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Cellular heterogeneity poses a significant challenge to understanding tissue level phenotypes and 

confounds conventional bulk analyses. To facilitate the analysis of signaling at the single-cell level 

in human tissues, we applied mass cytometry using CyTOF (Cytometry Time-of-Flight) to 

formalin-fixed paraffin-embedded (FFPE) normal and diseased intestinal specimens. We 

developed and validated a technique called FFPE-DISSECT (Disaggregation for Intracellular 

Signaling in Single Epithelial Cells from Tissue), a single-cell approach for characterizing native 

signaling states from embedded solid tissue samples. We applied FFPE-DISSECT coupled to mass 

cytometry and found differential signaling by tumor necrosis factor α (TNF-α) in intestinal 

enterocytes, goblet cells and enteroendocrine cells, implicating the role of the downstream RAS-

RAF-MEK-ERK signaling pathway in dictating goblet cell identity. In addition, application of 

FFPE-DISSECT, mass cytometry, and data-driven computational analyses to human colon 

specimens confirmed reduced differentiation in colorectal cancer (CRC) compared to normal 

colon, and revealed quantitative increases in inter- and intra-tissue heterogeneity in CRC with 

regards to the modular regulation of signaling pathways. Specifically, modular co-regulation of the 

kinases P38 and ERK, the translation regulator 4EBP1, and the transcription factor CREB in the 

proliferative compartment of the normal colon was loss in CRC, as evidenced by their impaired 

coordination over samplings of single cells in tissue. Our data suggest that this single-cell 

approach, applied in conjunction with genomic annotation, such as microsatellite instability and 

mutations in KRAS and BRAF, allows rapid and detailed characterization of cellular heterogeneity 

from clinical repositories of embedded human tissues. FFPE-DISSECT coupled of mass cytometry 

can be used for deriving cellular landscapes from archived patient samples, beyond CRC, and as a 

high resolution tool for disease characterization and subtyping.

Introduction

A distinguishing feature of cancer and other diseases of dysregulated homeostasis is the 

expanded degree of intra-tissue cellular heterogeneity (1–4). Heterogeneous cell populations 

arise from an aberrant differentiation process where cells adopt semi-mature or new 

progenitor states on the Waddington landscape (5). Cellular heterogeneity has been 

demonstrated to present a significant challenge for treating these diseases, as therapies 

targeting one cell type may not be effective in another (6). Furthermore, rare cell 

populations, such as cancer stem cells (7, 8), can adopt specialized, deleterious functions, 

including therapeutic resistance and metastatic ability (9–13). The phenotypic state of a cell 

is governed by its genetics and environment; information from these sources are integrated 

by signaling and transcriptional networks into cellular behaviors. Investigations of cellular 

heterogeneity immensely benefit from single-cell analysis (14, 15). However, it is not trivial 

to interrogate multi-pathway signaling activities at single-cell resolution since cellular 

signaling states can be destabilized outside the native tissue context (16–18).

A tried and true approach for preserving tissue morphology, and even cellular signaling 

states, is the procedure of formalin fixation coupled to paraffin embedding (FFPE). FFPE 

has been a standard practice in clinical analysis of tissues for nearly a century, and its ability 

to preserve tissues at ambient temperatures has been widely demonstrated (19). Due to the 

effectiveness of FFPE for preserving tissue, large repositories of clinically-annotated patient 

samples have been collected over the years. These banks are valuable resources for scientific 
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insight when coupled to next-generation analytical approaches (20, 21). Specifically, one of 

our goals is to conduct single-cell signaling analysis on FFPE tissues to address cellular 

heterogeneity. In order to achieve this, careful measures must be taken to undo the effects of 

formalin crosslinking in order to access cells, proteins, and nucleic acids for sophisticated 

analyses.

To comprehensively assess the phenotypic state of cells, evaluating the activity of a single 

pathway is not sufficient. Recently, several approaches have been described for measuring 

protein parameters from FFPE tissue in a multiplex fashion (22). The majority of these 

advances have been microscopy-based approaches for imaging tissue sections that are ~5 μm 

in thickness. Approaches that enable multiplexing protein measurements include iterative 

rounds of fluorescence imaging (23–26) or metal-based detection (27, 28). To achieve 

single-cell resolution, single or multiple cell border markers are used in conjunction with 

sophisticated image processing algorithms to extract single cell objects from images (29). 

Oblique sectioning and imperfect segmentation of partial cells can lead to inaccurate 

quantification, making these approaches semi-quantitative at best. Furthermore, either due to 

the iterative nature of cyclic immunofluorescence or rastering of samples for imaging mass-

spectrometry, these approaches are low throughput and require multiple days/weeks of 

analysis to fully sample a given specimen. Given their space-resolving capabilities, we 

surmise that these techniques will be very powerful when combined with a primary strategy 

that confers feasibility to analyze a large number of samples with higher quantitative 

accuracy.

