to Kerry blogs. It is www.quando.net/. This
blog hosts a collection of conservative/libertarian bloggers.§ It is
only feasible to find these bottleneck blogs because DI-SIM respects
the asymmetry between incoming and outgoing edges.

The Neural Connectome of C. elegans. This section investigates the
posterior neural connectome of the male C. elegans, which was
mapped by Jarrell et al. (17). To map the connectome, the authors
(17) sliced the 1-mm-long worm into 5,000 serial slices and imaged
each slice with an electron microscope. In each image, they iden-
tified the neurons, their chemical connections, and their electrical
connections. Piecing these images back together created a 3D
image of the connectome. In analyzing the connectome, the au-
thors (17) identified several network features. The two features
identified by ref. 17 that are most relevant to the analysis in this
section are (i) several neurons participate in feedforward loops
(see Fig. 5 for definition) and (ii) there are clusters of neurons with
dense connections inside the clusters. The analysis in this section
uses DI-SIM to rediscover these two findings using the directed
network in ref. 17; our analysis shows how the DI-SIM clusters create
a feedforward structure, revealing a hierarchical pattern in the
connectome as reported in ref. 17.
The chemical connectome can be represented as a directed

graph, where the edges represent chemical connections among the
neurons, muscles, and gonad. In the posterior chemical con-
nectome, there are 226 nodes and they all receive at least one edge.
Their average in-degree is roughly 11. Only 147 nodes (of the 226
nodes) send at least 1 edge. Of these nodes that send at least 1
edge, their average out-degree is roughly 17. Both of these degree
calculations are on the unweighted graph. In fact, each edge has an
edge weight that corresponds to the size of the synaptic connection;
larger connections produce a more robust connection between
neurons. More details can be found in ref. 17. The distribution of
these edge weights has a long tail. To minimize the effect of very
large weights, the edge weights were log transformed and then used
to construct the weighted adjacency matrix A∈R226×226. This log
transformation is discussed at the end of SI Appendix, section B.
To select the number of clusters, we investigated the leading

singular values of L (given in SI Appendix, Fig. S1). This figure
reveals an “elbow” at the seventh singular value. Because we have
no additional information to suspect that the sending or receiving
partition should have more than seven clusters, we set ky = kz and
present the results for seven clusters. Using the directed spectral
algorithm of ref. 18, which only provides a single partition of the
nodes, Jarrell et al. (17) reported the results for five clusters. SI
Appendix, section B contains the DI-SIM results with ky = kz = 5;
under this perturbation from seven to five clusters, the key findings
below are qualitatively unchanged.
Because ky = kzðdKÞ, we use DI-SIM with the optional step 4,

where the rows of X*
L and X*

R are concatenated into a matrix with
2n rows. In the optional step 4, the k-means algorithm is run
only once on the matrix with 2n rows. So, the partitions esti-
mated from left and right singular vectors are both derived from

the same k-means centers.{ For u∈ f1, . . . ,Kg, there is a corre-
spondence between sending cluster u and receiving cluster u when
they both correspond to the same k-means center. Refer to this as
cluster u. Fig. 3 reveals the “edgewise” relationships between the
seven DI-SIM clusters; it shows the matrixM whose ðu, vÞ th element
is the average weight of edges going from sending cluster u to
receiving cluster v (if there is no edge between nodes i and j, then
create an edge with weight zero).# The strong diagonal in Fig. 3
shows most edges stay within the same cluster; this means that
most edges coming from nodes with sending membership u go to
nodes with receiving membership u.
The edgewise relationships revealed in Fig. 3 provide one way

to assess the relationships between clusters. In addition to edge-
wise relationships between clusters, a sending and receiving cluster
can relate to one another via the number of nodes that they have
in common. Two clusters u and v have a nodewise relationship if
there is a node that belongs to both sending cluster u and receiving
cluster v. Both edgewise and nodewise relationships are asym-
metric relationships between clusters.
The table in Fig. 4 displays the nodewise relationships between

the clusters. The ðu, vÞ th element of the table in Fig. 4 gives the
number of neurons in both sending cluster u and receiving cluster
v. The strong diagonal of this matrix reveals that each cluster is
formed from a coherent core of nodes; the nonzero off-diagonal
elements give the strength of the nodewise relationship between
clusters. The order of the rows and columns in Fig. 4 was deter-
mined algorithmically; we considered the table as a weighted
adjacency matrix on seven “metanodes” or clusters and ran
pageRank on this graph of seven metanodes (9). pageRank
returns a centrality score for each of the seven clusters. The rows/
columns were ordered in ascending pageRank centrality scores.
For each pair of clusters u, v∈ f1, . . . , 7g denote wu,v as the

