
Adaptive integration of habits into depth-limited
planning defines a habitual-goal–directed spectrum
Mehdi Keramatia,1, Peter Smittenaarb, Raymond J. Dolanb,c, and Peter Dayana,c

aGatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom; bWellcome Trust Centre for Neuroimaging,
Institute of Neurology, University College London, London WC1N 3BG, United Kingdom; and cMax Planck Centre for Computational Psychiatry and Ageing
Research, University College London, London WC1B 5EH, United Kingdom

Edited by Paul W. Glimcher, New York University, New York, NY, and accepted by Editorial Board Member Marlene Behrmann September 10, 2016 (received
for review June 6, 2016)

Behavioral and neural evidence reveal a prospective goal-directed
decision process that relies on mental simulation of the environ-
ment, and a retrospective habitual process that caches returns
previously garnered from available choices. Artificial systems combine
the two by simulating the environment up to some depth and then
exploiting habitual values as proxies for consequences that may arise
in the further future. Using a three-step task, we provide evidence
that human subjects use such a normative plan-until-habit strategy,
implying a spectrum of approaches that interpolates between habit-
ual and goal-directed responding. We found that increasing time
pressure led to shallower goal-directed planning, suggesting that
a speed-accuracy tradeoff controls the depth of planning with
deeper search leading to more accurate evaluation, at the cost
of slower decision-making. We conclude that subjects integrate
habit-based cached values directly into goal-directed evaluations
in a normative manner.

planning | habit | reinforcement learning | speed/accuracy tradeoff |
tree-based evaluation

Behavioral and neural evidence suggest that the brain uses
distinct goal-directed and habitual systems for decision-

making (1–5). A goal-directed system exploits an individual’s model,
i.e., their knowledge of environmental dynamics, to simulate the
consequences that will likely follow a choice (6) (Fig. 1A). Such
evaluations, which assess a decision-tree expanding into the future
to estimate the total reward, adapt flexibly to changes in environ-
mental dynamics or the values of outcomes. Evaluating deep trees,
however, is computationally expensive (in terms of time, working
memory, metabolic energy, etc.) and potentially error-prone. By
contrast, the habitual system simply caches the rewards received on
previous trials conditional on the choice (Fig. 1C) without a rep-
resentational characterization of the environment (hence being
called “model-free”) (6, 7). This process hinders adaptation to
changes in the environment, but has advantageous computational
simplicity. Previous studies show distinct behavioral and neurobio-
logical signatures of both systems (8–18). Furthermore, consistent
with the theoretical strengths and weaknesses of each system (2, 19),
different experimental conditions influence the relative contri-
butions of the two systems in controlling behavior according to
their respective competencies (20–23).
Here, we suggest that individuals, rather than simply showing

greater reliance on the more competent system in each condition,
combine the relative strengths of the two systems in a normative
manner by integrating habit-based cached values directly into goal-
directed evaluations. Specifically, we propose that given available re-
sources (time, working memory, etc.), individuals decide the depth
k up to which they can afford full forward simulations and use cached
habitual values thereafter. That is, individuals compute the value of a
choice by adding the first k rewards, predicted by the explicit simu-
lation, to the value of the remaining actions, extracted from the cache.
We call this process an integrative “plan-until-habit” system (Fig. 1B).
The greater flexibility of planning implies that a larger k in the

plan-until-habit system leads to more accurate evaluations. This

accuracy comes at the cost of spending more time and using more
cognitive resources. If the depth is zero (k= 0), for example because
of severe time constraints, the overall plan-until-habit system would
appear purely habitual. In contrast, given a sufficiently great depth
(k→∞), it would appear purely goal-directed. Intermediate integer
values of k could permit a normative balance, whereby depth of
planning is optimized with respect to available resources.
Previous studies of planning have used shallow tasks (8–18,

20–23) and have found evidence for the two extreme values
of k. Rather than this dichotomous dependence on either goal-
directed or habitual systems, we hypothesize that individuals use
an integrative plan-until-habit system for decision making with
intermediate values of k. We further hypothesize that the choice
of k is a covert internal decision that is influenced by the avail-
ability of cognitive resources.
To test these hypotheses, we designed a three-step task that

was adapted from a popular methodology for assessing model-
based and model-free control (12). Our version involves a deeper
planning problem that provides the opportunity for subjects to
exhibit a plan-until-habit strategy with an intermediate value of k. In
brief, our human behavioral data demonstrate that individuals in-
deed used intermediate depths in the plan-until-habit system and
that limiting the time allowed to make a decision led to significantly
smaller values of k (i.e., shallower goal-directed planning).

