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Deep sequencing of ribosome footprints (ribosome profiling) maps
and quantifies mRNA translation. Because ribosomes decode mRNA
every 3 nt, the periodic property of ribosome footprints could be
used to identify novel translated ORFs. However, due to the limited
resolution of existing methods, the 3-nt periodicity is observed
mostly in a global analysis, but not in individual transcripts. Here, we
report a protocol applied to Arabidopsis that maps over 90% of the
footprints to the main reading frame and thus offers super-resolution
profiles for individual transcripts to precisely define translated re-
gions. The resulting data not only support many annotated and
predicted noncanonical translation events but also uncover small
ORFs in annotated noncoding RNAs and pseudogenes. A substantial
number of these unannotated ORFs are evolutionarily conserved,
and some produce stable proteins. Thus, our study provides a valuable
resource for plant genomics and an efficient optimization strategy for
ribosome profiling in other organisms.
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Identifying translated open reading frames (ORFs) is important
to understanding the activity of organisms under specific condi-

tions. Until recently, genome-wide mapping of translation has relied
primarily on polysome profiling (1). This involves isolation and sep-
aration of polysome-associated mRNA through differential centri-
fugation and fractionation. Actively translated transcripts in the
polysome fraction can be identified and quantified using microarrays
or RNA sequencing (RNA-seq). However, quantification of these
transcripts may not accurately estimate translation levels as the
number of ribosomes bound to RNA can vary greatly. In addition,
although polysome profiling reveals the identity of translated tran-
scripts, it does not report the translated region of the transcript.
These limitations have been overcome by ribosome profiling (2).
Ribosome profiling combines ribosome footprints with deep

sequencing (2, 3). After isolating polysomes, the sample is treated
with ribonuclease to digest unprotected parts of the RNA. The
resulting ribosome-protected RNA fragments (or ribosome foot-
prints) are used to generate a sequencing library (Ribo-seq) (Fig.
1A). Sequencing the ribosome footprints reveals the positions and
number of ribosomes on a given transcript. When combined with
RNA-seq generated from the same starting material, one can accu-
rately determine the average number of ribosomes per mRNA and
thus estimate the relative translation levels of a transcript (2). Fur-
thermore, localization of the exact positions of ribosome footprints in
the transcriptome provides the opportunity to experimentally identify
translated ORFs genome-wide under a specific environment (4–8).
The challenge, however, is to identify real translation events.

For example, ribosomes can stall on a specific region of the
transcript without translation occurring (9, 10). Also, contami-
nant RNAs that are highly structured or embedded in ribonu-
cleoprotein complexes [e.g., rRNA, tRNA, and small nucleolar
RNA (snoRNA)] are also present in Ribo-seq reads as they resist
RNase digestion (7, 11, 12). Therefore, additional features are
required to distinguish translation from mere ribosome occupancy

and contaminants. Several metrics associated with translation have
been exploited (11), for example, the following: (i) ribosomes re-
lease after encountering a stop codon (9), (ii) local enrichment of
footprints within the predicted ORF (4, 13), (iii) ribosome footprint
length distribution (7), and (iv) 3-nt periodicity displayed by trans-
lating ribosomes (2, 6, 10, 14, 15). Among these features, some work
well in distinguishing groups of coding vs. noncoding RNAs, but are
insufficient to identify individual transcripts as coding or to define
translated regions on a transcript (11, 16). In contrast, 3-nt peri-
odicity is a unique property that allows one to directly define
translated regions. It is not observed in RNA-seq data (2, 17).
Furthermore, computational pipelines have been developed to
identify translated ORFs by interrogating 3-nt periodicity specifi-
cally, including “ORF score” (a summary statistic that tests if one
particular reading frame is enriched in Ribo-seq by comparing to a
uniform distribution) (6) and “RiboTaper” (a spectrum analysis that
determines whether footprints on a transcript display 3-nt period-
icity) (15). There are additional pipelines that include 3-nt period-
icity as part of the analysis (18, 19). The 3-nt periodicity of Ribo-seq
has been leveraged to identify novel small ORFs in zebrafish em-
bryos and mouse/human cells (6, 15, 18, 19).
The remaining difficulty is to obtain high-precision ribosome

footprints of individual transcripts in the organism of interest.

