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Iterated games provide a framework to describe social interactions
among groups of individuals. This body of work has focused
primarily on individuals who face a simple binary choice, such as
“cooperate” or “defect.” Real individuals, however, can exhibit be-
havioral diversity, varying their input to a social interaction both
qualitatively and quantitatively. Here we explore how access to a
greater diversity of behavioral choices impacts the evolution of so-
cial dynamics in populations. We show that, in public goods games,
some simple strategies that choose between only two possible ac-
tions can resist invasion by all multichoice invaders, even while
engaging in relatively little punishment. More generally, access to
a larger repertoire of behavioral choices results in a more ”rugged”
fitness landscape, with populations able to stabilize cooperation at
multiple levels of investment. As a result, increased behavioral choice
facilitates cooperation when returns on investments are low, but it
hinders cooperation when returns on investments are high. Finally,
we analyze iterated rock–paper–scissors games, the nontransitive
payoff structure of which means that unilateral control is difficult
to achieve. Despite this, we find that a large proportion of multichoice
strategies can invade and resist invasion by single-choice strategies—
so that even well-mixed populations will tend to evolve and maintain
behavioral diversity.

behavioral diversity | cooperation | evolution | rock–paper–scissors |
game theory

Diversity in social behaviors, in humans as well as across all
domains of life, presents a daunting challenge to researchers

who work to explain and predict individual social interactions or
their evolution in populations. Iterated games provide a frame-
work to approach this task, but determining the outcome of such
games under even moderately complex, realistic assumptions—
such as memory of past interactions (1–7); signaling of inten-
tions, indirect reciprocity, or identity (9–16); or a heterogeneous
network of interactions (17–25)—is exceedingly difficult.
Developing models that capture complex and diverse social

behaviors is an important step toward quantitative, falsifiable
predictions about a host of problems, such as the emergence and
stability of cooperation, policing, and social institutions in human
populations; and the de novo evolution of social hierarchies in
natural populations (7, 9, 10, 26–29). Recent work has expanded
the reach of game-theoretic models to describe ever more so-
phisticated forms of social interactions (3, 30–39). This work has
begun to unravel the evolutionary and behavioral dynamics that
determine the long-term stability of cooperation in a group. It
has allowed researchers to explore the role of memory in social
dynamics (40–44), and it has shown that, even with multiple
players (33, 38) and arbitrary action spaces (36), an individual
can often unilaterally influence the outcome of social interac-
tions across a broad range of contexts.
Here we study the evolutionary dynamics of social interactions

under the quite general setting of all “memory-1” strategies—
that is, strategies that specify the choice a player makes in each
round of a repeated game depending on the choices made in the
preceding round. We study the evolutionary dynamics of mem-
ory-1 strategies in a population of players with access to multiple
behavioral choices, including games where unilateral control

through so-called zero-determinant (ZD) strategies (30) is
impossible.
Many game-theoretic studies of social behavior, although by

no means all (36, 45, 46), constrain players to a binary behavioral
choice such as “cooperate” or “defect” (47, 48). Other studies,
particularly those looking at social evolution, constrain players to
a single type of behavioral strategy, but allow for a continuum of
behavioral choices—e.g., the option to contribute an arbitrary
amount of effort to an obligately cooperative interaction (45,
46). In general, and especially in the case of human interactions,
individuals have access to both a wide variety of behavioral
choices, and to a complex decision-making process among these
choices. Here we bridge this gap and study how the diversity of
behavioral choices impacts the evolution of decision making in a
replicating population, focusing on the prospects for cooperation
and for the maintenance of behavioral diversity.
We develop a framework for analyzing iterated two-player games

in which players can access an arbitrary number of behavioral
choices and use an arbitrary memory-1 strategy for choosing among
them. We apply this framework to study the effect of a large be-
havioral repertoire on the evolution of cooperation in public goods
games. We show that increasing the number of investment levels
available to a player can either facilitate or hinder the evolution of
cooperation in a population, depending on the ratio of individual
costs to public benefits in the game. We apply the same framework
to study games with nontransitive payoff structures, under which no
hierarchical ordering of payoffs is possible—e.g., the game of rock–
paper–scissors in which scissors cuts paper, and paper covers rock,
but rock crushes scissors. We show that nontransitive payoff struc-
tures generally preclude unilateral control through ZD strategies,
but that nonetheless there exist memory-1 strategies that ensure the
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maintenance of behavioral diversity, in which players make use of
all of the choices available to them.