Results
Two groups of subjects performed ∼400 trials of a three-stage
task (Fig. 2). The first stage involved two choices, represented by
different fractal images, each of which led commonly to one, and
rarely to the other, of two second-stage states. These states were
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distinguished by the particular pairs of choices they afforded (again
represented by distinct fractals), each of which led commonly to one,
and rarely to a second, of four terminal third-stage states, as depicted
in Fig. 2A. These states were again identified with distinct fractals
and subjects made a forced-choice response to reveal whether or not
the particular state contained a rewarding point. In this task, subjects
were motivated to collect as many points as they could. The reward
was deterministically present in just one terminal state at a time,
staying put for a random number of trials [drawn from a suitably
discretized normal distribution X ∼Nðμ= 5, σ2 = 2Þ] and then hop-
ping randomly to one of the other three terminal states, and so on.
Critically, subjects in the two groups were different in terms of the
time subjects were allowed for responding at each stage. The high-
resource group (n = 15) had 2 s to respond, whereas the low-re-
source group (n = 15) performed under an imposed time pressure of
700 ms (see Methods and Figs. S1–S3 for further details).
The depth of planning k in this task can take on values k= 0,

k= 1, or k= 2, equivalent to adopting pure habitual, plan-until-habit,
and pure planning strategies, respectively. Simulations showed that
different agents using different depths of planning demonstrate
distinctive behavioral patterns in this task (Fig. 3A). One way to
examine the behavioral pattern associated with using each strategy is
to classify the transitions on each trial into one of four categories:
CC, CR, RC, or RR (where C and R stand for “common” and
“rare,” respectively, and the first and the second letters represent the
types of the first- and second-stage transitions); and the outcome of
each trial into one of two categories: rewarded and unrewarded.
Together, these produce 4 × 2 = 8 categories of trials. The behav-
ioral pattern for each simulated agent was measured in terms of
stay-probability profile (12), defined as the probability of repeating
the same first-stage action that was chosen in the previous trial,
given the category (one out of eight) of the previous trial.

A difference between stay-probability profiles arises from the
fact that a pure planning strategy, after a rewarded trial, would
target the terminal (i.e., third-stage) state that had just been
visited and rewarded. Planning, therefore, would require choosing
the same first-stage action as in the previous trial, if the previous
trial was of the types CC or RR, but choosing the other action if
the previous trial was CR or RC. The plan-until-habit strategy
after a rewarded trial, however, would target the “second-stage”
state that was visited, overlooking the ensuing terminal state or
whether it was reached after a common or rare second-stage
transition. This strategy would imply choosing the same first-stage
action as in the previous trial, only if the first transition in the
previous trial was of type C. Finally, the purely habitual strategy
after a rewarded trial would simply repeat the choice that was
made and thus reinforced in the previous trial (see Methods and
Fig. S4 for details of simulations, and Fig. S5 for the effect of using
different eligibility traces in the Q-learning algorithm used for
implementing the habitual strategy).
We also simulated mixture strategies in which the values of the

first-stage choices were weighted averages of values computed sep-
arately by pure planning and plan-until-habit strategies. As expected,
the stay-probability profiles of such mixture strategies were mixtures
of the stay-probability profiles of the two separate strategies, pro-
portional to the weights given to each strategy (Fig. 3B).
We tested patterns of stay-probability in participants. As ex-

pected, the stay probability profile in the high-resource group
showed a significant pure planning effect after both rewarded
(P< 0.001, nonparametric Wilcoxon signed-rank test was used
for this and all following stay-probability tests) and unrewarded
trials (P< 0.001) (Fig. 4A). By contrast, the planning-until-habit
effect was only significant after unrewarded trials (P< 0.002) and
not rewarded ones (P= 0.073) (seeMethods for details of statistical