Significance

Translation is the process by which ribosomes decode information
in RNA to produce proteins. The resulting proteins constitute
cellular structures and regulate diverse functions in all organisms.
Translation also affects mRNA stability. As the final step of the
central dogma, translation can alter protein production more
rapidly than transcription in a changing environment. However, a
robust experimental method to define the landscape of the
translatome has not been established in many organisms. We
developed an advanced experimental approach and used it to
discover proteins missed in the annotation of the Arabidopsis
genome. This study confirmed computationally predicted non-
canonical translation events and uncovered unannotated small
proteins that likely have important functions in plants.
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Ribosome footprints can show a strong 3-nt periodicity in a global
analysis, but signals in individual transcripts are often too noisy to
assess periodicity (2, 13). When footprints are out of frame, noise
increases and resolution decreases. Thus, to a first approximation,
the resolution of Ribo-seq data can be quantified by the fraction of
reads in the major reading frame. Studies in several organisms,
including Chlamydomonas, yeast, zebrafish, and rat, have achieved
remarkable resolution with over 80% of the reads mapped to one
reading frame (6, 10, 20, 21). In contrast, some organisms such as
Escherichia coli, Drosophila, and plants have very limited resolution
to date (22–28). Here, we report optimization of a ribosome pro-
filing protocol and its use in Arabidopsis. The resulting data provide
super-resolution for ribosome footprints, which enables efficient
identification of translated ORFs based on the 3-nt periodicity. Our
data not only support many annotated and predicted noncanonical
translation events but also uncover evolutionarily conserved novel
small ORFs that likely encode functionally important proteins.

Results
Buffer Optimization Greatly Improves Footprint Precision. The reso-
lution of Ribo-seq data can be judged by the 3-nt periodicity that
emerges from the analysis. A survey of the literature revealed that
published Arabidopsis ribosome-profiling methods do not generate
optimal 3-nt periodicity (25–27). These protocols use extraction
buffers with relatively high ionic strength and buffering capacity,
originally designed for polysome isolation (Table S1). Unlike
polysome isolation, which emphasizes mRNA integrity, precise
ribosome footprints require complete digestion of the unprotected
mRNA. We reasoned that the high ionic strength and buffering
capacity in the polysome buffer might inhibit the RNase used in
ribosome footprinting. To test this hypothesis, we extracted poly-
somes from Arabidopsis using four buffers with varying ionic
strength and buffering capacity and examined the resulting poly-
some profiles to evaluate endogenous RNase activity (Fig. S1 A
and B). We observed similar polysome profiles among samples
extracted from the first three buffers (buffers A, B, and C) and a

slight increase of monosome-to-polysome ratio when ionic strength
decreased in buffers B and C. On the other hand, a clear increase of
monosome to polysome ratio was found with buffer D, indicating
that the endogenous RNase was most active in this buffer. After
adding RNase to polysome extracts to obtain ribosome footprints,
we constructed and sequenced eight libraries made from root and
shoot samples prepared with the four different buffers. We found
that the size distribution of ribosome footprints from buffer A was
clearly different and slightly longer than those prepared from the
other three buffers (Fig. S1C). By quantifying reading frame pref-
erence in the most abundant footprints (28 nt long), we observed
increased reading frame enrichment as ionic strength/buffering ca-
pacity decreased in the four buffers (Fig. S1D). This is consistent
with previous reports that ionic strength affects ribosome footprint
size and enrichment of footprints in the primary reading frame (3,
5). Thus, buffer composition strongly affects footprint precision.
However, the same tissues prepared with the four buffers yielded
highly correlated footprint counts on individual coding sequences
(CDSs) (r = 0.98–1; Fig. S1E), suggesting that the changes in buffer
composition did not affect measurement of ribosome occupancy on
mRNAs. Because buffer D yielded the best 3-nt periodicity, we used
this buffer for our subsequent experiments.

