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Abstract

Most endocrine tumors are benign, and afflicted patients usually seek medical advice, because of 

symptoms caused by too much, or too little, native hormone secretion, or the impingement of their 

tumor on a vital structure. Malignant endocrine tumors represent a more serious problem, and 

patient cure often depends on early diagnosis and treatment. The recent development of novel 

molecular therapeutics, holds great promise for the treatment of patients with locally advanced or 

metastatic endocrine cancer. In this CCR Focus expert clinical investigators describe the molecular 

characteristics of various endocrine tumors, and discuss the current status of diagnosis and 

treatment.

Introduction

Endocrine tumors are rare, most often occurring sporadically and in women. There are more 

differences than similarities among the tumors, not only concerning anatomic location and 

secretory function, but the frequency of hereditary disease - rare in adrenal cortical and 

differentiated thyroid tumors, uncommon in pituitary tumors, and common in 

neuroendocrine tumors of the adrenal, the pancreas and the thyroid-, and the frequency of 

malignant disease - virtually non-existent in pituitary tumors, 10% to 30% in tumors of the 

adrenal cortex, adrenal medulla, and follicular thyroid, and 50% to 100% in neuroendocrine 

tumors of the pancreas and thyroid. Except for thyroid tumors, which are usually visible or 

palpable on physical examination, endocrine tumors are usually occult, and become evident, 

either because of a secretory malfunction, a space occupancy problem, or their incidental 

detection on imaging studies. The spectrum of endocrine tumors is almost completely 

expressed within the Multiple Endocrine Neoplasia syndromes, MEN1 and MEN2. MEN1 

includes tumors primarily of the pituitary, parathyroids, and pancreatic islets, and less often 

the follicular derived thyroid tumors adrenal cortical tumors, and carcinoid tumors. MEN2 

includes tumors of the neuroendocrine thyroid, the parathyroids, and the adrenal medulla. 

The discovery of the genetic mutations causing the MEN1 and MEN2 syndromes has 

clarified much about the molecular biology of the syndromes and their component tumors, 

and in many cases has led to improved methods of diagnosis and treatment. As is often the 
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case, information gained from the basic and clinical research of rare tumors serves as a guide 

to investigative strategies of more common neoplasms.

Surgical resection is the treatment for primary endocrine tumors, but molecular targeted 

therapeutics have replaced chemotherapy as front line therapy for patients with advanced 

cancers of the pancreas and thyroid. The US Food and Drug Administration (FDA) has 

approved several molecular targeted therapeutics for these cancers, based on phase III 

prospective, randomized, placebo controlled, clinical trials, which showed significantly 

improved progression free survival in patients with metastatic disease (Table 1). 

Unfortunately, the drugs are expensive and associated with significant toxicities. Most 

importantly, they have failed to significantly improve overall survival. There is a critical 

need for new drugs with great specificity for oncogenic targets, and an equally urgent need 

to understand the mechanisms of resistance to molecular targeted therapeutics - so far 

lacking for most solid organ malignancies – since this is key to the development of rescue 

therapy for tumors that become resistant to an initial therapeutic (1, 2).

The Cancer Genome Atlas studies of the National Cancer Institute, and the Human Genome 

Research Institute, have provided a comprehensive genomic landscape (including: DNA 

whole exome sequencing, DNA copy number arrays, mRNA sequencing, miRNA 

sequencing, DNA methylation arrays, and in some tumors, reverse phase protein arrays) of 

various malignant tumors. The importance of these studies cannot be overemphasized, as 

they have expanded our knowledge of the molecular biology and pathogenesis of selected 

tumors, often defining a relationship between genotype and phenotype, and yielding useful 

information regarding potential diagnostic tests and new therapeutics. Whether The Cancer 

Genome Atlas studies will lead to a broad array of curative molecular targeted therapeutics, 

remains an open question. The Cancer Genome Atlas recently reported study results of 

adrenal cortical carcinoma, papillary thyroid cancer, and pheochromocytoma and 

paraganglioma. The complete study results are available in publications, either in print form, 

or online as videos (3–5).