Our lab has recently reported a relatively rapid mass cytometry-based strategy for profiling 

signaling protein modifications at the single-cell level from solid tissues (16). This strategy, 

named DISSECT (Disaggregation for Intracellular Signaling in Single Epithelial Cells from 

Tissue), involves rapid, short fixation of freshly-isolated tissue to maintain native signaling 

in intact epithelia, and then a series of coupled procedures for staining and dissociation prior 

to mass cytometry analysis. The present study examines whether the same approach can be 

applied to FFPE-preserved tissues, given that FFPE preservation also involves the use of a 

formaldehyde fixative. In this report, we present an optimized procedure for dissociating 

single cells from FFPE-preserved solid tissues while maintaining their intact signaling states 

for mass cytometry analysis. We conducted a proof-of-concept study on a small of cohort of 

human normal colon and colorectal cancer (CRC) FFPE specimens to sample signaling 

pathway heterogeneity at the single-cell level. Our results indicate that in normal colonic 

tissues, signaling pathways are organized into modules according to surface-to-crypt 

differentiation status. This modular organization is undermined in CRC. In addition, 

examining tumor samples in combination with genomic markers such as microsatellite 

instability and mutational status reveals distinct single-cell cancer phenotypes. This 

hypothesis-generating study demonstrates FFPE-DISSECT coupled to mass cytometry 

analysis on archival tissues, with the aim to extend to large cohort studies from solid tumor 

repositories that classify tumors in conjunction with genomic, transcriptomic, epigenomic, 

and proteomic data.

Simmons et al. Page 3

Sci Signal. Author manuscript; available in PMC 2017 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

The FFPE-DISSECT method disaggregates single epithelial cells from archived tissue 
blocks while preserving cell type and signaling markers

We established a single-cell disaggregation approach for FFPE tissues (FFPE-DISSECT) 

combining heat-induced antigen retrieval with the whole mount staining and dissociation 

steps of DISSECT (Fig. 1) (16, 30). The steps of DISSECT were incorporated to enable 

epithelial signaling state preservation during the disaggregation process. We confirmed 

single-cell retrieval from FFPE tissues by both brightfield and autofluorescence imaging 

(fig. S1, A and B). As with DISSECT, because tissue was kept intact until the end of the 

protocol, cell loss due to pre-analytic processing was minimized. Thus, we routinely yielded 

5000-10000 cells (7503 +/− 2830 cells) per square millimeter of tissue from a single 50 μm 

section. From the approximate area occupied per sample, we estimated that we yielded 

routinely on the order of a million cells per 50 μm tissue section.

We first determined the preservation of cell identity markers for classifying epithelial cell 

types using our approach on murine intestinal tissue embedded by FFPE. Up until tissue 

dissociation, CLCA1 (chloride channel accessory 1) and CK18 (cytokeratin 18), markers for 

goblet and secretory cells, displayed substantial co-localization in whole-mount 

immunofluorescent staining, as expected (fig. S2). DCLK1 (doublecortin like kinase 1), a 

marker of tuft cells, labeled a separate population of CK18−/CLCA1− cells. Upon 

dissociation, these relationships remained intact in single epithelial cells (Fig. 2A). 

Furthermore, the correct subcellular localization of proteins within cells can be visualized in 

the absence of scattered light or convolution from neighboring cells, namely CK18 staining 

of cytoskeletal structures and CLCA1 staining of mucous granules (Fig. 2B). We then 

quantitatively verified marker co-expression using multi-parameter flow cytometry. CK18+ 

cells and CLCA1+ cells were independently gated. Back-gating of CK18+ and CLCA1+ 

cells revealed that they largely fell within an overlapping population, with CK18 marking a 

wider population of cells due to its ability to label other cells in the secretory lineage (Fig. 

2C, fig. S3A). These results demonstrated that cell types can be discerned in dissociated 

epithelial cells after FFPE-DISSECT.

More importantly, we determined that single cells retained their native signaling states post-

dissociation using FFPE-DISSECT. To activate signaling pathways in vivo, we exposed the 

murine intestinal epithelium to TNF-α (tumor necrosis factor α) via intravenous 

administration, as we have done previously (31, 32). Duodenal tissues from the same animal 

were assessed as FFPE tissue sections or as single cells generated by FFPE-DISSECT. 

Immunofluorescence imaging of tissue sections revealed that the abundance of 

phosphorylated (p-) cJUN (an early TNF-α-induced signal) was upregulated at 0.5 hours 

after TNF-α exposure, and p-STAT3 (a late signal) was upregulated at 2 hours after TNF-α 
exposure (Fig. 2D). Imaging of single cell suspensions prepared by FFPE-DISSECT from 

serial sectioning of the same tissue block also revealed activation of the two signaling 

pathways at the appropriate time points compared to vehicle control (Fig. 2D). We 

quantitatively compared signaling data from single-cell suspensions prepared by the 

validated DISSECT approach from freshly isolated tissues (16), with those prepared by 
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FFPE-DISSECT from embedded tissues. Using the median intensity calculated from single 

cell distributions evaluated by flow cytometry (fig. S3B), we confirmed that both DISSECT 

and FFPE-DISSECT generated comparable signaling data for both p-cJUN and p-STAT3 

with similar dynamics (Fig. 2E). These results demonstrated the ability of FFPE-DISSECT 

in preserving signaling states of p-cJUN and p-STAT3 in single epithelial cells disaggregated 

from FFPE tissues.