Optimized Ribosome Profiling Compares Favorably to Published
Datasets. We performed ribosome profiling on three biological
replicates of root and shoot tissues from Arabidopsis seedlings. A
strong 3-nt periodicity (Fig. 1C) and an excellent correlation
across replicates (r = 0.99–1, Fig. S2) suggested our protocol was
robust. Our method also used fewer starting materials, simpler
procedures, and had a shorter preparation time compared with
published methods in Arabidopsis (Table S1).
To obtain high coverage, we pooled the three replicates of the

same tissue for analysis. Compared with previously published
Arabidopsis ribosome profiling data [see SI Materials and Methods
for details of individual datasets; Juntawong et al. (26); Liu et al.
(25); Merchante et al. (27)], our protocol yields the narrowest
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footprint size distribution (Fig. 2A), yet still covers expected genomic
features of the transcriptome with 96–98% of the footprints mapped
to CDSs, and very few footprints mapped to UTRs, introns, or
intergenic regions (Fig. S3). As it has been observed that not all
footprint sizes display similar 3-nt periodicity (6, 13, 15), we examined
the periodicity of footprints with different lengths (Fig. S4 A–E for
individual datasets; Fig. S5 for summary). Among footprints with a
length between 20 and 35 nt, we observed that the 28-nt footprints
have the highest in-frame percentage compared with other footprint
lengths in our datasets, as well as in the datasets of Liu et al. and
Merchante et al. (Fig. S5). In comparisons of 28-nt footprints, our
data contained a superior enrichment of footprints in one reading
frame, with 96% and 92% of reads in the main reading frame in root
and shoot, respectively (Fig. 2B).
A ribosome footprint meta-gene analysis, which combines all

footprints that map to annotated protein-coding genes (Fig. S4
A–E), allows us to infer the corresponding P site (where peptide-
bond formation occurs in the ribosomes) within the footprints (2, 13,
15). We assigned the location of footprints according to the first
nucleotide within the footprint. By examining footprints near the
start codon (“A” in AUG is defined as 0) for 28-nt footprints, it is
apparent that footprints cover up to the 12th nucleotide upstream
of the AUG (Fig. S4A). This indicates that the codon being trans-
lated at the P site (in this case, AUG) is located between the 13th
and 15th nucleotide within a 28-nt footprint (Fig. 1C). Consistent
with the start codon position, at translation termination where the A
site encounters a stop codon, we observed the last in-frame foot-
prints cover the 15th nucleotide upstream of the stop codon (Fig.
S4A). This indicates that the A site is located between the 16th and
18th nucleotide within a 28-nt footprint, which is 3 nt downstream
of the P-site position inferred above (Fig. 1C). Despite some

differences in different datasets, the start codon located between
the 13th and 15th nucleotide for 28-nt footprints is also observed
in the datasets of Liu et al. and Merchante et al. (Fig. S4 D and
E). Furthermore, in our data, we observed that footprints are
preferentially digested at the 5′ end when the footprint size is
below 28 nt. For example, compared with the 28-nt footprints,
which have strong signals up to the upstream 12th nucleotide, the
27-nt footprints have clear signals up to the upstream 11th nu-
cleotide, and 26-nt footprints have signals up to the 10th nucleo-
tide and so on (Fig. S4 A and B: metaplots; Fig. S4F: schematic
summary). Because many of the footprints in our data display a
robust 3-nt periodicity (Figs. S4 A and B and S5), we can infer the
P-site position for each of these footprint lengths, which is essential
for downstream workflow for ORF identification using RiboTaper
(15). Overall, our protocol significantly improves the 3-nt period-
icity compared with previously published Arabidopsis datasets.