A B C

Fig. 1. Schematic of the algorithm in an example decision problem (see SI Appendix for the general formal algorithm). Assume an individual has a “mental
model” of the reward and transition consequent on taking each action at each state in the environment. The value of taking action a at the current state s is
denoted by Qðs, aÞ and is defined as the sum of rewards (temporally discounted by a factor of 0≤ γ ≤ 1 per step) that are expected to be received upon
performing that action. Qðs, aÞ can be estimated in different ways. (A) “Planning” involves simulating the tree of future states and actions to arbitrary depths
(k→∞Þ and summing up all of the expected discounted consequences, given a behavioral policy. (B) An intermediate form of control (i.e., plan-until-habit) involves
limited-depth forward simulations (k= 3 in our example) to foresee the expected consequences of actions up to that depth (i.e., up to state s’). The sum of those
foreseen consequences (r0 + γr1 + γ2r2) is then added to the cached habitual assessment [γkQhabitðs’, a’Þ] of the consequences of the remaining choices starting from
the deepest explicitly foreseen states (s’). (C) At the other end of the depth-of-planning spectrum, “habitual control” avoids planning (k= 0) by relying instead on
estimates Qhabitðs,aÞ that are cached from previous experience. These cached values are updated based on rewards obtained when making a choice.
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analyses). For the low-resource group of subjects, the main effects
of both pure planning and plan-until-habit strategies were signifi-
cant after both rewarded and unrewarded trials (P< 0.001 for both
strategies after rewarded trials, and P< 0.002 for both strategies
after unrewarded trials) (Fig. 4B).
We further predicted that increased time pressure would de-

crease the depth of planning, resulting in a weaker reliance on
the planning, but stronger reliance on the plan-until-habit strategy.
Supporting this prediction, the planning effect was stronger in the
high- compared with the low-resource group, after both rewarded
(P= 0.011) and unrewarded (P= 0.027) trials. Conversely, the plan-
until-habit effect was stronger in the low- compared with the high-
resource group after rewarded trials (P= 0.034). This latter differ-
ence, however, was not significant after unrewarded trials (P= 0.9)
(see Methods for details).
Together, these model-agnostic stay-probability analyses show

that when under time pressure, human subjects choose a limited
depth for forward simulation by integrating habits into planning.
Further analysis, using mixed-effect lagged logistic regression
analysis (24), corroborated these results showing a decaying ef-
fect on choice probability, of events (i.e., transition types and
reward) at several lags relative to the current trial (see Figs. S6
and S8 for simulations and Fig. S7 for empirical data).
Note that switching to habitual values at the pruned branches

is essential in our task. That is, simply pruning the decision tree
after one level of planning and not switching to habitual values,
as suggested in previous work (25, 26), would estimate zero
values for both first-stage choices, because there is no reward
available at the first stage of the task. This strategy would predict
indifference between the two first-stage choices, as opposed to
the distinctive stay-probability pattern that is predicted by the
plan-until-habit strategy and evident in our experimental data.
To confirm our results, we used a hierarchical Bayesian method

to fit a comprehensive collection of hybrid models to the experi-
mental data to find the model that best explained the data from
each group. Each hybrid model incorporated a weighted com-
bination of one or more of the planning, plan-until-habit, and
habitual strategies, such that all possible combinations were con-
sidered. As part of inference, the combination weights were fitted to
data from each group (see Methods for details). In both groups of

subjects, the best hybrid models (in terms of integrated Bayesian
information criterion) consisted just of the pure planning and plan-
until-habit strategies (Fig. S9). That is, both groups of subjects used
both pure planning and plan-until-habit strategies, but not the pure
habitual strategy, for making their choices at the first stage of the
task. The weight of the plan-until-habit strategy, however, was sig-
nificantly smaller in the high-resource than the low-resource group
(permutation test; P< 0.01) (Fig. 4C and Fig. S10), corroborating
the model-agnostic, stay-probability analysis that showed only a
weakly significant presence of the plan-until-habit strategy in the
high-resource group (Fig. 4A). Combined, these analyses demon-
strate the use of both planning and plan-until-habit strategies in both
groups of subjects, with plan-until-habit being more pronounced
under increased time pressure (for classification performance, see
confusion matrix in Fig. S11). Synthetic data generated by simulating
the best-fit model to data captured qualitative and quantitative
patterns of stay-probabilities reported in Fig. 4 (Fig. S12).
When arriving at the second stage of the task, only one step