Quantitative single cell-level data is obtained through mass cytometry signaling analysis 
on FFPE tissue

In clinical practice, excised tissues requiring gross pathological examination may not be 

immediately fixed. Reports have documented the effects of ischemia and other factors on the 

degradation of protein signals in other tissues, such as the breast (33). To examine the effects 

of post-excision time outside of the body on signaling in the intestinal epithelium, we 

harvested intestinal tissues from mice, and fixed the tissue either immediately, 30 minutes 

post-excision, or 1 hour post-excision. Following standard FFPE processing, we examined 

changes in constitutively active signaling pathways at homeostasis, for example, the 

abundance of p-ERK in the crypt and p-S6 at the tip of the villus. We performed such 

analysis for markers across a wide breadth of signaling pathways (fig. S4) that we then 

examined in human patients (figs. S10-S14). For the intestinal epithelium, there was 

minimal degradation of these signals for up to one hour from the time of harvesting the 

tissue. We further verified that the length of fixation time, for up to 72 hours, has minimal 

effect on the detection of representative signaling markers in FFPE (fig. S5).

Having successfully assessed the validity of FFPE-DISSECT on selected signaling markers, 

we next sought to systematically and quantitatively validate our approach over a broad range 

of signaling pathways. We used mass cytometry as a multiplex technique to quantify a broad 

range of signaling markers from single cell suspensions, comparing between FFPE-

DISSECT preparations from embedded tissues and DISSECT preparations from fresh 

tissues. Single-cell signaling data obtained by DISSECT have previously been rigorously 

validated against those generated by conventional bulk approaches such as immunoblotting 

(16). Mice were stimulated with TNF-α and duodenal tissues were harvested over a time 

course to sample a quantitative range of signaling activities as a function of phosphorylated 

protein abundance. Harvested tissues were then divided, either to be freshly processed by 

DISSECT, or , to be embedded and then processed by FFPE-DISSECT. Mass cytometry 

analysis was performed on both sets of tissues (isolated from the same animal) using the 

same panel of metal-conjugated reagents for signaling markers (Table S1). The normalized 

median intensities of distributions of signaling markers were used as a direct comparison 

between DISSECT and FFPE-DISSECT preparations (Fig. 3). The DISSECT approach was 

optimized for scraped mucosa, and thus, the data generated were enriched for villus signals. 

In contrast, tissue sectioning enabled sampling of the entire epithelium for FFPE-DISSECT. 

Thus, crypt-enriched signals, such as p-RB, p-4EBP1, and p-P38 (fig. S6A), did not show 

good concordance between the two methods due to the de-emphasis of crypt signals in 

DISSECT preps (Fig. 3A). Crypt proliferative signals (p-4EBP1 and p-RB) generated by 

FFPE-DISSECT showed an initial dip and a subsequent increase after TNF-α exposure, 

mirroring the proliferative response of the intestinal epithelium to TNF-α (32). Examining 

Simmons et al. Page 5

Sci Signal. Author manuscript; available in PMC 2017 April 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



villus-enriched signals, a strong correlation between data generated by DISSECT and FFPE-

DISSECT was observed (Fig. 3B). Quantitative correlation analyses using villus-enriched 

signals resulted in a highly significant correlation (R=0.85, p<0.0001) of mass cytometry 

data generated by DISSECT against FFPE-DISSECT (Fig. 3C). Including crypt-enriched 

signals resulted in a slightly lower correlation (R=0.76, p<0.0001) (fig. S6B). We further 

verified FFPE-DISSECT and compared median signals obtained to those obtained by IF 

imaging (fig. S6, C and D) and quantitative immunoblotting (fig. S6, E and F), comparing 

across different cohorts of mice similarly stimulated with TNF-α as a time course. Again, 

FFPE-DISSECT compared favorably. By using FFPE-DISSECT in conjunction with mass 

cytometry, valid, single-cell level signaling data can be obtained from embedded epithelial 

tissues.