Enhancement of 3-nt Periodicity Improves Identification of Translated
ORFs. To identify translated ORFs by taking advantage of the
enhanced 3-nt periodicity in our data and to investigate how the
periodicity affects ORF identification, we adapted a recently
developed pipeline, RiboTaper (15), to Arabidopsis. RiboTaper
uses the multitaper method (29) to determine the significance of
3-nt periodicity in the P-site signals along an ORF. This ap-
proach proved to be effective in detecting active translation from
Ribo-seq data, yielding a high-confidence set of translated ORFs
in the transcriptome (15). By analyzing the meta-gene plots, we
inferred the P-site position of each footprint size in different
datasets (Fig. S4 A–E) and then created P-site tracks for indi-
vidual transcripts (Fig. 1B). Defining the P-site position for in-
dividual footprint lengths based on the meta-gene analysis rather
than assigning one presumed position for all footprint lengths
improved ORF identification (Fig. S6).
Across different datasets, we observed that deeper sequencing

depths result in the identification of more translated ORFs, but
once above 50 million mapped reads, the number of ORFs in-
creased only slightly (Fig. 2C). In addition, compared with the
same sequencing depth, datasets with a better periodicity yield a
higher number of identified ORFs (Fig. 2 B and C). For instance,
there are over 16,000 ORFs detected in either our root or shoot
data, which is substantially higher than in any other dataset (Fig.
2C). It is possible that our datasets have more identified ORFs
simply because there are more genes expressed under our experi-
mental conditions. To test this hypothesis, we examined the frac-
tion of ORFs found among the expressed protein-coding genes,
defined by varying RNA expression cutoffs across all datasets un-
der the same sequencing depth (Fig. 2D). We observed that, under
all RNA expression thresholds, our datasets have the highest
percentage of ORFs identified among the expressed genes, thus
ruling out the possibility that our samples have more identified
ORFs due to more expressed genes.
Interestingly, we noticed that the higher the RNA expression

levels, the higher the fraction of ORFs found among the expressed
genes, suggesting that a transcript with higher expression levels is
more likely to have ORFs identified by this method (Fig. 2D).
However, with lower expression cutoffs, more genes are consid-
ered expressed and a higher number of ORFs are found among
them, despite the lower fraction (Fig. S7). For example, using
transcripts per million (TPM) > 0.1 as RNA expression cutoff,
21,848 protein-coding genes are considered expressed in either the
root or shoot, and among them, 18,148 genes have ORFs identi-
fied. This results in a fraction of 83% (18,148/21,848), which is
considerably lower than the fraction using TPM > 5 (12,714/
13,219 = 96%). Nevertheless, the large number of ORFs identi-
fied among the expressed genes in our datasets demonstrates that
our approach is robust across different RNA expression levels.
RiboTaper determines de novo the start codon of an ORF by

examining the in-frame precision of the P-site positions between
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candidate AUGs (15). Therefore, an ORF could be identified with
a shorter length, that is, truncated at the 5′ end. Although it is
possible that a transcript uses a downstream AUG start site
rather than the annotated one, the truncation could result from
insufficient sequencing coverage or poor periodicity of a given
transcript. We therefore examined the ORF length reported by
RiboTaper compared with the annotated ORFs across different
datasets (Fig. S8). As the sequencing depth increases, we found
that datasets with a better periodicity identify ORFs with a higher
coverage of the annotated ORF length as seen in our dataset as
well as in that of Merchante et al. However, in the datasets with
less optimal periodicity, although the number of identified ORFs
increases (Fig. 2C), the average coverage of annotated ORF
length decreases (Fig. S8). Overall, datasets with better periodicity
yield higher coverage of the annotated ORF length. Whether the
truncated forms of ORFs represent translation events initiated
from a downstream AUG remains unclear.
Taken together, our datasets with enhanced 3-nt periodicity

correlate with a larger number of ORFs identified, a higher sen-
sitivity to identify ORFs among the expressed transcripts, and an
improved ORF length coverage compared with other datasets.