number of neurons in sending cluster u and receiving cluster v
(this is the u, v element in Fig. 4). In the labeling found by pag-
eRank, the weights with u< v are larger than the weights with
u> v; the sum of the weights with u< v (above the diagonal) is 39,
the sum of the weights with u< v (below the diagonal) is 9, and the
sum of the weights with u= v (on the diagonal) is 99. To examine
whether this imbalance could be expected due to chance, we

Fig. 3. Element u, v is darker when there are stronger connections from block
u to block v. A strong diagonal in this matrix suggests that most connections
stay within the same block.

§Recall that the average blog links to 10 times as many blogs of the same persuasion
supporting the same candidate. www.quando.net/ receives 5 links from Kerry blogs and
57 links from Bush blogs and links to 14 Kerry blogs and 10 Bush blogs. SI Appendix,
section A argues that this blog is mislabeled as a Kerry blog in the original data set.

{We will later see in Fig. 3 that step 4 finds that most edges stay within the same cluster.
#When M is computed on the unweighted graph [i.e., Mu,v the proportion of node pairs
ði, jÞwith i in sending block u and j in receiving block v that have an edge from i to j], the
results are qualitatively unchanged.
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performed a simple permutation test. Denote the random variable
corresponding to wu,v as Wu,v and denote ~Wu ∈R6 as the uth row,
excluding Wu,u. We test Ho : for each u, the vector ~Wu is ex-
changeable. This is a strong null because it assumes exchange-
ability of the outgoing edge weights for all clusters u. To sample
from this null: take the table in Fig. 4 as a weighted adjacency
matrix (on metanodes) and for each row of the table, permute the
off-diagonal elements. That is, one row at a time, keep the self-
loops fixed and randomly rewire the edges to the other six nodes.
After sampling a permuted graph, reorder the seven metanodes
via pageRank. Finally, define the balance score of this graph as the
sum of the weights of the edges with u> v. The original data have a
balance score of 9; smaller balance scores correspond to a more
imbalanced structure. This permutation test was performed 1 × 106

times and only 2%had scores less than or equal to 9, the score of the
actual graph. A similar analysis using M as the weighted adjacency
matrix did not reveal a statistically significant imbalance; roughly
80% of its permuted graphs had scores less than the score from M.
The analysis above suggests that there is an ordering of the

clusters such that most nodes have a sending cluster label less than
or equal to their receiving cluster label. This pattern does not
appear to be replicated in the matrix M. Said another way, in the
nodewise similarities between clusters (or metanodes) there is an
ordering. However, in the edgewise similarity between clusters (or
metanodes) the same analysis does not find an ordering.
As nonexperts, we interpret this ordering as similar to a pattern

found in ref. 17. A feedforward graph, also known as a directed
acyclic graph, is a graph with a labeling of the nodes f1, . . . , ng
such that for any two nodes u, v, if u→ v is an edge, then u< v. A
feedforward loop is a simple example of a feedforward graph on
three nodes; Fig. 5 displays this graph and its adjacency matrix.
Looking at individual neurons and their connections, Jarrell et al.
(17) find several feedforward loops among the neurons. See ref. 19
for more on feedforward loops. The feedforward loops found by
Jarrell et al. (17) are on the microscale, looking at individual
neurons and their relationships. We interpret our analysis of Fig. 4
as finding a macrolevel feedforward system on the nodewise
similarities between clusters (or metanodes). Our analysis of Fig. 3
does not find an analogous feedforward ordering in the edgewise
similarities between clusters.
SI Appendix, Fig. S2 presents the left and right partitions of the

C. elegans connectome as estimated by DI-SIM with ky = kz = 7. The
figure compares the two DI-SIM partitions with the single partition
estimated in the original paper (ref. 17), in which the authors used
the spectral technique of ref. 18. Whereas both the sending and
receiving partitions of DI-SIM are largely similar to the partition
estimated in ref. 17, the results of DI-SIM emphasize that several
neurons change sending and receiving clusters. With ky = kz = 7,
DI-SIM finds that roughly 30% of the neurons belong to different
sending and receiving clusters. This massive disparity between
sending and receiving reveals a macrolevel feature in the topology
of the network and it is not feasible without separate notions of
sending and receiving clusters.