Cell type-specific signaling reveals increased secretory cell sensitivity to basal and TNF-α-
induced signaling

In addition to examining the average over epithelial distributions, we sought to determine 

how different cell populations in the small intestine respond to TNF-α using our single-cell 

approach. TNF-α triggers apoptosis and extrusion of duodenal epithelial cells upon hours of 

induction (31, 32, 34, 35) . Our previous study demonstrated that the onset of apoptosis 

occurs 1 hour after intravenous administration of exogenous TNF-α in mice, and thus, mass 

cytometry data enabled by FFPE-DISSECT were obtained from murine duodenal tissues at 

this time point. t-distributed stochastic neighbor embedding [t-SNE (36)] analysis on 15-

channel signaling and cell identity data revealed a CC3+ population of apoptotic epithelial 

cells (Fig. 4A; for markers see Table S1). This dying cell population has a distinct signaling 

signature, including the downregulation of p-ERK and upregulation of p-P38 (Fig. 4, A and 

B, and fig. S7), as reported previously. We previously showed that p-ERK upregulation in 

neighboring cells surrounding the apoptotic cell is a contact-dependent survival mechanism 

preventing large-scale barrier defects in the gut (16). We then further evaluated cell-type-

specific signaling by integrating signals from the entire TNF-α time course in murine cell 

populations expressing cell-type-specific markers (CLCA1+ goblet cells, CHGA+ - 

chromogranin A enteroendocrine cells, CK+/CLCA1−/CHGA− enterocytes). Goblet cells 

generally have increased signaling across most pathways assayed, whereas enteroendocrine 

cells selectively upregulate certain pathways when compared to enterocytes (Fig. 4C and fig. 

S8A). The relative differences in signaling between cell types can be reproduced by 

DISSECT on freshly isolated tissue, again confirming the validity of our new approach (Fig. 

4C and fig. S8A). Furthermore, the upregulation of p-ERK, p-ATF2, and p-4EBP1 in goblet 

cells, and of only p-ATF2 in enteroendocrine cells, was corroborated by immunofluorescent 

imaging (Fig. 4D and fig. S8B). These differences were also observed at basal level without 

TNF-α stimulation, perhaps demonstrating the importance of these signaling pathways in 

the identity of these cells (fig. S8C). Hereafter, we focused on the role of p-ERK in goblet 

cell identity.

MEK-ERK signaling is canonically activated by upstream RAS activation. The members of 

the RAS family of small GTPases (KRAS4A, KRAS4B, NRAS, and HRAS) share N-

terminal sequence identity and in vitro effector binding, but have distinct subcellular 

membrane distribution due to differences in post-transcriptional modifications in their C-
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terminal hypervariable regions (37). Thus, different RAS isoforms can engage in different 

signaling effectors, such as RAF (Rapidly accelerated fibrosarcoma), PI3K 

(Phosphatidylinositol-4,5-bisphosphate 3-kinase), and RAL (RAS-related protein) , which 

can lead to different phenotypic manifestations. Mutationally activated KRAS in the 

intestinal epithelium induces hyper-proliferation, whereas activated NRAS does not (38). 

Given that both activated KRAS(38) and NRAS(34, 39) in the intestine can sensitize 

downstream MEK-ERK towards activation in different circumstances, we surmise that 

MAPK-induced goblet cell identity may be a common feature of RAS activation. Villin-Cre 
driving an activated KRAS (KRasLSL-G12D/+) allele in the murine intestinal epithelium 

increased the number of goblet cells (fig. S9), but also induced hyperplasia as documented 

previously (38, 40). The same induction scheme with activated NRAS (NRasLSL-G12D/+) did 

not result in hyperplastic growth. Surprisingly, NRAS activation led to a similar increase in 

goblet cells (fig. S9) in the murine intestinal epithelium, a phenotype that has not previously 

been connected to NRAS activation. Furthermore, in accordance with the role of p-ERK in 

promoting enterocyte survival, goblet cells have been shown to be resistant to TNF-α-

induced apoptosis (16). We have demonstrated here that mass cytometry results from FFPE-

DISSECT corroborate with conclusions drawn from fresh tissue assays and produce 

biological insights, supporting its feasibility for generating meaningful single-cell signaling 

data from embedded tissues.

Human CRCs present with dysregulated signaling and differentiation

One of the goals for FFPE-DISSECT application to embedded tissue is to enable single-cell 

signaling analysis on human patient tissue repositories stored as FFPE blocks. To that end, 

we procured a cohort of clinically-annotated colonic tissue samples from the Western 

Division of the Cooperative Human Tissue Network (CHTN), situated at the Vanderbilt 

University Medical Center. After discarding samples with low cellularity (<10%), our cohort 

included 7 normal colon control samples and 13 (6 MSI – microsatellite instable, and 7 MSS 

– microsatellite stable) primary CRC samples. Control colon samples were collected from a 

variety of conditions unrelated to CRC (such as adjacent normal tissue from diverticulitis 

samples). According to our time-to-fixation optimization, we only selected samples with a 

post-excision time of <1 hour, a parameter tracked by CHTN. Clinical and pathological 

attributes of the CRCs, including microsatellite instability and KRAS/BRAF mutational 

status, were summarized (Table S2). A board-certified pathologist further examined the 

hematoxylin & eosin stains of these samples to confirm tumor histology (fig. S10). A panel 

of cross-reacting antibodies against signaling proteins and cell type markers were prepared 

for mass cytometry analysis (Table S3). These reagents were verified to stain human tissues 

by immunofluorescence imaging (fig. S11), and to be on-target in a previous report (16). 