Adrenal cortical carcinoma

Adrenal Cortical Carcinoma (ACC) occurs in a bimodal pattern, developing during 

childhood or the fourth decade of life (6). The majority of adrenal cortical carcinomas are 

sporadic, but some occur in a hereditary pattern as a component of diseases such as the Li-

Fraumeni syndrome, the Lynch syndrome, and the Beckwith-Wiedemann syndrome (7–9).

In the recently published Cancer Genome Atlas study of 91 patients with ACC, the female to 

male ratio was 1.8, and 57% of the tumors functioned, most often secreting cortisol (5). 

Median overall survival was 78 months, and 5-year survival was 59%; however, locally 

invasive and metastatic ACCs were associated with a 5-year survival of 22% (5). With the 

increased use of sensitive imaging studies came an increased incidental detection of occult 

adrenal tumors; the incidence increasing with age, being as high as 10% in the elderly (10). 

Complete surgical resection is the only cure for ACCs; however, when this is not possible, 

tumor debulking may relieve symptoms caused by hormonal excess. There is a direct 

correlation between the size of an adrenal tumor and the presence of malignancy; 
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approximately 80% of tumors larger than 6 in diameter are malignant (11). Most minimally 

invasive surgeons limit laparoscopic resection of adrenal tumors to those less than 6 cm in 

size, and with no evidence of malignancy. In the accompanying article, Payabyab and 

associates stress the importance of avoiding laparoscopic biopsy, or resection, of potential or 

proved ACC citing the likelihood of peritoneal seeding, a fatal complication (12).

Mitotane is the only drug approved by the FDA for treatment of advanced ACC; however, 

prospective trials of mitotane alone in patients with advanced disease showed partial 

responses of 5 to 30%, with no survival benefit (13). Furthermore, The substantial toxicity of 

mitotane has limited its use. There have been two multi-center retrospective trials of 

adjuvant mitotane in patients with ACC. One trial of 177 patients suggested a prolonged 

recurrence-free survival; however, the second trial of 207 patients showed no improved 

progression free survival or overall survival (13–15). Phase II trials of combination 

chemotherapy, with or without mitotane, showed minimal benefit in patients with advanced 

or metastatic disease (16–18). In a prospective phase III trial, 304 patients with advanced 

ACC were randomized to receive either a combination of etoposide, doxorubicin, and 

cisplatin or mitotane plus streptozotocin. The response rate, (23.2% versus 9.2%; p<0.001) 

and the progression free survival (5 months versus 2.1 months; p<0.001), were higher in 

patients receiving the three drug combination, compared to those receiving mitotane and 

streptozotocin; however there was no improvement in overall survival (19).

The mitotic rate of ACC cells, as is the case for most endocrine and non-endocrine tumor 

cells, is directly proportional to the clinical behavior of the parent tumor (20–22). Weiss and 

associates studied the relationship between histological parameters and survival in 41 

patients with ACC. Only mitotic rate was significantly associated with survival. 

Accordingly, ACCs were designated as high grade or low grade based on whether they had 

greater than, or less than, 20 mitoses per 50 high powered fields (20). The Cancer Genome 

Atlas study of ACC confirmed and expanded the Weiss classification by integrating tumor 

subsets identified across the DNA copy-number and mutations, DNA-methylation, mRNA-

expression, and miRNA-expression platforms (5). In a Cluster of Cluster (CoC) analysis, 

they designated three tumor subtypes, CoCI, CoCII, and CoCIII, with respective disease 

progression rates of 7%, 56% and 97%. At the time of the study the median event - free 

survival was not yet reached for CoCI, although it was 38 months for CoCII, and 8 months 

for CoCIII. Loss of large segments of DNA followed by whole-genome doubling was also a 

maker of tumor progression (5).