Methods and Results
Players in an iterated game repeatedly choose from a fixed set of possible
actions. Depending on the choice she makes, and the choices her opponents
make, a player receives a certain payoff each round. The process by which a
player determines her choice each round is called her strategy. A strategymay
in general take into account a wide variety of information about the envi-
ronment, memory of prior interactions between players, an opponent’s
identity, or his social signals, etc. (1–6, 11, 13–16, 20–25). Here we restrict our
analysis to two-player, simultaneous iterated games in which a player
chooses from among d possible actions each round using a memory-1
strategy, which takes into account only the immediately preceding in-
teraction between her and her opponent. We consider games that are dis-
counted at rate δ, where 0< δ≤ 1 can be understood either as the probability
each round that the game is repeated for another round, or as a factor that
reduces the payoff received with each additional round in an infinitely repeated
game (36, 37). Although memory-1 strategies may seem restrictive, in fact a
strategy that is a Nash equilibrium against all memory-1 strategies is also robust
against all longer memory strategies as well (SI Appendix; refs. 3, 30, 35, 38).

A memory-1 strategy is specified by choosing d2 probabilities for each
possible action i, denoted pi

jk, which specify the chance the player executes
that action in a round of play, given that she made choice j and her oppo-
nent made choice k in the preceding round. The strategy must also specify
d probabilities p0

i for a player to execute action i in the first round of play.
Each probability can be chosen independently, save for the constraint that
the sum across actions

Pd
i=1p

i
jk = 1 must hold. We study the evolution of

social behavior by analyzing the composition of such strategies in a repli-
cating population over time. In an evolving population the reproductive
success of a player depends on the total payoff she receives in pairwise in-
teractions with other members of the population (49). We study how
strategy evolution is affected by the number and types of behavioral choices
available to individuals.

We study two qualitatively different behavioral choices that players can
make: different sizes of contributions and different types of contributions to
social interactions (Fig. 1). If players can vary the size of the contribution they
make to a social interaction, this means that they alter the degree of their
participation but not the qualitative nature of the interaction. For example,
in a public goods game, a player may choose to contribute an amount C to
the public good, or 2C, or 3C, etc. In contrast, when players can vary the type
of contribution they make, this can change the qualitative nature of the
social interaction. For example, unicellular organisms may produce pathogens,
social signals, public goods, or all three (50–53). In a game of rock–paper–scissors
the different behavioral choices result in qualitatively different social inter-
actions—rock beats scissors, but scissors beats paper, etc. Such qualitative
differences can lead to nontransitive payoffs and correspondingly complex
social and evolutionary dynamics (50, 54–59).

Herewe study both kinds of behavioral choice, differences in size and type,
and their effects on the evolution of strategies in a population. We analyze
well-mixed, finite populations of N players reproducing according to a
copying process or pairwise comparison rule (8), in which a player X copies
her opponent Y’s strategy with probability 1=ð1+ exp½σðSx − Sy Þ�Þ where σ
scales the strength of selection and Sx is the average payoff received by
player X from her social interactions with each of the N− 1 other members
of the population (47, 49). The average payoffs correspond to the fitnesses
associated with each strategy, given the current composition of the pop-
ulation. For a single invader Y in a population otherwise composed of
strategy X, we have the average payoffs Sy = Syx and Sx = N− 2

N− 1Sxx +
1

N− 1Sxy.
Throughout we consider the case of strong selection, so that the stability of
a resident strategy in a population can be determined by its ability to resist
selective invasion by a rare mutant. We define a resident strategy to be
evolutionary robust if it resists selective invasion by any rare mutant [2].

The Outcome of an Iterated d-Choice Game. To analyze social evolution in
multichoice iterated games we must first calculate the expected long-term
payoff Sxy of an arbitrary player X facing an arbitrary opponent Y. To do this,
we will generalize an approach used for two-choice two-player games, in
which a player’s memory-1 strategy p is represented in an alternate co-
ordinate system (31), so that the outcome of the repeated game can be
determined with relative ease. For a d-choice two-player game, the proba-
bility that a focal player chooses action i, given that she played action j and
her opponent action k in the preceding round, is denoted pi

jk. For each ac-
tion 1≤ i<d there are d2 independent probabilities, corresponding to each
possible outcome of the preceding round. In the alternate coordinate system

we construct (SI Appendix), the probabilities pi
jk are written as linear com-

binations of the payoff Rjk the focal player received in the preceding round,
times a coefficient χ i; the payoff Rkj her opponent received, times a coeffi-
cient ϕi; the number of times she played action iwithin her memory (which is
1 or 0 for a memory-1 strategy); a baseline rate of playing action i, denoted
κi; and d2 −3 additional terms that depend on the specific outcome of the
preceding round, denoted λijk. This choice of coordinate system enforces the
following relationship between the long-term average payoffs received by
the two players:

ϕiSyx − χ iSxy −
�
ϕi − χ i

�
κi +

Xd
j=1

Xd
k=1

λijkvjk =
1− δ

δ
p0
i , [1]

where δ is the rate of discounting, p0
i is the probability of playing action i in

the first round, and vjk denotes the equilibrium rate of action pair jk, and
where we fix the values of three of the λijk to ensure a system of d2 coor-
dinates (SI Appendix). Note there are d − 1 such equations, one for each
behavioral choice 1≤ i<d. A ZD strategy of the type studied in ref. 36 can be
recovered by setting all λijk =0. However, the constraint that pi

jk ∈ ½0,1� implies
that the ZD condition does not always produce a viable strategy, as in the
case of a rock–paper–scissors game discussed below.

Choosing How Much to Contribute to a Public Good. We will use the re-
lationship between two players’ scores (Eq. 1) to analyze the evolution and
stability of cooperative behaviors in multichoice public goods games, played
in a finite population. In the two-player public goods game each player
chooses an investment level, C, which produces a corresponding amount of
public benefit that is then shared equally between both players, regardless
of their investment choices. In general, if a player invests Cj and her oppo-
nent Ck the public benefit produced is determined by a function BðCj +CkÞ,

Fig. 1. Two ways to expand the behavioral repertoire in iterated games.
(Upper) In a public goods game a player contributes to a public pool at some
cost to herself, and she receives a benefit based on the contributions of all
players in the game. In a simple two-choice game, such as the prisoner’s
dilemma, players face a binary choice, to cooperate and contribute cost C or
to defect and contribute nothing. At the other extreme, in a continuous
game, players have an unlimited number of options and may contribute any
amount. What happens to the evolution of social behavior as the numbers
of choices increases? Is it beneficial for a population to have access to more
choices in a public goods game? (Lower) Players may also choose between
qualitatively different types of contributions to social interactions. Qualita-
tively different behavioral options produce complex payoff structures, such
as the nontransitive rock–paper–scissors interactions (50, 54–56). What
happens to the evolution of social behavior as the types of contributions to
social interactions expand? Is it better to maintain a diversity of behavioral
options, or to restrict to a single type of contribution?
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so that her net payoff is BðCj +CkÞ=2−Cj and her opponent’s payoff is
BðCj +CkÞ=2−Ck. Two-choice public goods games have been studied exten-
sively, producing a clear understanding of the cooperative equilibria that
exist in populations (3, 31, 32, 35, 40–42,).

A wide variety of evolutionary robust memory-1 strategies exist for two-
choice public goods games. The character and evolvability of these strategies
have been explored in detail (3, 35, 40, 42, 60–62). But the assumption of only
two investment levels—of two behavioral choices—is unrealistic for many
applications. Even if a player adopts such a two-choice strategy, there is in
general no reason for her opponent to do the same. Thus, we begin our analysis
by asking whether a two-choice memory-1 strategy that stabilizes investment at
the maximum level when resident in a population (and is therefore considered a
“cooperative” two-choice strategy) can resist invasion against players who are
allowed to make arbitrary investment choices.

For simplicity, wewill focus here on a linear relationship between costs and
benefits of investment in the public good, so that B= rCwhere values 1< r < 2
produce a social dilemma in which mutual cooperation is beneficial but each
player has an incentive to defect. The more general case, with nonlinear
functional relationships, is described in the SI Appendix.

For linear benefits, a two-choice strategy is related to our alternate coordinate
system according to p1i =−ððϕ− χÞðrðC1 +CiÞ=2− κÞ−ϕCi + χC1 + λ1iÞ and
p2i = 1− ððϕ− χÞðrðC2 +CiÞ=2− κÞ−ϕCi + χC2 + λ2iÞ where the index i corre-
sponds to an opponent who invests Ci, which in general can take any
nonnegative value (for a detailed description of this coordinate trans-
form, see SI Appendix, section 3). Here we choose the boundary conditions
λ11 = λ22 = 0 and λ12 = λ21, and from Eq. 1 we obtain the following re-
lationship between two players’ long-term payoffs

ϕSyx − χSxy − ðϕ− χÞκ+ λ12ðv12 + v21Þ+
Xd
j=3

�
λ1jv1j + λ2jv2j

�
=

1− δ

δ
p0
2.