Mass cytometry following FFPE-DISSECT was performed on this cohort of human colon 

and CRC samples. Because actual tumors comprised only of a minor fraction of tissues 

resected (fig. S10), we decided to focus specifically on epithelial cells that are marked and 

can be gated by PCK (pan-cytokeratin) abundance (fig. S12, A and B). From mass 

cytometry data, we quantitatively assessed the percentage of different epithelial cell types in 

various differentiation states from normal colon versus CRC tissues within the epithelial 

compartment. As expected, terminally differentiated cells (CK20+ - cytokeratin 20) were 

significantly decreased in CRC compared to normal colon (Fig. 5A and fig. S12A). 
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Furthermore, goblet cells (CLCA1+) and enteroendocrine (CHGA+) cells were also 

significantly decreased (Fig. 5, B and C; and fig. S12C). However, we discovered that a 

portion of protein markers representing signaling pathway activation were downregulated in 

CRC (Fig. 5D and fig. S11). This result was paradoxical given that cancer is often driven by 

mutations that ultimately activate signaling pathways. However, there is evidence from in 
vivo studies that demonstrate the upregulation of negative feedback mechanisms when 

MAPK signaling pathways are mutationally activated, only in the context of CRC (41). For 

instance, mutational activation of KRAS in CRC paradoxically results in the downregulation 

of p-ERK due to the upregulation of MKP3 ERK phosphatase (38). Furthermore, as shown 

in our mouse studies, there are substantial signaling activities in differentiated cells and 

these cells are largely absent in CRC (Fig. 4C, D). To verify that the reduction in signaling 

of these pathways did not result from poor penetration of fixative, we were able to detect 

similar stain intensities of multiple signaling markers in the peripheral and central regions of 

the same tumors, for tumors displaying positive signals (fig. S13). These results, all obtained 

from one sampling of tissue, suggested that differentiation is impaired in CRC, and these 

changes are associated with reduced signaling through certain pathways.

Modular organization of signaling pathways is disrupted in human CRC

Using t-SNE analysis to visualize multidimensional single-cell data from normal and CRC 

tissues, we observed defined organization of signaling pathways in normal colon tissues at 

the single-cell level. The abundances of phosphorylated signaling proteins in different 

pathways formed distinct patterns on t-SNE maps (Fig. 5E; for markers see Table S3); in one 

specimen, signaling markers formed a counter-clockwise arrangement in association with 

surface-to-crypt status marked by cytokeratins. These patterns can be broken down into a 

modular architecture: p-cJUN correlated with CK20+ differentiated cells; PCK, p-S6, and p-

RSK shared similar expression patterns; and p-ERK, p-P38, p-4EBP1, and p-CREB formed 

another module correlating to less differentiated crypt cells. These modules can also be 

revealed by calculating the pairwise correlation between signaling markers over individual 

cells, and using correlative distances for hierarchical clustering per sample (Fig. 6A). 

Qualitatively, the components within each module were consistent between normal colon 

samples, signifying robust organization of signaling pathways between cellular populations. 

The correlation between signaling pathways over single cells was reduced in both MSS and 

MSI CRC samples, signifying the usage of heterogeneous modes of signaling pathway 

regulation between individual cells in a tumor (Figs. 5E and 6A). Furthermore, modular 

organization of signaling pathways from hierarchical clustering was not preserved from 

sample to sample in CRC, implying significant intertumoral heterogeneity in signaling 

pathway regulation (fig. S14A). In place of qualitative assessment of signaling heterogeneity 

on a sample-per-sample basis, we quantitatively assessed intratumoral and intertumoral 

heterogeneity over all the samples. We evaluated intratumoral signaling regulation by 

quantifying the magnitude of correlation between all signaling markers measured in a 

pairwise fashion, with the notion that high correlations signify similar regulatory 

mechanisms between any pair of pathways utilized by all cells. On a per sample basis, this 

metric can be represented by the total intensity on a correlative distance heat map (Fig. 6A). 

Normal colon samples had significantly greater total correlation between signaling markers 

than did MSS and MSI CRC samples (Fig. 6B), denoting the loss of signaling regulation 
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homogeneity between cells in CRC. We quantitatively evaluated intertumoral signaling 

heterogeneity by assessing the degree by which signaling modules are similar between 

samples. For this, we took advantage of tools built previously to assess the similarity 

between dendrograms to evaluate the degree similarity between the structures of hierarchical 

clustering trees (42). We used the Baker’s Gamma Correlation coefficient (43), a metric that 

is insensitive to the height of the branches but is sensitive to the position of each branch, to 

calculate pairwise similarities between hierarchical trees generated for each sample (fig. 