Chemotherapy is currently the front line treatment for patients with advanced ACC, and 

much effort is being devoted to the creation of effective molecular targeted therapies, and 

immunotherapies. It is hoped that the trove of molecular data generated by TCGA study of 

ACC, and by other investigators in the field, will lead to the development of curative drugs.

Pheochromocytoma and Paraganglioma

Pheochromocytomas and paragangliomas - referred to collectively as pheochromocytomas - 

are chromaffin-rich tumors arising from neural crest derived sympathetic lineage cells in the 

adrenal medulla, or from paraganglia in the thorax, abdomen, or pelvis (23). Sympathetic 
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derived tumors secrete epinephrine and norepinephrine, whereas parasympathetic derived 

tumors, arising in the head and neck along the vagus or glossopharyngeal nerves, do not (23, 

24). The annual incidence of pheochromocytomas is approximately 2 cases per million 

individuals, and the tumor occurs in 0.6% of patients with hypertension and in 5% of 

patients with incidentally discovered adrenal masses (25, 26). Pheochromocytomas are most 

often sporadic, but an increasing number are reported to be hereditary. The associated age of 

onset of pheochromocytoma is 43.9 years in sporadic cases and 24.9 years in hereditary 

cases (27).

The diagnosis of hormonally active pheochromocytomas depends on the detection of 

increased plasma levels of free metanephrines and metoxytyramine (28, 29). Surgical 

resection, under careful pharmacological preparation, is the treatment of 

pheochromocytomas; the procedure is performed either by laparoscopic resection or 

transabdominal resection. Depending on the anatomic location, from 10% to 40% of 

pheochromocyctomas are malignant, and the associated 5-year survival is 50% (30). 

Treatment options for locally advanced or malignant pheochromocytomas include; 

chemotherapy, radiation therapy, 131IMIBG, and molecular targeted therapeutics. The 

regimen of cyclophosphamide, vincristine, and dacarbazine is the most often used front line 

therapy for patients with advanced disease, even though there has been no prospective 

clinical trial evaluating its efficacy (31). In a retrospective evaluation of temozolomide in 15 

patients with metastatic pheochromocytoma the progression free survival was 13.3 months; 

5 patients had partial responses, 7 patients had stable disease, and 3 patients had tumor 

progression. Interestingly, the partial responses only occurred in patients with SDHB 
mutations (32). In a retrospective study of sunitinib in 17 patients with malignant 

pheochromocytomas, 3 patients had a partial response and 8 patients had stable disease. 

Most patients who had a clinical benefit carried the SDHB mutation (33).

A recent Cancer Genome Atlas study of the genomic landscape of 173 pheochromocytomas 

found that considering somatic mutations, DNA chromosome breaks, mRNA proliferation, 

and methylation, pheochromocytomas have a relatively quiet genome; however, they have 

the highest degree of heritability of any human tumor (34). In twelve familial syndromes, 

linked to a specific genetic locus, there is an increased risk of developing 

pheochromocytomas (29). In 65% of pheochromocyctomas, mutations have been discovered 

in 19 mutually exclusive susceptibility genes. The mutations are either germline (SDHA, 
SDHB, SDHC, SDHD, RET, VHL, NF1, MAX, EGLN1, and TMEM127), or somatic 

(HRAS, EPAS1, ATRX, CSDE1, GPR128, SETD2, ARNT, FGFR1, and BRAF). RET, 
VHL, and NFI occur as both germline mutations and somatic mutations (23, 34, 35).

Pheochromocytomas can be divided into 3 clusters, depending on whether they have 

mutations in genes that alter proteins constituting the Krebs cycle (SDHA, SDHB, SDHC, 
SDHD, SDHAF2, MDH2, and FH), in genes associated with the hypoxic response (VHL 
and EPAS1), or in genes linked to signaling in the RAS/RAF, MAPK or mTOR pathways. 