When player Y is constrained to the same two choices as player X, then this
relationship reduces to the relationship for a two-player, two-choice game
discussed in refs. 30, 31, 35, 42. However, we will consider the more general
case when player Y has access to different, and possibly more, investment
choices than player X. In general, a strategy X resident in a population of
size N can resist selective invasion by a mutant Y iff

Syx <
N− 2
N− 1

Sxx +
1

N− 1
Sxy , [2]

where Sxx is the long-term payoff of the resident strategy against itself. This
condition is closely related to the ESSN condition (47), which defines the
evolutionary stability of a resident strategy in terms of its ability to resist
both invasion and replacement by a mutant. In the large space of memory-1
strategies we study here, no two-choice resident is strictly ESSN (35), because
any strategy can be invaded and replaced neutrally. Thus, we look for
strategies that can resist selective invasion by any rare mutant, which we call
evolutionary robustness (42). A cooperative two-choice strategy by defini-
tion has Sxx = ðr − 1ÞC2; i.e., it stabilizes cooperative behavior when resident
so that both players choose to invest the maximum public good they can
contribute. To produce such a strategy we must set p22 =p0

2 = 1; i.e., the
strategy must invest C2 in the first round, and must always invest C2 if both
players invested C2 in the preceding round.

Using the relationships above we can derive conditions for a two-choice
cooperative strategy to be universally robust to invasion; that is, robust
against all invaders Y, who can make an arbitrary number of different in-
vestment choices, including values above C2 or below C1 (SI Appendix). This
in turn allows us to derive the following necessary and sufficient condition
for the existence of a two-choice strategy that is universally robust:

C1

C2
<

ðr − 1Þð2δ− 1Þ
δ r
2+ δ 1

N− 2− ð1− δÞðr − 1Þ. [3]

If (and only if) 3 is satisfied, then there exists a two-choice strategy that
enforces cooperation at some level C2 when resident in a population, and
that resists invasion by any invader, regardless of the invader’s ability to
choose different investment levels or memory.

The inequality in 3 offers insight into the degree of punishment that a
resident cooperative strategy must be prepared to wield, to remain robust
against all invaders (Fig. 2). Setting δ= 1 (i.e., no discounting), a resident
strategy can punish a noncooperative invader by reducing her investment in
the public good from C2 to C1. If C1 is only slightly smaller than C2 then the
resident strategy has a limited capacity to punish invaders. Whereas if C1 is
much less than C2 the resident strategy has a greater capacity for punish-
ment. The critical question is how much capacity for punishment, quantified

by the ratio of C1 and C2, is required to ensure that the resident two-choice
cooperator can be robust against all invaders, who can make arbitrary in-
vestments outside of those available to the resident. The answer to this
question is shown in Fig. 2, which quantifies the minimum reduction in
public investment that a cooperative two-choice strategy must make to be
universally robust. As might be expected from 3, larger ratios of public
benefit to individual cost r and larger population sizes N mean that smaller
reductions in public investment are sufficient for universal robustness of the
resident cooperator. And as Fig. 2 shows, for a wide range of parameters a
population can enjoy robust cooperation using a two-choice strategy with
only moderate threat of punishment, e.g., C1 no less than one half of C2.

We can also investigate whether strategies that stabilize behavior at the
lower investment level, C1, can be robust against invasion (SI Appendix). We
find that, indeed, such strategies can also be robust, but such strategies are
never of the “extortion” type (30), which is perhaps unsurprising given that
extortion strategies are unstable even when invaders are limited to only two
choices (39).