S14A). The mean Gamma Correlation pairwise coefficient showed a significant decrease in 

value in MSS and MSI CRC samples compared to normal colon samples, suggesting that 

similar signaling modules recurrently exist across different normal colon samples, but less so 

in CRCs (Fig. 6C). Using tissue-level data to perform the same analysis resulted in different 

interpretations, again, with normal colon samples having high correlation between sets of 

signaling markers, MSS samples having less correlation than normal colon tissue, and MSI 

samples having a correlation between different sets of markers (fig. S14B). This difference 

may be due to the loss of single-cell resolution where markers expressed in different cells 

are considered to be in the same compartment as a sample average. These results 

demonstrated, in a quantitative fashion, that (i) cells within normal colon have shared 

regulatory mechanisms between pathways but cells in CRC samples do not (intratumoral 

heterogeneity), and (ii) organized signaling modules recurrently exist between normal colon 

samples but not between CRC samples (intertumoral heterogeneity).

We next examined whether single-cell signaling properties of tumors are associated with 

molecular characteristics (Table S2). None of the four microsatellite unstable (MSI) tumors 

in our set with a BRAFV600E mutation presented with CK20+ differentiated cells, whereas 

all other nine tumors (MSS or MSI with wild-type BRAF) presented with some degree of 

differentiation (Fig. 6, D and E). Furthermore, all MSI-BRAF mutant tumors (4/4) had some 

degree of CC3+ apoptotic cells, whereas only a small proportion (3/9) of other tumors 

exhibited this phenotype (Fig. 6, D and E). For MSS tumors specifically, a G12 mutation 

(G12V or G12C) in KRAS downregulated the abundance of p-ERK, increased cell 

proliferation (Ki67), and upregulated CLCA1+ goblet cell specification compared to tumors 

with wild-type KRAS (Fig. 6F). These results provided evidence that genetic properties, 

such as microsatellite instability and mutations, but not pathologic details, such as grade and 

stage of the tumor, correlate with single-cell signaling phenotypes in CRC.

Discussion

There is an ongoing effort to use next-generation genomic, epigenomic, transcriptomic, and 

proteomic data to predict tumor outcomes and responses to therapy (44). However, the 

degree of behavioral diversity within a tumor may be just as important, because different 

cellular populations may respond to drugs differently and cooperate to produce emergent 

behaviors. FFPE-DISSECT enables the analysis of single cell signaling activities in archival 

human tissues. Whereas large academic centers have access to various methods for human 

tissue preservation, such as flash freezing, most community hospital settings only have 

access to FFPE. These untapped, large human tissue resources can now be mined at the 

single-cell level for building appropriately powered models to inform how heterogeneity 

contribute to tumor behavior and how cellular diversity changes in response to treatment.
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There are several caveats to using FFPE-DISSECT, which fall under the same limitations as 

other FFPE applications. First, the range of antibodies that actually work in FFPE tissues is 

reduced compare to freshly isolated tissues, because not all conformationally blocked 

antigens can be retrieved. We somewhat alleviated this problem by only using antibodies 

that are well-validated (such as by knockdown in human cell lines or mouse tissues) and are 

widely used in the field for FFPE applications. This problem can perhaps be further 

addressed in the future by better antibody generation practices. For example, a higher 

success rate for the generation of antibodies for FFPE applications may be achieved by using 

fixed proteins as immunogens instead of native peptides. Second, the veracity of a stain of a 

human FFPE section due to tissue degradation comes into question. The preservation of 

signals, specifically of signaling proteins, is sensitive to the amount of time the tissue has 

been outside the body (33). Furthermore, storage conditions of FFPE block, such as 

temperature and humidity, may introduce variability in the results (45). Standardized 

operating procedures regarding post-excision time, fixation, and storage, such as those 

adopted by CHTN, are required to decrease the variability introduced during the tissue 

preparation step. Third, mass cytometry, although multiplexed, still remains a candidate-

based method, and the biological insights derived are only as informative as the biomarker 

panel allows. A well-known shortcoming of immunohistochemistry techniques is the 

reliance on cell-type specific markers and morphology to identify cell types, whereas these 

properties may be altered by concomitant loss of architecture, infiltration of host cells, and 

dedifferentiation in dysplastic tissue. While we appreciate that cell identities in cancer may 

not reflect those of normal tissue, the use of multiplex marker panels, specifically those of 

signaling that represent the functional state of a cell, can allow for the inference of the 

lineage of origin of cancer cells with unknown identities. Using multiplex single-cell data 

with comparative algorithms such as Citrus (46), one can determine the similarity of cancer 

cells to reference signatures of normal cell types in marker space. Furthermore, candidate-

based single-cell approaches can be coupled with single-cell RNA sequencing (47), and even 

other unbiased bulk-based methods to become a powerful discovery tool. There is high 

potential impact for characterizing unidentified transitional cells in cancer, as they may have 

altered properties that contribute to malignancy, and more importantly, may be targetable by 

therapy. All of the above limitations are inherent to FFPE applications in general, and should 

be considered and be controlled for at the study design phase.