The mechanisms of oncogenesis remain unknown for a large number of 

pheochromocytomas.
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Pheochromocytoma was the first human tumor shown to be caused by a germline mutation 

of SDHD, a gene that encodes a metabolic enzyme, and also the first human tumor shown to 

have activating mutations in HIF2A (36, 37). Jochmanova and Pacak in the accompanying 

manuscript focus on the metabolic aspect of pheochromocytomas, describing them as the 

first metabolic endocrine tumors, and discussing how metabolic alterations generated by 

genetic mutations suggest avenues for personalized cancer management (38).

Thyroid Cancer

Thyroid cancer is the most common endocrine malignancy, and over 95% of the tumors arise 

from follicular cells, most often as differentiated thyroid carcinomas; including, papillary 

(85%) and follicular thyroid carcinomas (2 to 5%), and less often as poorly differentiated (1 

to 3%), or anaplastic thyroid carcinomas (1 to 3%). Generally, papillary thyroid carcinomas 

and follicular thyroid carcinomas are indolent clinically; whereas poorly differentiated and 

anaplastic thyroid carcinomas are highly aggressive with mean survivals of 3.2 years and 6 

months. The incidence of thyroid cancer has tripled over the last three decades, primarily 

due to the increased detection of small papillary thyroid carcinomas on imaging studies (39, 

40). Papillary thyroid carcinomas less than 1 cm in size (papillary microcarcinomas) occur 

in up to 30% of adults. The majority of microcarcinomas are stable over time, and can be 

managed expectantly by monitoring tumor growth (41, 42). Approximately 5% of thyroid 

cancers are derived from the neural crest as medullary thyroid carcinoma.

The encapsulated variant of the follicular variant of papillary thyroid carcinoma accounts for 

10 to 20% of all thyroid cancers diagnosed in North America and Europe, and can be dived 

into invasive and noninvasive subtypes (43). In a recent international study, 109 patients with 

noninvasive encapsulated follicular variant papillary thyroid carcinoma treated by thyroid 

lobectomy alone were alive with no evidence of disease at a median of 13 years after 

treatment. The authors proposed the name “noninvasive follicular thyroid neoplasm with 

papillary-like nuclear features” for these especially indolent neoplasms, and suggested that 

they not be considered cancers. This new classification would affect more than 45,000 

patients annually world-wide (44).

Compared to other tumors, papillary thyroid carcinoma has a low mutation density, which is 

consistent with its relatively indolent behavior. Prior work demonstrated mutually exclusive 

clonal mutations in papillary thyroid carcinoma (BRAF; 60%, RAS; 15%, and chromosomal 

rearrangements involving RET, and NTRK1; 5 to 40%), follicular thyroid carcinoma (RAS; 

40 to 55%, and rearranged PPARG1; 25 to 60%), poorly differentiated thyroid carcinoma 

(BRAF; 0 to 13%, RAS; 20 to 30%, CTNNB1; 0 to 5%, and TP53; 17 to 40%), and 

anaplastic thyroid carcinoma (BRAF; 10 to 35%, RAS; 20 to 60%, CTNNB1; 66%, and 

TP53; 67 to 90%) (45).

A recent Cancer Genome Atlas study of 496 papillary thyroid carcinomas identified new 

mutations in EIFIAX, PPM1D, CHEK2 genes, and novel chromosomal rearrangements of 

BRAF, RET, NTRK, and ALK, thereby reducing the number of unknown driver mutations 

from 25% to 3.5% (3, 46). It is hoped that molecular targeted therapeutics can be developed 

to effectively target these newly discovered diver mutations. The Cancer Genome Atlas 
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study investigators were able to divide papillary thyroid carcinomas into 3 molecular 

subtypes with mutually exclusive mutations and variable degrees of differentiation: (1) 

recurrent mutations in genes; the most prominent being BRAF (59.7%), NRAS and HRAS, 

(14.0, (2) gene fusions of BRAF, RET, PPARG, NTRK1, NTRK3, ALK, LTK, MET, 
FGFR2, and THDA (15.3%), and (3) somatic copy number alterations. The investigators 

also found that BRAFV600E mutated PTCs signal preferentially through the MAPK pathway, 

while RAS mutated PTCs signal through either the MAPK pathway or the PI3K pathway 

(3). These findings support the reclassification of papillary thyroid carcinomas to more 

accurately define the relationship between genotype and phenotype.