Super-resolution Profiles Can Be Used to Annotate Individual Transcripts.
By interrogating the genes annotated in The Arabidopsis Informa-
tion Resource (TAIR10) (30), we found that over 18,000 genes
have translated ORFs identified in our data, including a large
number of annotated protein-coding genes (18,153 genes), as
well as a small set of noncoding RNAs (ncRNAs) (27 genes),
pseudogenes (37 genes), and transposable elements (57 genes)
(Table 1: summary of ORFs identified; Dataset S1 A and B: all
ORFs identified by RiboTaper in root and shoot). Among the
protein-coding genes, in addition to ORFs identified within the
annotated CDSs, 187 upstream ORFs (uORFs) were identified
within 5′-UTRs and 10 downstream ORFs (dORFs) were found in
the 3′-UTRs (Table 1). In contrast to the annotated protein-coding
sequences (CDS ORFs) that have a wide range of ORF length,
most of the unannotated ORFs (except from transposable ele-
ments) have a relatively small length (Fig. S9 A and B): with uORFs
being the smallest. Most of the ORFs identified have a high fraction
of P sites mapped to the main reading frame (Fig. S9 C–F). Thus, by
taking advantage of the enhanced 3-nt periodicity, we can use ri-
bosome profiling to identify translated ORFs efficiently.
The strong 3-nt periodicity in our data not only allows efficient

identification of ORFs by a statistical method but also provides
super-resolution translational profiles of individual transcripts
across a wide range of expression levels and ORF lengths (Figs.
3–5). Unlike a well-characterized ncRNA, HIDDEN TREA-
SURE 1 (HID1) (31), for which the P sites do not show a clear
3-nt periodicity along the transcript (Fig. 3B), transcripts with
translated ORFs have most of the P sites mapped to the main
reading frame within the predicted CDSs. This is not only ap-
parent for long and highly expressed transcripts such as TUBULIN

4 (TUB4) (Fig. 3A) but also for short and lowly expressed genes,
such as GOLVEN 6 (GLV6; also known as ROOT MERISTEM
GROWTH FACTOR 8 or CLE-LIKE2) (Fig. 3C) (32–34).
To evaluate how sensitive our approach is, we examined our

ORF-finding results for known secreted peptide genes and their
homologs, which usually have short ORFs and relatively low
expression levels. Of the 34 expressed peptide genes with a TPM
value greater than 1, we identified translated ORFs in 31 (Dataset
S1C: summary; Dataset S1D: a list of known peptide genes with an
ORF identified in the root and shoot). We also confirmed trans-
lation of two small peptide genes (AT4G28460 and AT4G34600)
that were recently identified through a comparative genomics
study combining 32 plant genomes (35) (Dataset S1 C and D).
These results indicate that our improved ribosome profiling
combined with the RiboTaper pipeline is able to find small
ORFs even in genes with low expression levels.

Ribosome Profiling Supports Noncanonical Translation Events. Pre-
viously, several uORFs that encode conserved peptide sequences
(CPuORFs) were found to regulate their downstream main ORFs
(36, 37). There are 89 CPuORFs predicted in Arabidopsis, but only
a small number of them have been validated and characterized (36–
40). Among the predicted CPuORF genes expressed in our data,
there are 39 CPuORFs identified by RiboTaper (Dataset S1E:
summary, Dataset S1F: a list of CPuORFs identified in the root
and shoot). For genes possessing multiple CPuORFs such as
SUPPRESSOR OF ACAULIS 51 (SAC51) (41), RiboTaper suc-
cessfully identified all three of the predicted CPuORFs (CPuORF38,
39, and 40). In addition to CPuORFs, we identified an addi-
tional 148 unannotated translated uORFs. Similar to SAC51,
which has multiple uORFs in the 5′-UTR, we found an extra
uORF upstream of CPuORF51 in the AT3G53670 gene (Fig. 4A).
By manually inspecting the uORFs, we found that the new uORF

identified in AT5G17460 is actually an ORF from an unannotated
gene overlapping with the 5′-UTR of AT5G17460 (Fig. 4B). This
unannotated gene is also supported by the EST data (Fig. S10) (42)
and is evolutionarily conserved (see below). Therefore, ribosome-
profiling data can fine-tune and improve genome annotation.
Although RiboTaper only searches for “AUG” as the start

codon, we wanted to see whether our data can validate predicted
ORFs that use a non-AUG start, such as a “CUG” codon (43).
Among the predicted genes, AT3G10985 is highly expressed in our
root samples. By visualizing its ribosome profile, we found that, in
addition to the annotated CDS, many P sites map to the 5′-UTR
in frame with a predicted ORF that starts with a CUG codon (Fig.
3D). In addition, we confirmed a uORF initiated with a non-AUG
codon in GDP-L-GALACTOSE PHOSPHORYLASE (GGP,
AT4G26850) in the shoot (Fig. 4C). This uORF initiates at 14 aa
upstream of previously reported “ACG” start (44) in our data.
These examples demonstrate our super-resolution ribosome-
profiling data can provide direct experimental support for non-
canonical translation events.