Perception of Novel Actions. In our analysis so far we have considered players
that use a strategy composed of probabilities p1j and p2j, corresponding to a
player who always invests either C1 or C2 faced with an opponent’s invest-
ment of any amount Cj. However, a player who is restricted to investment
levels C1 and C2 may also be restricted in her ability to perceive investments
Cj ≠ fC1,C2g by her opponent. The exact nature and extent of such a con-
straint will depend on the specific system of interest, but any such constraint
in perception can be studied using our analytical framework. In this section
we apply the general results derived above to a very natural case of limited
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Fig. 2. When are simple two-choice strategies robust against all multichoice
invaders in public goods games? We considered the evolutionary robustness
of two-choice strategies, in which players iteratively choose to invest amount
C1 or C2 >C1 to produce a public benefit B proportional to the total invest-
ment of both players, B= rC. Cooperative strategies limited to two invest-
ment choices can be evolutionary robust against all invaders, who may
invest an arbitrary amount C ≠C1,C2, provided the strategy has sufficient
opportunity to punish a defector—that is, provided C1 is sufficiently smaller
than C2. We determined [2] the largest ratio of investment levels, C1=C2, that
permits universally robust cooperative two-choice strategies, as a function of
the population size, N, and the public return on individual investment, r in
the absence of discounting (δ= 1). Colors are gradated in 10% intervals, so
that the light blue region indicates a two-choice player can choose a strategy
that maintains robust cooperation while engaging in relatively little pun-
ishment, by reducing her investment to only 90% of its maximum. The bright
red region indicates that a two-choice player must have access to a high
degree of punishment, C1 much less than C2, to maintain cooperation and be
robust against all invaders. As described in 3, the figure can alternatively be
interpreted as the proportion of pairs of investment levels used by a d-choice
player that produce a robust suboptimal fitness peak, and thus represents a
lower bound on the “ruggedness” of the fitness landscape experienced by a
population of d-choice players.
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perception: a player who uses a strategy composed of just four probabilities,
p= fp11,p12,p21,p22g. We assume that such a player uses a threshold CT such
that she perceives her opponents’ investment Cj <CT as an investment of C1

and she perceives Cj ≥CT as an investment of C2.
For a resident strategy that stabilizes investment at the higher level, C2,

such a strategy can always be invaded by some mutant if her threshold
satisfies CT <C2. However, for thresholds CT ≥C2, such resident two-choice
strategies can be universally robust (SI Appendix). Indeed, if we make the
natural threshold choice CT =C2, so that any decline in investment below the
norm for the resident population is treated as defection, the condition for
the existence of a universally robust strategy in the absence of discounting is

C1

C2
<

r − 1
r
2+

1
N−2

,

which is precisely the same as 3 (with δ= 1).
We have verified the condition above by numerical simulation (SI

Appendix, Fig. S1), and we find that not only do simple, universally robust
strategies of this type exist, but when they exist they are typically very
common.

Evolutionary Consequences of Multiple Investment Choices. We now turn our
attention to the implications of these results for an evolving population of
players who can make d > 2 choices for investment in the public good. We
assume a discrete series of d + 1 investment levels, from 0 to the maximum
Cmax, so that subsequent levels of investment differ by Cmax=d. When d is
large, players have more options for investment, between the fixed mini-
mum value zero and fixed maximum value Cmax.

Because all two-choice strategies form a subset of d-choice strategies, an
evolving population of d-choice players has access to, at minimum, all evo-
lutionary robust two-choice strategies. Thus, unlike in the two-choice case,
where there are only three qualitatively distinct types of evolutionary robust
strategies (35), a d-choice population may result in many different classes of
evolutionary robust outcomes, most of which are suboptimal in the sense
that they produce less public good than the global maximum, rCmax.

We can place a lower bound on how many such suboptimal, but evolu-
tionary robust, outcomes are possible when players have d + 1 choices. Any
given pair of investment levels Ci and Cj, with i> j, can be a robust two-
choice strategy, provided Ci and Cj satisfy 2. Thus, when there is no dis-
counting (δ= 1) all pairs of investment levels j< r −1

r
2+

1
N− 2

i have viable robust
two-choice strategies associated with them; and for a d + 1 -choice game the
total number of such evolutionary robust but suboptimal strategies, Pr,
satisfies

Pr >

 
r − 1

r
2+

1
N− 2

!
dðd + 1Þ

2
. [4]

Thus, the number of suboptimal evolutionary robust outcomes grows at least
quadratically with the number of investment levels available to individuals.

Fig. 2 can now be reinterpreted as showing the proportion of pairs of
investment levels that can produce a robust, suboptimal two-choice strategy
for a population of d + 1 -choice players. To put these results in perspective,
if players are allowed d = 100 investment choices, with return on investment
r = 3=2, then in a population size N= 1,000 there are at least 3.6× 103 robust
strategies that fail to maximize the total public good—resulting in an ex-
tremely “rugged” fitness landscape and a large number of suboptimal
evolutionary outcomes. By contrast, with only d = 2 choices, there are at
most two suboptimal evolutionary robust outcomes (35).