Recent cytological techniques, based either on proprietary gene expression classification, or 

on next generation sequencing of a panel of oncogenes, have sharpened the diagnosis of 

inconclusive fine needle aspirates of thyroid nodules (47, 48). Also, phase III prospective, 

randomized, placebo-controlled clinical trials of the molecular targeted therapeutics, 

sorafenib and lenvatinib, have shown significant improvement in progression free survival, 

but not overall survival in patients with advanced differentiated thyroid carcinoma (49, 50). 

The FDA has approved both drugs for the treatment of advanced differentiated thyroid 

carcinoma.

Thyroid lobectomy, or total thyroidectomy, with or without resection of cervical lymph node 

compartments, is the treatment for primary thyroid cancer, the specific operation depending 

on tumor histology and the extent of disease. Postoperative adjuvant 131I is administered to 

patients with a high risk of recurrence. Measurement of thyroglobulin in the postoperative 

period is useful in detecting persistent or recurrent disease

Less than 5% of thyroid cancers are medullary thyroid carcinomas, the majority of which are 

sporadic; however, 25% are hereditary and present as the major part of the multiple 

endocrine neoplasia (MEN) syndromes, MEN2A and MEN2B. The tumor cells secrete the 

polypeptide calcitonin, which serves as an excellent tumor marker for detecting recurrent or 

persistent disease following thyroidectomy, and especially for determining disease 

progression, as judged by the rate at which the level of serum calcitonin doubles over time. 

Approximately 50% of sporadic medullary thyroid carcinomas have somatic RET mutations, 

and a lesser number have RAS mutations. Virtually all hereditary medullary thyroid 

carcinomas have germline RET mutations, and there is a strong genotype-phenotype 

relationship in patients with MEN2A and MEN2B, not only regarding the range of disease 

expression, but also the severity of disease. Based on phase III prospective, randomized, 

placebo - controlled, trials that showed significant improvement in progression free survival, 

the FDA approved vandetanib and cabozantinib for the treatment of patients with advanced 

medullary thyroid carcinoma (51, 52) (Table 1).

The treatment of patients with metastatic thyroid cancer has evolved, since 1974 when the 

FDA approved doxorubicin for the treatment of advanced thyroid cancer (53). Unfortunately, 

most chemotherapeutics, whether administered alone or in combination with other agents, 

have shown low response rates of short duration; understandably, the FDA has approved no 

other chemotherapeutic agent since doxorubicin. Until recently, suppression of thyroid 

stimulating hormone and the administration of radioactive iodine were the primary 
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treatments for patients with metastatic differentiated thyroid carcinoma. For patients who 

failed this therapy, and for patients with advanced medullary thyroid carcinoma, poorly 

differentiated thyroid carcinoma, or anaplastic thyroid carcinoma, chemotherapy, with or 

without radiation therapy was the only option. The advent of molecular targeted therapeutics 

has opened a new era of therapy for patients with advanced differentiated and medullary 

thyroid carcinoma, and even though the new drugs provide no overall survival benefit, they 

have significantly improved progression free survival, and often a patient’s cancer will 

remain in remission for several months, and sometimes years.