Table 1. TAIR10 genes with translated ORFs identified by RiboTaper

Sample

No. of genes with translated ORFs identified

Protein-coding genes Other genes*

uORF† Annotated ORF dORF ncRNA Pseudogene Transposable elements

Root 136 16,657 2 23 27 31
Shoot 87 16,107 8 14 14 40
Total 187 18,153 10 27 37 57

There are 27,416 protein-coding genes, 394 ncRNAs, 924 pseudogenes, and 3,903 transposable element genes
annotated in TAIR10.
*Excluding rRNA, tRNA, and snoRNA genes.
†CPuORFs are annotated as protein-coding genes in TAIR10 and were manually grouped into uORFs here.
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Translated ORFs Identified in Annotated ncRNAs and Pseudogenes.We
identified ORFs translated in transcripts previously thought to be
noncoding, including ncRNAs and pseudogenes. In total, we
identified 27 translated small ORFs derived from annotated
ncRNAs, which we call small ORF1 (sORF1) to sORF31 (Table 1
and Dataset S1G). These sORFs range from 54 to 312 nt (Fig. S9
A and B). The P sites clearly show a 3-nt periodicity within the
identified ORF range (Fig. 5 A–C). Interestingly, two sORFs iden-
tified in AT1G79075 (sORF17) and AT3G12965 (sORF23) encode a
peptide sequence identical to five ribosomal L41 proteins in Arabi-
dopsis. Thus, we identified two additional loci of ribosomal L41 genes.
To determine whether these sORFs produce stable proteins in

planta, we epitope-tagged their coding regions and transformed
them into Arabidopsis. To ensure that these transgenes behave
similarly to the endogenous genes, we built the constructs using
genomic sequences including their native promoter/5′-UTR/introns/
3′-UTRs, so that the only difference between the transgenes and
endogenous genes is the HA tag right before the stop codon in
the transgenes (Fig. 5D). Of the four sORFs we tested (sORF2,
sORF12, sORF23, and sORF3), we detected proteins from three of
them in root extracts by Western blot (Fig. 5D). We also found that
37 annotated pseudogenes are actually expressed and translated
(Table 1 and Dataset S1H). Mining publicly available proteomics
data, four ORFs that we identified in either annotated ncRNAs or
pseudogenes also have unique peptides detected by mass spectrom-

etry (Dataset S1I) (45). The Western blots and the mass spec-
trometry data not only support the translation of these unannotated
ORFs but also demonstrate that some of the ORFs produce stable
proteins in plants.

Many unannotated ORFs Identified Are Evolutionarily Conserved. If the
unannotated ORFs we identified encode functionally important
proteins, we expect their homologs to be conserved in other plant
genomes. We surveyed 15 other plant genomes, including 6 from
Brassicaceae and 9 from other major lineages: eudicots (asterids
and rosids), monocots, Amborella (the earliest diverging flowering
plant), and Selaginella (a lycophyte). We used tBLASTn to search
against whole-genome assemblies, and because pseudogenes could
be a truncated form of other genes, we excluded ORFs that have
more than 50 hits from the downstream analysis. After obtaining
BLAST hits, we aligned all homolog sequences together to confirm
they have similar protein sequences and similar start/stop positions
(Fig. 6 and stringency described in SI Materials and Methods; all
alignments are available in the Dryad Digital Repository).
For translated ORFs identified in the annotated ncRNAs or the