remains before the terminal states. Thus, subjects can adopt a
depth of planning of either zero or one, corresponding to pure
habitual and pure planning strategies, respectively. Model-fitting
results showed a combination of both these strategies at the
second stage, in both groups of subjects (with the weight of the
habitual system being 0.37 ± 0.18 for the high-resource group,
and 0.59 ± 0.23 for the low-resource group). This result confirms
previous demonstrations of habitual and goal-directed strategies
in depth-limited tasks (8–18, 20–23). Furthermore, across sub-
jects within both groups, the weight of using the plan-until-habit
strategy at the first stage was correlated with the weight of using
the pure habitual strategy at the second stage (Fig. 4D). This
finding implies that subjects with more limited planning capac-
ities demonstrate this trait at both stages of the task.

Discussion
Our results imply an adaptive integration of planning and habit-
based decision processes. Previous accounts of interaction be-
tween the two processes have mostly focused on competition (2,
12, 22), where one of the two processes that is more competent
in a condition takes control over behavior. Here, we showed that
the integrative plan-until-habit framework sometimes masquerades

A B

Fig. 2. Schematic and implementation of the experimental design. (A) Each trial started from state s1, which afforded two actions (illustrated by red and
green arrows here). Depending on the chosen action, a common (P = 0.7) or rare (P = 0.3) transition was made to one of two second-stage states. Again, the
subject had two choices, each associated with common (P = 0.7) or rare (P = 0.3) transitions to two of four third-stage states. After performing a forced-choice
action at this terminal state, the subject observed whether or not the resulting third-stage state contained a reward point. In each trial, only one of the four
terminal states contained reward. The reward stayed in one terminal state for a random number of trials and then transitioned randomly into one of the
three other terminal states. (B) Two groups of subjects performed the task for around 400 trials: a high-resource group (n = 15) and a low-resource group (n =
15) had 2 s and 700 ms, respectively, to react at each of the three stages. See SI Appendix and Figs. S1–S3 for further details.
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as two dichotomous systems when the task design only allows for
pure habitual or pure planning strategies. Our task was specifically
designed so that a nonboundary depth that requires integration of
the two systems can also be adopted, rendering habitual and goal-
directed responding as two extremes of a spectrum. Our results
show that humans are equipped with a much richer repertoire of
strategies, than just two dichotomous systems, for coping with the
complexity of real-life problems as well as with limitations in their
cognitive resources. Therefore, the factors that have been shown or
suggested to influence competitive combination in favor of habitual

responding, such as working memory load (13), opportunity cost
(27, 28), stress (22), or the one we examined directly, namely time
(19, 29), would all be expected to favor shallower trees and thus
relatively greater dominance of habits.
Another recent study suggests that humans plan (18) toward goals

and that targeted goals are reinforced when subjects are rewarded,
resulting in higher tendency of targeting those goals in the future.
This model, too, cannot explain the behavioral profiles in our re-
sults, and predicts a stay-probability pattern similar to that of a pure
habitual system (Fig. 1A, right column). In fact, targeting the state
(either on the second or third stage of our task) that was targeted in
the previous trial would require taking the same action that was
chosen in that trial. This strategy predicts a high stay probability
after rewarded trials, regardless of the transition category.
The previous, discrete, distinction between goal-directed and

habitual decision making has been used to illuminate several psy-
chiatric disorders such as addiction (30) and obsessive-compulsive
disorder (31, 32). Recent interpretations in psychiatry (33) favor the
notion that these and other diseases are best considered in terms
of spectra rather than binary distinctions. It will be most in-
teresting to see whether classifying individuals according to their
preferred depths of planning (i.e., on a gradient between goal-
directed and habitual decision-making) provides a richer and
more accurate correlate of dysfunction.
Our task’s simple dissociation of different forms of habitual

and goal-directed interaction leaves for future work richer possibil-
ities, including different depths of planning in different parts of the
tree, or indeed using other heuristic value-estimation methods other
than model-free learning, such as a rollout mechanism as in Monte
Carlo tree search (34) or using social advices. There are also more
extreme forms of habits than the sort of cached values that we
considered (35). A more general question concerns individuating the
operations associated with building trees of possible future states,
populating leaves or branches with habitual values, or simulated
steps or rewards, and propagating the results up the tree to estimate
the future worth of current possible actions. Examining these met-
acontrolling internal evaluative actions (36), and indeed their neural
substrates in versions of cortico–amygdala–striatal interactions that
realize more straightforward habitual and goal-directed control of
external actions, offers the prospect of enriching our understanding
of normative control and providing a more comprehensive picture
of the normative control of control.