The ability to query signal transduction in a cell-type specific or even at a single-cell level is 

a defined strength of our approach. The prevalent methods to detect and quantify signaling 

proteins remain to be bulk approaches such as Western blots and ELISA (32, 48), which 

assume cellular homogeneity and are not always suitable for tissue analysis. With these 

approaches, positive signals in small subsets of cell are washed out by larger populations, 

and the cellular sources of positive signals cannot be determined. For imaging applications 

in tissues, cell-type specific signaling is usually evaluated with low multiplexity, for 

instance, looking at one signaling marker with one cell type marker. More recent advances, 

as mentioned above (23–28, 22), allow for higher multiplexity but at the expense of feasible 

application on large sample sets. FFPE-DISSECT coupled to mass cytometry is a relatively 

rapid method for performing multiplex single-cell signaling analysis. It can be used for 
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proposing interesting signaling markers that can be followed up by imaging, as we have 

done in this study.

The major assumption of FFPE-DISSECT, which begins with archival tissue blocks, is that 

the tissues are handled properly during the pre-analytical fixation steps. This assumption is 

widely made in the histopathology field, especially in tissue microarray or cohort studies 

where hundreds of samples are collected from different sources (49). Improperly fixed tissue 

will inevitably lead to invalid downstream analyses. To mitigate artifacts arising from this 

source, a standardized operating procedure was adopted for processing all tissues in this 

study. First, tissue thickness was limited to 5 mm, which according to common references 

(50, 51), should allow efficient penetration of fixation within one hour. Second, fixative was 

incubated with a magnetic stirrer to maximize diffusion. Third, the fixation time was 

standardized at 24 hours. Last, and most importantly, a board-certified pathologist has 

reviewed the histology of tissue along with quality assurance-quality control data. 

Histological characteristics indicating poor fixation quality/inadequate fixative penetration 

include: (i) processing observations based on nuclear staining and appearance of cytoplasm; 

(ii) scratches or hatching of the specimen during microtomy; (iii) section disintegrating or 

pulling apart; (iv) smudging or unusual staining, (v) other unusual artifacts; (vi) stutter; (vii) 

degree of autolysis; and (viii) cells showing crenation. Samples indicative of fixation 

problems were not included in this study. Aside from pre-analytical evaluation, additional 

steps can be taken to identify potential artifacts after data collection. These include: (i) 

imaging tissue section from the same tissue block to ensure concordance (% of host cell 

infiltrating, relative intensity of markers) with single-cell data; (ii) imaging single-cell 

suspensions to ensure disaggregation into single cells; (iii) evaluating proper conjugation of 

antibodies by staining with both the conjugated and the unconjugated clone coupled to a 

secondary detection system; and (iv) assessing detection specificity by identifying CyTOF 

events that are positive for all markers. Many of these artefacts arise from the FFPE process, 

and we remain hopeful that widespread adoption of standardized procedures and additional 

technological advances will minimize these issues in the future.

Our approach illuminated differential signaling patterns in different cell types (enterocytes, 

goblet cells, and enteroendocrine cells), with the conclusion that secretory cells in general 

are more sensitive to basal and TNF-α-induced signaling. Goblet cells have the highest 

signaling propensity, with upregulation of many pathways compared to enterocytes. 

Specifically, goblet cells upregulate the phosphorylation of ERK, which we identified as a 

survival mechanism against TNF-α-induced apoptosis; accordingly, goblet cells are resistant 

to TNF-α-induced apoptosis (16). Furthermore, EGFR is a receptor upstream of ERK that 

plays critical roles in growth, survival, and differentiation in the stem cell niche (52). 

Following this line of logic, we established a link between RAS activation and goblet cell 

metaplasia in the intestinal epithelium. This is the first time that NRAS activation has been 

connected to this phenotype to our knowledge. Demonstrating the casual effect of this 

pathway, ERK signaling downregulation has been documented to suppress goblet cell 

specification. Heuberger et al. have shown that epithelial-specific knockout of the 

phosphatase SHP2 suppresses p-ERK signaling and goblet cell differentiation by modulating 

transcription factor 4 (TCF4) isoform switching and WNT-dependent transcription (53). This 

effect on goblet cells can be rescued by gain-of-function in MEK1. A more recent report by 
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De Jong et al. has also shown that the knockout of both ERK1 and ERK2 impairs goblet cell 

differentiation (54). Goblet cell numbers were reduced but not completely ablated in that 

study, suggesting that there are compensatory mechanisms to maintain goblet cell number. 

Using a multiplex cell-type specific approach, we propose other candidate signaling 

pathways, such as through the phosphorylation of activating transcription factor 2 (ATF2), 

that may act in synergy with p-ERK to control goblet cell specification.