unannotated gene mentioned above (Fig. 4B), we found 15 of the 19
single-exon ORFs have at least one homolog outside of Arabidopsis
thaliana (Fig. 7). These ORFs can be further classified into six groups:
(I) homologs only found in Arabidopsis lyrata; (II) homologs in
multiple species within Brassicaceae; (III) homologs in other eudicots
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besides Brassicaceae; (IV) homologs in eudicots and Amborella tri-
chocarpa, but not in monocots; (V) homologs in almost all flowering
plants examined; and (VI) homologs in almost all plants examined
including Selaginella. For translated ORFs identified in pseudo-
genes, some also have homologs in multiple Brassicaceae species,
and some have homologs in almost all plants examined (Fig. S11).
The total number of homologs found for each unannotated ORF is
summarized in Dataset S1 J and K. Taken together, many of the
unannotated ORFs are present and conserved in diverse plant

lineages, as distant as Amborella and Selaginella, which diverged
from A. thaliana over 200 and 445 million years ago, respectively
(46). These findings indicate that these unannotated ORFs likely
produce functionally important proteins.

Discussion
Ribosome profiling is a powerful technique providing precise
information about translation in vivo. The resolution of Ribo-seq
determines the amount of information that can be extracted,
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especially when identifying translated ORFs. Our datasets from
Arabidopsis root and shoot display a super resolution even in in-
dividual transcripts. Compared with three published methods for
Arabidopsis (Table S1), our protocol requires fewer starting ma-
terials and fewer sample processing steps, and yields dramatically
better resolution. The key to obtaining precise footprints is com-
plete digestion of unprotected portions of RNA. Judging the levels
of digestion based on conversion of polysomes to monosomes
within a polysome profile does not appear to be a reliable in-
dication of complete digestion (26). By contrast, judging sharpness
of RNA bands around 28 nt in a denaturing gel is a good indicator
of complete digestion (27). Consistent with ionic strength being an
important determinant of footprint precision in mammalian cell
and human cytomegalovirus ribosome profiling (3, 5), we found
ionic strength/buffering capacity in the extraction buffer had
profound effects on footprint periodicity in Arabidopsis. With an
optimized low ionic strength/buffering capacity extraction buffer,
our protocol yielded a substantial improvement in Ribo-seq res-
olution compared with other methods in Arabidopsis. The reso-
lution of our data are also among the best for all organisms.
Previous bioinformatics studies reported that ∼35% of Arabidopsis

genes have at least one uORF (47, 48), and therefore over 9,000
uORF-containing genes would be expected in TAIR10. However,
how many of these predicted uORFs are actually translated was an
open question. Liu et al. (25) found 1,996 genes have at least one
Ribo-seq read within predicted uORFs. Using RiboTaper, we iden-

tified 187 uORFs translated among 18,745 expressed genes (TPM >
1) in our data. Because RiboTaper examines 3-nt periodicity along
the potential uORF, it is possible that some translated uORFs were
missed due to their short length, insufficient sequencing coverage
potentially due to low expression levels, or because they overlapped
with other uORFs. Although the number of uORFs identified might
be an underestimate, those identified are of high confidence. For
example, our list includes 44% of the predicted CPuORFs, several of
which are known to play an important role in regulating downstream
main ORFs involved in diverse functions in plants (36).
Perhaps of greatest interest is the identification of small trans-

lated ORFs within annotated ncRNAs. Because computational
approaches typically exclude ORFs that are less than 100 aa (49,
50), small proteins are likely missed, and their transcripts may be
classified as ncRNAs (51, 52). As shown by Western blot and mass
spectrometry, at least some of the small ORFs we identified
produce stable proteins. Evolutionary conservation further sug-
gests that many of these unannotated ORFs encode functionally
important proteins. Even species-specific ORFs might play an im-
portant role (52), as translation can have essential regulatory func-
tions in addition to producing stable proteins (53, 54). Recently,
several peptides derived from annotated ncRNAs were found to play
important roles in signaling and development, such as Toddler in
zebrafish embryo development (55) and DWORF in heart muscle
contraction (56). How the sORFs we identified function in plants
requires further investigation.
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Fig. 6. Representative sequence alignments of unannotated ORFs in A. thaliana with corresponding homologs in 15 other plants. (A) An ORF identified in an
annotated ncRNA. (B) An ORF identified in an unannotated gene overlapping with AT5G17460 (denoted as AT5G17460x; also known as sORF32). (C) An ORF
identified in a pseudogene. If there are multiple homologs identified in one genome, the homolog with the highest sequence identity to A. thaliana is shown.
Amino acids with the same functional groups are shown in similar colors. Note that all these protein sequences have very similar start (the left-most me-
thionine) and stop positions (X).