We have seen that increasing the number of available choices to players,
between a fixed minimum and maximum investment level, has the potential
to produce suboptimal but evolutionary robust outcomes. To test how the
number of available choices impacts evolutionary dynamics in a population,
we ran evolutionary simulations under weak mutation (42), with mutants
drawn uniformly from all d-choice memory-1 strategies. We compared the
mean payoffs received by populations constrained to d = 2 choices, to the
mean payoffs in populations with access to d = 11 choices (Fig. 3). The results
are striking: when the ratio of public benefit to individual cost are low, so
that robust strategies are rare (Eqs. 3–4), the population that has d = 11 in-
vestment choices evolves a higher mean payoff than the d = 2 choice pop-
ulation, because a greater number of robust cooperative strategies provides
an advantage. But when the ratio of public benefit to individual cost are
higher, so that robust strategies are more common, the 11-choice population
evolves a lower mean payoff than the two-choice population—because the
huge number of suboptimal robust strategies causes the 11-choice pop-
ulation to “get stuck” and fail to maximize its evolutionary potential. Thus,

increasing the number of investment options, between a fixed minimum
and maximum, can either facilitate or hinder cooperative interactions in
a population.

Nontransitive Payoff Structures. So far we have focused on multiple options
for investment and its impact on the evolution of cooperative behaviors in
public goods games. But the coordinate system we have introduced for
studying multichoice iterated games, and the resulting relationship between
two players’ scores (Eq. 1), applies generally, and so it can be applied to study
many other questions in evolutionary game theory. Among the most in-
teresting questions occur with only d = 3 choices, but with nontransitive
payoffs, where the evolutionary dynamics are complex and the impact of
repeated interactions remains unclear (50, 54–59).

Games with nontransitive payoff structures, such as rock–paper–scissors,
describe social dynamics without any strict hierarchy of behaviors. Individ-
uals can invest in qualitatively different types of behavior, which dominate
in some social interactions but lose out in others. Such nontransitive inter-
actions have been observed in a range of biological systems, from commu-
nities of Escherichia coli species (50), to mating competition among male
side-blotched lizards Uta stansburiana (54). Rock–paper–scissors interactions
are well known in ecology as having important consequences for the
maintenance of biodiversity: in well-mixed populations playing the one-shot
game, diversity is often lost; whereas, in spatially distributed populations,
multiple strategies can be stably maintained (55, 56). Here we analyze the
equivalent problem for the maintenance of diversity in evolving populations
of players who engage in iterated nontransitive interactions.

We will assess the potential for maintaining behavioral diversity in a
population playing an iterated rock–paper–scissors game—that is, we look
for strategies that can resist invasion by players who use a single behavioral
choice (1 = rock, 2 = paper, or 3 = scissors). We assume that, in any given
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Fig. 3. Does a larger behavioral repertoire make cooperation easier to
evolve? We evolved a well-mixed population of N=100 haploid, asexual
individuals reproducing according to the copying process (49) with an indi-
vidual’s fitness determined by playing pairwise iterated public goods games
with selection strength σ= 10, with each game played for 1,000 rounds. We
calculated ensemble mean fitness across 105 replicate populations, each
evolved under weak mutation for at least 106 fixation events. We compared
populations with only two investment choices available, C1 = 0 and C2 = 1,
versus populations in which players could choose among 11 levels of in-
vestment, between 0 and 1 in increments of 0.1. In both cases evolution
occurred on the full set of memory-1 strategies. When the ratio of public
benefit to individual cost is small, two-choice populations evolve to low
mean fitness and exhibit little cooperation; whereas, 11-choice populations
evolve higher fitness and higher levels of investment in the public good.
However, when the ratio of public benefit to individual cost is higher
two-choice populations evolve strategies that maximize the public good,
whereas 11-choice populations are less cooperative and receive roughly 10%
payoff reduction compared with the two-choice case. Thus, a larger reper-
toire of behavioral options can either facilitate or impede the evolution of
cooperation, depending upon the public return on individual investment.

E7006 | www.pnas.org/cgi/doi/10.1073/pnas.1608990113 Stewart et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608990113/-/DCSupplemental/pnas.1608990113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608990113/-/DCSupplemental/pnas.1608990113.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1608990113/-/DCSupplemental/pnas.1608990113.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1608990113


interaction, a fixed benefit B is at stake, and players invest a cost C1, C2, or C3

to execute the corresponding behavioral choice. Under the rock–paper–
scissors game we then have payoffs R13 =B−C1, R21 =B−C2, R32 =B−C3,
R31 =−C3, R12 =−C1, and R23 =−C2. When two players make the same choice
we assume they receive equal payoff: R11 =B=2−C1, R22 =B=2−C2, and
R33 =B=2−C3.