In the accompanying article Raue and Frank-Raue provide a succinct overview of the 

histological types of thyroid cancer (54). In differentiated thyroid carcinomas they define 

patients with low, intermediate, and high risk disease, stressing the importance of dynamic 

risk assessment, based on several variables, to define both an initial treatment plan for 

primary thyroid cancer, and a management strategy to evaluate and treat patients with 

recurrent or persistent disease following thyroidectomy (55).

Pancreatic Neuroendocrine Tumors

Pancreatic neuroendocrine tumors arise from the islets of Langerhans and range from islet 

cell hyperplasia or adenomas to poorly differentiated neuroendocrine carcinomas. Less than 

5% of all pancreatic tumors are neuroendocrine in origin, and their incidence - 0.4 cases per 

100,000 - has increased over the last three decades, partly due to the aging population and to 

their incidental detection on imaging studies (56). The prevalence of pancreatic 

neuroendocrine tumors at autopsy is approximately10% (57, 58). Sporadic pancreatic 

neuroendocrine tumors appear around the sixth or seventh decade of life, but hereditary 

tumors develop at a younger age. Most pancreatic neuroendocrine tumors are nonfunctional 

and malignant, and over half of them have metastasized at the time of diagnosis. 

Nonfunctional pancreatic neuroendocrine tumors have a worse prognosis compared to 

functional tumors, and among the functional tumors the prognosis varies according to the 

histological subtype (59). The World Health Organization grading system for 

neuroendocrine carcinomas (Gi, G2, or G3) is based on an increasing Ki-67 index or mitotic 

count (<2% to >20%), TNM stage, and functional activity (60).

Larsson’s report that the MEN1 gene is located on chromosome 11, and is most likely a 

tumor suppressor gene, was confirmed by Chandrasekharappa and associates, who cloned 

the MEN1 gene and named the gene product menin (61, 62). No MEN1 mutation is found in 

10 to 30% of typical MEN1 kindreds (probably the result of current DNA sequencing 

strategies) and 10% of the mutations are de novo, there being no family history (63). MEN1 
is also the most common mutation in sporadic pancreatic neuroendocrine tumors, followed 

by mutations in DAXX/ATRX (Death-Domain Associated Protein/Mental Retardation 
Syndrome X-Linked Genes) and the mTOR (Molecular Target of Rapamycin) pathway (64). 

There is no genotype phenotype relationship in patients with MEN1, unlike MEN2, where 

specific RET mutations are associated with clinical phenotypes. Furthermore, unlike MEN2, 

genetic screening in kindreds with MEN1 does not lead to a recommendation regarding 

medical or surgical intervention.
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The primary treatment of pancreatic neuroendocrine tumors is surgical resection, although 

the procedure fails to cure most patients with malignant tumors. Cytoreductive surgery for 

bulky regional disease or accessible metastases may reduce morbid symptoms caused by 

hormone excess (65). Arterial embolization, chemoembolization, radioembolization, and 

radiofrequency ablation may be effective in some patients with hepatic metastases (66–68).

In the accompanying manuscript, Maxwell and associates provide an excellent overview of 

the diagnosis and treatment of pancreatic neuroendocrine tumors, stressing the importance 

of the clinical trials that led to FDA approval of effective therapeutics for the treatment of 

advanced pancreatic neuroendocrine tumors (69). Until recently, streptozotocin was the only 

approved treatment for pancreatic neuroendocrine tumors; however the effectiveness of this 

agent alone, or combined with other chemotherapeutics remains controversial (70, 71). The 

majority of pancreatic neuroendocrine tumors have G protein-coupled somatostatin 

receptors (SSTRs), and a reduction in receptor density is associated with increased tumor 

dedifferentiation (72). Somatostatin acts through a family of five receptors (SSTR1 to 

SSTR5).

Somatostatin analogues were introduced to control symptoms associated with the excess 

secretion of hormones from pancreatic neuroendocrine tumors. The short and long-acting 

synthetic somatostatin analogues octreotide and lanreotide have a strong binding affinity for 

SSTR2, SSTR3, and SSTR5 (expressed in brain, anterior pituitary gland and, 

gastrointestinal tract; SSTR2 is also expressed in the pancreas) (73). Both drugs have shown 

efficacy in clinical trials of patients with midgut neuroendocrine malignancies (74, 75). 