Hsu et al. PNAS | Published online October 21, 2016 | E7133

PL
A
N
T
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1614788113/-/DCSupplemental/pnas.201614788SI.pdf?targetid=nameddest=ST1


Although RiboTaper only searches for AUG start codons, our
super-resolution ribosome-profiling data also provide an in-
valuable resource to study noncanonical start codons and alter-
native start sites. The data may also be useful for characterizing
translation of different transcript isoforms. With its high sensi-
tivity for identification of translated ORFs and its quantitative
nature, ribosome profiling can also serve as a proxy for the
proteome or assist proteomics studies (57–59). Finally, as the
Arabidopsis genome is among the best annotated, we expect ri-
bosome profiling will be an even more powerful approach to
uncovering novel ORFs and improving genome annotation when
applied to less well-characterized organisms.

Materials and Methods
Detailed information on materials and methods used in this study is pro-
vided in SI Materials and Methods.

Plant Materials and Growth Conditions. Arabidopsis seeds were surface ster-
ilized, imbibed at 4 °C for 2 d, and grown hydroponically with sterile liquid
media (2.15 g/L Murashige and Skoog salt, 1% sucrose, 0.5 g/L MES, pH 5.7)
and shaken at 85 rpm under 16-h light and 8-h dark at 22 °C.

Ribo-seq and RNA-seq Library Construction. Detailed procedures are provided in SI
Materials andMethods. Four polysome extraction buffers were tested (Fig. S1), and
buffer D was used to extract three biological replicates of 4-d-old root and shoot
samples. Polysomes were extracted from 0.1 g of root or shoot pulverized tissue
with buffer D [100 mM Tris·HCl (pH 8), 40 mM KCl, 20 mM MgCl2, 2% polyoxy-
ethylene (10) tridecyl ether (v/v), 1% deoxycholic acid (w/v), 1 mM DTT, 100 μg/mL
cycloheximide, and 10 unit/mL DNase I]. The nuclease digestion was performed at
23 °C for 1 h. Ribosomes were isolated by size exclusion columns (illustra
MicroSpin S-400 HR Columns; GE Healthcare). After RNA isolation and rRNA
depletion, footprints from 28 to 30 nt separated by a denaturing gel were re-

covered. Ribo-seq and RNA-seq libraries were constructed using the ARTseq/
TruSeq Ribo Profile Kit (illumina). The libraries were barcoded and pooled for
single-end 50-bp sequencing in a HiSeq 2000 or 2500 machine.

Ribo-seq and RNA-seq Data Analysis.Quality filtering and adaptor clippingwere
performed by FASTX_toolkit (60). The rRNA, tRNA, and snoRNA sequences were
removed in Ribo-seq data using bowtie2 (61). Mapping to the Arabidopsis
genome [TAIR10 (30)] was carried out by STAR (62). Statistical presentations of
the data were plotted in R using various R packages. TPM values were de-
termined by RSEM (63). de novo ORF finding was performed by RiboTaper (15).

Western Blotting. C-terminus HA-tagging constructs were built by Gibson as-
sembly (64) and transformed into Col-0 plants. Total proteins were extracted
from root of 4-d-old Col-0 and T4 transgenic plants. Protein samples were
analyzed by immunoblotting, using anti-HA antibody or anti-UGPase antibody
followed by a secondary antibody conjugated to HRP.

BLAST and Sequence Alignment. tBLASTn (65) was performed in 15 plant genomes.
Multiple sequence alignments for each ORF and its homologs were constructed.
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