We first consider the case of a completely symmetric game of rock–paper–
scissors, with C1 =C2 =C3 =C. In this case a given round of the game has only
three distinct outcomes for a player: win (+), lose (−), or draw (o). A player’s
memory-1 strategy can be thought of as the probability that she plays, for
example, a move that would have won in the preceding round, given that
she lost. We write this probability p+

−. Similarly p−
− is the probability she plays

the same move that lost the preceding round; and po
− is the probability that

she plays the move that would have resulted in a draw. This symmetric
strategy is thus composed of nine probabilities, which are written in our
alternative coordinate system in SI Appendix, section 4. From this coordinate
system we see immediately that there exists no viable ZD strategy, with the
sole exception of the singular “repeat” strategy (30). Despite the absence of
ZD strategies, we can still analyze the outcome of iterated rock–paper–
scissors games using this coordinate system.

Maintaining Behavioral Diversity in a Game of Rock–Paper–Scissors. The sym-
metric, iterated rock–paper–scissors game is simple to analyze, because
payoff is conserved, meaning that the sum of two interacting players’ pay-
offs is constant, Sxy + Syx =B− 2C. Thus, the expected fitness of a population
is independent of the strategy that is resident, and Sxx =B=2−C holds for all
strategies X. It might seem unlikely, then, that behavioral diversity offers any
advantage in this situation. After all, a player who uses a strategy that
employs rock, paper, and scissors produces no higher mean fitness at the
population level than a player who always uses rock. To determine whether
this intuition is correct, and nontransitive payoffs lead inevitably to a loss of
behavioral diversity, we evaluated the conditions for a strategy to resist
selective invasion by a player who always uses the same move. Such strat-
egies do indeed exist, and satisfy the following inequality:

p−
o

�
1−p−

− −p−
+

�
>p+

o

�
1−p+

+ −p+
−
�
. [5]

As one might hope, strategies that tend to switch to the move that would have
won in the preceding round—corresponding to larger values of p+

o, p
+
−, p

+
+ and

smaller values of p−
o, p

−
−, p

−
+ —tend to be evolutionary robust. However, 5 also

provides a more valuable insight, as it allows us to calculate the overall robust-
ness of memory-1 strategies to the loss of behavioral diversity. To do this we
calculate the probability that a randomly drawn memory-1 strategy satisfies 5,
which reveals that fully 50% of such strategies maintain behavioral diversity in
the completely symmetric rock–paper–scissors game (Fig. 4). Furthermore, due to
symmetry, the condition for a new strategy to invade a resident is simply Syx > Sxy
(SI Appendix). And so if a resident can resist invasion against a particular in-
vader, it can also invade a population in which that invader is resident. Thus,
50% of strategies can successfully invade in a population that lacks behav-
ioral diversity—so that behavioral diversity is both highly evolvable and easy
to maintain in the iterated rock–paper–scissors game, even in a well-mixed
population—in sharp contrast to the one-shot game.

We can also assess the robustness of behavioral diversity when the sym-
metry of the game is broken, so that C1 ≠C2 ≠C3. In Fig. 4A we numerically
calculate the overall robustness of randomly drawn strategies as a function
of the costs C1=C3 and C2=C3 keeping B and C3 fixed. We find that, for a wide
range of costs, including in some cases with B<C, behavioral diversity can be
maintained with relative ease in an evolving population (Fig. 4).

Discussion
We have studied how the repertoire of behavioral options in-
fluences the prospects for cooperation, and the maintenance of
behavioral diversity, in evolving populations. Our analysis has
relied on the theory of iterated games and, in particular, on a
coordinate system we developed to describe strategies for mul-
tichoice games and their effects on long-term payoffs. In the
context of public goods games, we have shown that simple
strategies that use only two levels of investment can nonetheless
stabilize cooperative behavior against arbitrarily diverse mutant
invaders, provided the simple strategy has sufficient opportunity
to punish defectors. More generally, a greater diversity of in-
vestment options can either facilitate or hinder the evolution of
cooperation, depending on the ratio of public benefit produced
to an individual’s investment cost. We have applied the same ana-
lytical framework to study more complicated multichoice iterated
games with nontransitive payoffs, such as the rock–paper–scissors