(Table) In the PROMID study, a long-acting release octreotide, compared to placebo, 

showed a significantly prolonged time to recurrence, and a marked risk reduction in tumor 

progression (74). In the CLARINET trial, lanreotide, compared to placebo, showed an 

improved progression free survival in patients with gastrointestinal neuroendocrine tumors 

(75). Based on the PROMID and CLARINET trial results, the FDA approved octreotide and 

lanreotide for the treatment of advanced neuroendocrine tumors. The recently developed 

somatostatin analogue, pasireotide, binds primarily to all SSTRs except for SSRT4, and is 

more effective than octreotide in inhibiting GH, IGF1, and ACTH (76). The drug, however, 

inhibits insulin secretion, and treated patients are at risk for glucose intolerance, which is 

reversible following cessation of therapy. Recently, the FDA also approved the angiogenesis 

inhibitor, sunitinib, based on a phase III, prospective, randomized trial that showed improved 

median progression free survival in the treatment group compare to placebo (77). The 

RADIANT I, II, and III trials evaluated the mTOR inhibitor everolimus in patients with GP-

NETs (78–80). Based on the prolonged progression free survival (but not overall response 

rate) compared to placebo (RADIANT III) the FDA also approved everolimus for the 

treatment of advanced pancreatic neuroendocrine tumors. Even though these new molecular 

targeted therapeutics have shown efficacy, responses are almost always transient and the 

tumor ultimately progresses.

Pituitary Tumors

The incidence of symptomatic pituitary tumors in the general population is 1:1000, although 

recent radiological and autopsy studies suggest a prevalence as high as 22% (81). 
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Functioning endocrine tumors, including: prolactinomas (25 to 40%), somatotroph 

adenomas (1 to 15%), adrenocorticotrophic adenomas (~10%), and TSH producing 

adenomas (~1%) are associated with recognizable clinical syndromes. Five to 10% of 

pituitary tumors secrete excess gonadotrophins (LH/FSH), often causing hypogonadism 

(82). From 30 to 40% of pituitary tumors have no endocrine function, but become 

symptomatic when they enlarge and compress adjacent structures, or destroy normal 

pituitary cells, causing hypopituitarism (83, 84).

Pituitary tumors are monoclonal, and although they are aneuploid, only 0.2% are malignant 

(85, 86). Less than 5% of pituitary tumors occur as a benign component of hereditary 

syndromes, such as MEN1, MEN4, the Carney Complex, and familial isolated pituitary 

adenoma (87–90). The term, MEN4, applies to rare patients with the MEN1 phenotype, who 

have germline mutations in CDKN1B, not MEN1. The Carney complex, characterized by 

multiple skin lesions cardiac myxoma, acromegaly, schwannoma, thyroid tumors, and 

pigmented nodular adrenocortical disease, is caused by germline mutations in CNC1 which 

encodes the regulatory subunit of the protein kinase A (PRKAR1A). Approximately 65% of 

patients have mutations in PRKARIA and 20% have mutations in the putative CNC2 gene 

located on chromosome 2; however, the specific gene has not been identified. Dominant 

germline mutations in the aryl hydrocarbon-receptor interacting protein gene, AIP, occur in 

about 20% of patients with familial isolated pituitary tumors; however, no tumors are found 

in 80% of family members, who carry the mutation, indicating that there are other 

undiscovered genetic causes of the syndrome.