Methods
Subjects. Thirty subjects (17 female, 13 male) were recruited form the SONA
subject pool (https://uclpsychology.sona-systems.com/Default.aspx?ReturnUrl=/)
with the restrictions of being London-based university students and aged
between 20 and 30 y. The study was approved by the University College
London Research Ethics Committee (Project ID 3450/002). Subjects gave
written informed consent before the experiment.

Experimental Procedure. The subjects were randomly divided into two groups
of 15. The only difference in the task setup between the two groups was that
the reaction-time limitations during both practice and test sessions were 2,000
ms and 700ms for the high-resource and the low-resource groups, respectively.

All subjects first experienced a practice session, consisting of 60 trials. To
make it easier for subjects to understand the task, the probability of common
and rare transition during this session were P = 0.8 and P = 0.2, respectively.
Subjects then performed the test session during which, a new set of fractal
images were used for representing state-action pairs. The number of trials
performed during the test session was 350 and 500 for the subjects in the
high-resource and the low-resource groups, respectively, because of the
difference in time constraints. Fractal images associated with states and
state-action pairs were counter balanced across subjects. Also, the motor-
level actions (pressing the right vs. left shift keys on a computer keyboard)
required for choosing each option (i.e., the two fractal images) at each state
was counterbalanced across trials.

Subjects were instructed that they would be compensated with a payment
between £7 to £30, depending on the total number of points they collected
during the test session. See SI Appendix for further details.

A

B

Fig. 3. Results of simulating artificial agents with different depths of plan-
ning in the task described in Fig. 2A. (A) Probabilities, predicted by the three
different strategies, for repeating the first-stage choice (“stay probability”)
after experiencing common (C) or rare (R) transitions for the first- and second-
stage choices (concatenating the letters) and given reward (top row) or its
absence (bottom row). The three different strategies (columns, from left to
right) are, respectively, pure planning (k= 2), planning-until-habit (k= 1;
planning only one step ahead, and using habitual values at the second stage),
and a pure habitual system (k=0; implemented by a model-free temporal-
difference learning). Each plot was averaged over 15 agents, each having 500
trials. (B) Mixtures (action selection based on weighted average values) of the
first and second strategies, with three different weights. See SI Appendix for
details of the simulations and the rationale for the parameters used.
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Model. A Markov decision process (MDP) is defined by a quintuple ðS,A,P. ð. , . Þ,
R. ð. , . Þ, γÞ, where S is a finite set of states, A is a finite set of actions, Paðs, s’Þ=p
ðst+1 = s’jst = s, at = aÞ is the probability that taking action a in state s at time t
will lead to state s’ at time t + 1, and Raðs, s’Þ is the expected immediate reward
received after transition to state s’ from state s and action a. Finally γ ∈ ½0,1� is the
discount factor.

The goal, in our case, is to choose a policy π that maximizes the expected
discounted sum over a potentially infinite time-horizon:

ÆX∞t=0 γtRatðst , st+1Þæ
π

[1]

by choosing actions at = πðstÞ.
To achieve this goal, reinforcement learning (RL) (6) algorithms define a

further function, Qðst , atÞ, which estimate the expected sum of discounted
rewards for taking action at at state st, and then continuing optimally (or
according to a given policy). Two putative variants of the RL algorithm are
model-free (MF) and model-based (MB) RL, equivalent to habitual system
and goal-directed planning system, respectively.