Fig. 4. Can behavioral diversity be maintained under nontransitive payoff structures? We considered a rock–paper–scissors-type game in which players could
use up to three different behaviors, at a cost C1, C2, and C3, in an attempt to obtain a fixed benefit B. The payoff structure was nontransitive so that action
1 dominates action 2, action 2 dominates action 3, and action 3 dominates action 1. We determined whether a memory-1 strategy that employs all three
behaviors can resist invasion by a player who uses a single action exclusively (either 1, 2, or 3). (Left) With fixed benefit B= 2 and cost C3 = 1 we systematically
varied costs C1 and C2, and we calculated the percentage of memory-1 strategies that could successfully maintain behavioral diversity. Behavioral diversity can
indeed be maintained for a wide range of costs. The highest level of robust diverse strategies occurs in the symmetric case, when C1 =C2 =C3. But diverse
behaviors are also observed across a broad range of parameters including, surprisingly, when both C1 >B and C2 >B. This is seen more clearly on the Right,
which shows the percentage of robust strategies as a function of C1 with C2 =C3.
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game. In this case, behaviorally diverse strategies that use multiple
actions are often evolutionary robust, even in a well-mixed pop-
ulation, and they can likewise invade populations that lack diverse
behaviors. Overall, the view emerges that simple behavioral inter-
actions are sometimes surprisingly robust against diverse alterna-
tives, and yet, in many circumstances, diverse behavior serves the
mutual benefit of a population and is a likely outcome of evolution.
Our results on the impact of multiple behavioral choices

should be compared with those of McAvoy and Hauert (36), who
studied ZD strategies in two-player games with arbitrary action
spaces. They established that ZD strategies exist even in this
general setting. They focused especially on extortion strategies,
whereby one player unilaterally sets the ratio of scores against
her opponent. McAvoy and Hauert found, remarkably, that ex-
tortion strategies exist with support on only two actions, even
against an opponent who can choose from an uncountable
number of actions. Our results form an intriguing contrast to
those of McAvoy and Hauert. Instead of studying ZD strategies
and extortion in the classical context of two players, we have
studied all memory-1 strategies and the prospects for robust
cooperation in a population of N > 2 players. We find that be-
haviorally depauperate strategies that rely on only two actions
can nonetheless sustain cooperation in a population facing di-
verse invaders; and yet diversity can either hinder or facilitate
cooperation, depending upon the ratio of public benefit to in-
dividual cost. These results were derived for well-mixed finite
populations; the impact of behavioral diversity on evolution in
structured populations, including graphs (21, 22), remains to be
explored.
We have analyzed the entire space of memory-1 strategies for

iterated multichoice games. Our ability to do so rests on a key
mathematical result: the outcome of iterated games can be easily
understood when players’ strategies, even those of startling
complexity (3, 33, 38), are viewed in the right coordinate system.
This coordinate system was suggested by the discovery of ZD
strategies and developed fully by Akin (31) and others (3, 33, 35–
37). The purview of our analysis can be put in context by compar-
ison with the yet wider space of long-memory strategies, on the one
hand, and the smaller space of ZD strategies, on the other hand. As
discussed here and elsewhere, strategies that are evolutionary robust
against the full space of memory-1 strategies are also robust against
all longer-memory strategies (30, 38) (SI Appendix), making this a

natural strategy space to consider from an evolutionary perspective.
Nonetheless, memory can have an important impact on the relative
success of different types of robust strategies, by making them more
or less evolvable (3), or by allowing qualitatively different types of
decision making via tagging or kin recognition (39, 63). Conversely,
it is important to consider the full space of memory-1 strategies in
the context of multichoice games because, as we have shown,
such games may contain no ZD strategies at all, as in the case of
iterated rock–paper–scissors.
It is unsurprising, perhaps, that games with nontransitive

payoffs do not generally admit the opportunity for one player to
exert unilateral control over the game’s outcome via ZD strat-
egies. After all, a player cannot successfully extort an opponent
whose behavior is so diverse that it cannot be pinned down.
However, our analysis also offers perspective on the problem of
diversity maintenance in evolving populations. One-shot rock–
paper–scissors games have long been studied in the context of
evolutionary ecology as a system that cannot easily maintain
diversity without spatial structure or other exogenous population
heterogeneity (50, 54–59). Here, by contrast, we have shown that
behaviorally diverse strategies in the iterated game can easily
emerge and resist invasion by behaviorally depauperate mutants,
an observation that is relevant to behavioral interactions within a
single population and also to interactions between species.
Overall we have seen that, as players gain access to more be-

havioral choices, either due to environmental shifts or evolutionary
innovation, the dynamics of social evolution can be profoundly al-
tered. This view is reflected by empirical studies, which have found
that greater behavioral choice, via factors such as the ability to
communicate or signal to others, has a significant impact on the
level of cooperation in a group (9–15). Moving forward, we must
connect the insights drawn from complex behavioral and evolu-
tionary models of the type described here to empirical studies,
where we can now seek quantitative predictions for the dynamics of
group behavior in real populations.
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