The large majority of pituitary tumors are sporadic, and not associated with any known 

syndrome; however, germline AIP mutations are found in 4% of them; the incidence being 

higher in children and in young adults with macroadenomas or gigantism. Sporadic tumors 

with AIP mutations, compared to those without AIP mutations, are more common in males, 

are larger and invasive, and secrete growth hormone, or prolactin. Germline mutations in 

MEN1 are found in 0.6 to 2.6% of very young patients with isolated pituitary tumors (82, 

91). There are few reports of CDKN1B mutations, and no reports of PRKAR1A mutations 

in sporadic pituitary tumors (92).

Although the subject of intense investigation, the role of epigenetic regulation on the 

pathogenesis of pituitary adenomas, is unclear and merits further investigation.

In their article on the genetic background of pituitary adenomas, Caimari and Korbonits 

discuss non-syndromic and syndromic pituitary adenomas (93). They also describe a number 

of somatic mutations associated with sporadic pituitary tumors, but note that the role of 

these mutations in tumor pathogenesis and progression is unclear.

Conclusions

Although recent discoveries in molecular medicine have led to a deeper understanding of 

endocrine neoplasia, much remains unknown. Novel molecular targeted therapeutics have 

improved progression free survival in patients with some endocrine cancers, yet they have 

failed to improve overall survival. With the development of molecular therapeutics that 
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specifically target causative mutations, and the design of combinatorial drug regimens based 

on an understanding of mechanisms of drug resistance, there is hope of curative therapy. At 

present curative therapy depends on the age-old, yet important, principle of establishing the 

diagnosis of malignancy at an early stage when treatment is curative.
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TABLE 1

RECENT PHASE III CLINICAL TRIALS OF FDA APPROVED NOVEL THERAPEUTICS FOR 

TREATMENT OF THYROID CANCERS AND PANCREATIC NEUROENDOCRINE TUMORS

DRUG
TRIAL RANDOMIZATION HISTOLOGY PFS DR/DD/DTH

Sorafenib
(DECISION)52

207 Soraf
210 Placebo

DTC 10.8 mos. Soraf
5.4 mos. Placebo
HR 0.59 (95% CI; 0.39–
0.61),
P < 0.0001

64.3%/18%/12,
1, drug related

Lenvatinib
(SELECT)53

261 Lenvat
131 Placebo

  DTC 18.3 mos. Lenvat
3.6 mos. Placebo
HR 0.21 (99% CI; 0.14–
0.31), P< 0.001

67.8%/14.2%/
20, 6 drug
related

Vandetanib
(ZETA)54

231 Vand
100 Placebo

  MTC 30.5 mos. Vand
19.3 mos. Placebo
HR 0.46 (95% CI; 0.31–
0.69), P< 0.001

35%/12%/
5,1 possibly
drug related

Cabozantinib
(EXAM)55

219 Cabo
111 Placebo

  MTC 11.2 mos. Cabo
4.0 mos. Placebo
HR 0.28 (95% CI, 0.19–
0.40)
P <0 .001

79%/22%/12, 9
drug related

Octreodide LAR
(PROMIDE)73

42 LAR
43 Placebo

  NETs 14.3 mos. LAR *
6.0 mos. Placebo
HR 0.34 (95% CI,0.20 to
0.59) P< 0.0007)

NA/12%/None

Lanreotide
(CLARINET)74

101 Lanreotide
103 Placebo

  EPNT MPFS not reached
Lanreotide
18.0 mos. Placebo
HR 0.47 (95% CI, 0.30–
0.73) P<0.001

NA/3%/2

Sunitinib76 86 Sunitinib
85 Placebo

  PNET 11.4 mos. Sunitinib
5.5 mos. Placebo
HR 0.42 (95% CI, 0.26–
0.66) P<0.001)

NA/NA/ 5, 1 drug
related.

Everolimus
(Radiant 3)79

207 Everolimus
203 Placebo

  PNET 11.0 mos. Everolimus
4.6 mos. Placebo
HR 0.35 (95% CI, 0.27–
0.45) P< 0.001

NA/13%/12, 1
drug related

*
= Time to tumor progression
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