The Stochastic Co-Blockmodel and Theory for DI-SIM. The Stochastic
Blockmodel is a classical model of clustering in social networks
(20). This model assigns each node to one of K blocks and nodes
in the same block are stochastically equivalent. Specifically, i and j
are stochastically equivalent if

Pði  connects  to  ℓÞ=Pðj  connects  to  ℓÞ

for every actor ℓ in the network. The Stochastic co-Blockmodel,
proposed below, generalizes the notion of stochastic equivalence
to directed graphs, where there are two separate notions of sto-
chastic equivalence between any nodes i and j:

Sending :Pði→ ℓÞ=Pðj→ ℓÞ∀ℓ [3]

and

Receiving :Pðℓ→ iÞ=Pðℓ→ jÞ ∀ℓ. [4]

Each notion of stochastic equivalence provides a partition of the
nodes. DI-SIM estimates both partitions.
Because the Stochastic co-Blockmodel naturally generalizes to

bipartite graphs, this section allows for a different number of rows
(Nr) and columns (Nc) in the adjacency matrix A.
Definition 1: Let Y ∈ f0,1gNr×ky ,Z∈ f0,1gNc×kz and B∈ ½0,1�ky×kz.

Each row of Y and each row of Z has exactly one 1 and each
column has at least one 1. Under the Stochastic co-Blockmodel
(ScBM), the adjacency matrix A∈ f0,1gNr×Nc contains independent
Bernoulli random variables with

EðAÞ=YBZT .

In the Stochastic Blockmodel, EðAÞ=ZBZT. In the ScBM,
EðAÞ=YBZT. In this definition, Y and Z record two types of
block membership which correspond to the two types of stochastic
equivalence (Eqs. 3 and 4). Denote yi as the ith row of Y and zi to
be the ith row of Z. Under the ScBM for a directed graph, if yi = yj,
then nodes i and j are stochastically equivalent senders, Eq. 3.
Similarly, if zi = zj, then nodes i and j are stochastically equivalent
receivers, Eq. 4.
The degree-corrected ScBM generalizes this model to allow

for highly heterogeneous node degrees within the same block
(16). SI Appendix, Theorem E.2 shows that under certain as-
sumptions, the sending and receiving partitions estimated by DI-

SIM are a weakly consistent estimates of the partition contained in
Y and Z, respectively. As such, the DI-SIM partitions estimate sets
of stochastically equivalent senders and stochastically equiv-
alent receivers.

Discussion
This paper aims to identify the clustering asymmetries in directed
graphs by extending both spectral clustering and the Stochastic
Blockmodel to a co-clustering framework.

Fig. 4. Element u, v is the number of nodes with sending cluster u and re-
ceiving cluster v. Only nodes that both send and receive edges are counted.

. 1 1

. . 1

. . .
A = 

Feed-forward loop
1

2
3

Fig. 5. The three-node graph on the left is a feedforward loop. The adjacency
matrix of a feedforward loop contains ones in every element above the di-
agonal. All other elements are zero (displayed with dots). This structure is
mimicked by the table in Fig. 4.
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We propose a spectral algorithm DI-SIM. To accommodate
sparse graphs, DI-SIM uses the regularized graph Laplacian. To
allow for heterogeneous degrees within clusters, DI-SIM nor-
malizes the rows of the singular vector matrices (step 3 of the
algorithm). In the data examples of this paper and in other data
examples that we have encountered, spectral algorithms with
these regularization and projection steps find clusters with
more balanced sizes. The theoretical results in SI Appendix
highlight the importance of these steps by studying DI-SIM under
the degree-corrected ScBM.
Throughout the three examples in the paper, DI-SIM reveals

asymmetries in the structure of the example networks. This high-
lights the dangers of symmetrizing the relationships. In both the
Enron and political blog example, certain nodes played the role of
bottleneck communicators. In the C. elegans network, DI-SIM finds
48 bottleneck nodes. The bottleneck nodes in C. elegans display an
imbalance; under an estimated ordering of the clusters, the vast

majority of bottleneck nodes have a sending cluster which is less
than their receiving cluster. We interpret this imbalance as a
macrolevel feedforward structure. Symmetrizing the graph con-
ceals these directed and asymmetric patterns.
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