One MF algorithm (Q-learning), when at state st, uses prior Q-values
Qhabitðst , aÞ of all possible actions a for making a choice. Upon performing
the chosen action, at, the agent receives an instantaneous reward rt from
the environments and arrives in a new state st+1. Based on these observa-
tions, the agent computes a reward prediction error, δt:

δt = rt + γmax
a’

Qhabit
t ðst+1, a’Þ−Qhabit

t ðst , atÞ. [2]

This prediction error is then used to update the prior Q-value of the expe-
rienced state-action pair:

Qhabit
t+1 ðst , atÞ=Qhabit

t ðst , atÞ+αδt , [3]

where 0< α≤ 1 is learning rate.
One MB algorithm, by contrast, learns the reward R̂atðst , s’Þ and transition

P̂at ðst , s’Þ functions of the MDP and on the basis of those, computes Q-values
in a recursive value-iteration process:

Qplan
t ðst , atÞ=

X
s’

P̂at ðst , s′Þ
�
R̂at ðst , s′Þ+ γmax

a’
Qplan

t ðs′, a′Þ
�
. [4]

Nomatter whether aMB or aMF algorithm is used for estimating the value of
actions, a “soft-max” rule can be used to choose among possible actions,
with probabilities proportional to the exponential of the Q-values:

π :   pðat = ajstÞ∝ eβQðst , aÞ, [5]

where β is the rate of exploration.
Because both MF (habit) and MB (planning) systems have previously been

shown to be involved in decision-making in animals and humans, Eq. 4 suggests
the obvious possibility of limiting the depth of recursive value-iteration to a
certain value (terminating tree expansion), and substituting the term Qplan

t ðs’, a’Þ
at that depth with theMF estimationQhabit

t ðs’, a’Þ. This model is an alternative to
previous suggestions of calculating the two values separately and then finding a
weighted average. We call these a plan-until-habit model.

For the specific case of our experiment, choosing a depth of two in the
integrative plan-until-habit algorithm is equivalent to a pure MB system (Fig.
S4A). Choosing a depth of zero, on the other hand, is equivalent to a pure
MF system (Fig. S4C).

As an intermediate strategy, choosing a depth of one is equivalent to using
Eq. 4, but replacing the term Qplan

t ðs’,a’Þ with Qhabit
t ðs’, a’Þ (Fig. S4B). That is:

Qplan−until−habit
t ðst , atÞ=

X
s’

P̂atðst , s′Þ
�
Ratðst , s′Þ+ γmax

a’
Qhabit

t ðs′,a′Þ
�
. [6]

Simulations. In our task, the habitual Q-values can be computed by a temporal
difference learning alogorithm with an eligibility trace of zero (λ = 0) or one
(λ = 1). The values of the free parameters in simulations were the mean value
of the parameters recovered from the low-resource group of human subjects.
That is, αplan =0.8, αhabitðλ=1Þ = αhabitðλ=0Þ = ρhabitðλ=1Þ = ρhabitðλ=0Þ = 0.55, ω2 = 0.59,

A

B

C D

Fig. 4. Behavioral results. Both high-resource (A) and low-resource (B)
groups show significant effects of using pure planning (middle column), but
only the low-resource group shows a significant effect of using the plan-
until-habit strategy (right column) after both rewarded and unrewarded
trials. Each black circle represents the average stay probability for one sub-
ject, after the indicated types of trial. (C) Model-fitting results show that the
weight Wstage1

plan−until−habit of using the plan-until-habit strategy at the first stage
of the task is significantly smaller in the high-resource group than that in the
low-resource group (P < 0.01). The two curves show the probability distri-
bution of Wstage1

plan−until−habit in the two groups. Circles show the median of the
distribution of Wstage1

plan−until−habit for each of the subjects. (D) Within both
groups, there is a strong correlation across subjects between Wstage1

plan−until−habit
and the weight Wstage2

habit of using the pure habit strategy (against using the
planning strategy) at the second stage. Each circle represents the medians of

Wstage1
plan−until−habit and Wstage2

habit for a single subject. Wilcoxon signed-rank test
(nonparametric) was used in A and B. Spearman’s rank correlation co-
efficient test (nonparametric) was used in D.
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and β1= 8.2, β2= 4.2. β1 and β2 are the rates of exploration at the first and
the second stages of the task, respectively. Also, α denotes learning rate. See
SI Appendix for further details.

Stay-Probability Analysis. To test the main effect of the planning model we
first computed a variable Ep,  Rew as:

Ep,  Rew =p
�
a1,t = a1,t−1

��Tt−1 =CC,Rt−1 = 1
�
+p

�
a1,t = a1,t−1

��Tt−1 =RR,Rt−1 = 1
�

−p
�
a1,t = a1,t−1

��Tt−1 =CR,Rt−1 =1
�
−p

�
a1,t = a1,t−1

��Tt−1 =RC,Rt−1 =1
�
.

We then used the nonparametricWilcoxon signed-rank test onH0 : Ep,  Rew > 0.
This method tests whether stay-probability [pða1,t =a1,t−1Þ] after rewarded
trials (Rt−1 = 1) was higher when the transition type in the previous trial (Tt−1)
was CC or RR, compared with when it was CR or RC. A similar procedure was
used to test the main effect of planning after “nonrewarded” trials by
replacing Rt−1 = 1 with Rt−1 = 0.

Similarly, to test the main effect of the plan-until-habit strategy, we first
computed a variable Ep−h,Rew as:

Ep−h,Rew =p
�
a1,t = a1,t−1

��Tt−1 =CC,Rt−1 =1
�
+p

�
a1,t = a1,t−1

��Tt−1 =CR,Rt−1 = 1
�

−p
�
a1,t = a1,t−1

��Tt−1 =RC,Rt−1= 1
�
−p

�
a1,t = a1,t−1

��Tt−1=RR,Rt−1 =1
�
.

We used Wilcoxon signed-rank test on H0 : Ep−h,  Rew > 0. A similar procedure
was used to test the plan-until-habit effect after nonrewarded trials by
replacing Rt−1 = 1 with Rt−1 = 0.

As explained in Results, the plan-until-habit effect in the first group is
only significant after nonrewarded and not after rewarded trials. This effect
could be simply due to the low number of samples in the latter condition
compared with the former.

To compare between the two groups, we used the nonparametric Mann–
Whitney U test on H1 : Ep,  Rew ðhigh-resource  groupÞ> Ep,  Rew ðlow-resource 
groupÞ and also on H1 : Ep−h,  Rew ðhigh-resource  groupÞ< Ep−h,  Rew ðlow-
resource  groupÞ. We used similar procedures for testing the same effects
after nonrewarded trials.

Model-Fitting. Different combinations of the four models mentioned in
Simulations were fit to data. For the hybrid model that contained all of the

four individual models, the Q-values for the two top-stage action were
computed as follows:

for  all  a1   ∈ fa,bg  :

Qmix
t ðs1, a1Þ=ω1,1Q

plan
t ðs1, a1Þ+ω1,2Q

plan−until−habit
t ðs1, a1Þ+ω1,3Q

habitðλ=1Þ
t ðs1,a1Þ

+ω1,4Q
habitðλ=0Þ
t ðs1, a1Þ+ω1,stayBiasφ

�
a1,a1,t−1

�
,

where ω1,stayBias is a stay bias, and the function φð. , . Þ returns 1, if the action
in consideration is the same action that was taken in the previous trial, and
returns 0, otherwise. The stay bias, as also used in previous similar works (12),
captures choice perseveration/switching bias in behavior.

The other n = 4 weights for the n = 4 individual models were computed as
follows:

ω1,i =

8>>>><
>>>>:

eϖi

e+
P

i∈f1, ::,n−1geϖi
if   i∈ f1,2,3g

e
e+

P
i∈f1, ::,n−1geϖi

if   i= 4
,

where ϖi   ði∈ f1,2,3gÞ were the free parameters of the model. SI Appendix,
Eq. 19 guarantees that all of the weights, ω1,i   ði∈ f1,2,3,4gÞ, of the individual
models are greater than zero, and they sum to one.

The same logic used in the two above equations was also used for fitting
other hybrid models were only three, two, one, or zero, out of the four
individual models were available.

The expectation-maximization method was used, separately for each
group, to infer group-level distributions over each of the free parameters of a
given hybrid model. That is, for each free parameter a distribution was
inferred by estimating two hyperparameters: mean and variance of a
Gaussian distribution (Laplace approximation of the parameter values).
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