Cellular heterogeneity is an important topic in cancer biology from both genetic and cell 

biology perspectives. Differential signaling between cells is a form of heterogeneity that 

controls cellular behaviors, but is relatively unexplored. Gerdes et al. reported that pathway 

relationships between signaling components identified from cell lines may not hold true in 

human tissues when observed at single-cell level (23). Here, we identified signaling 

pathways that organize into a modular architecture associated with surface-to-crypt identity 

in the normal colonic epithelium. Consistent correlation between pathways over single cells 

represent regulatory mechanisms that are recurrently used by all cells in the tissue. 

Maintenance of modular architecture between samples reflects homogenous organization of 

signaling pathways. Quantifying these two properties using mass cytometry single-cell data 

suggest that both intra- and inter- tissue heterogeneity are increased in CRC regarding 

signaling regulation. Heterogeneity in cancer signaling reflects the relaxation of constraints 

that allows a cancer cell to sample a wider state space. These constraints can be physical or 

biochemical, from disorganization of tissue architecture to rewiring of signaling networks. In 

turn, a cell can adopt novel behaviors and functions outside of normal cellular behaviors, 

such as epithelial-to-mesenchymal transition (55).

The RAS-RAF-MEK-ERK kinase cascade plays a major role in the pathogenesis of CRC. 

Activating KRAS and NRAS mutations are found in ~50% of all CRC, and activating BRAF 

mutations are found in ~10% of CRC (56–58). Mutations in KRAS and downstream BRAF 

are a biomarker for resistance to upstream EGFR-targeted therapies, as expected (59, 60). 

However, downstream MEK inhibition has limited efficacy in CRC with KRAS and BRAF 

mutations (61, 62). While acquired resistance mechanisms, such as upregulation of EGFR 

family members and BRAF gene amplification (63, 64) are seen in cell lines, an alternative 

explanation for the lack of efficacy of MEK inhibitors in the clinic may simply be that 

MAPK signaling downstream of mutant KRAS or BRAF is not upregulated in CRC tissue, 

as shown in our data here. Unlike cell lines (65), activating KRAS and BRAF in vivo results 

in negative feedback that upregulates the expression of ERK-targeting phosphatases (41). 

Work from the Channing Der laboratory has observed that nuclear ERK phosphorylation in 

human CRC is not correlated to the mutational status of KRAS or, to a lesser extent, BRAF 

(66). Mouse models also revealed that KRAS activation in normal intestinal epithelium 

activates ERK, but this effect is inhibited in the context of mouse models of CRC (38). 

These results support that tissue, cell, and disease contexts strongly govern the influence of 

genetics on the output of signaling pathways.

Although some argue for redundancy between KRAS and BRAF mutations in MAPK 

signaling by their mutual exclusion (67), the cancer phenotypes induced by these mutations 

are vastly different. KRAS mutations mostly occurs in common sporadic CRC that are 

classified as the CIN (chromosomal instability) phenotype, whereas BRAF mutations mostly 
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occurs in CRC that are classified as the CpG island methylator phenotype (68, 69). 

Hypermethylation of the MLH1 gene results in diminished DNA repair and induces a MSI-

high phenotype distinct from that caused by mismatch repair gene mutations (such as in 

Lynch’s syndrome) (70, 71). Thus, BRAF mutations are seen in a majority of MSI tumors 

and rarely in MSS tumors (72). BRAF mutant pathology is also distinct from traditional 

adenocarcinomas, adopting a serrated morphology (58). Although MSI is often a good 

prognosis due to the infiltration of cytotoxic T lymphocytes (4, 73), patients with BRAF-

mutant tumors have relatively poor overall compared to their BRAF-wild-type counterparts 

(71, 74). These properties may be due to the lack of differentiation in BRAF-mutant MSI 

tumors, resulting in a large number of “stem-like cells” , as seen in this study and reported in 

others (5, 75), which confers resistance to conventional therapies. Perhaps, increased 

sensitivity to apoptosis in these tumors, as marked by CC3 positivity, can be exploited as a 

therapeutic option. In our hands, KRAS mutation in MSS tumors is suggested to result in the 

downregulation of ERK, an increase in the number of goblet cells, and an increase in cell 

proliferation in distinct populations that may identify with their relative differentiation 

states. A weakness in our study is the low number of samples in each grouping, especially if 

we further partition samples by their molecular details. Our intent here is to provide a proof-

of-concept application of FFPE-DISSECT on human CRCs, and the hypotheses generated 

with this small cohort will need to be confirmed in a larger set of tumors. However, given 

that our approach can be applied to FFPE tissue blocks, one can have access to much larger 

repositories of retroactively collected samples that can power any study. FFPE-DISSECT 

coupled to mass cytometry applied to archival samples is a powerful tool to generate large 

amounts of single-cell data with acceptable throughput. These data are complementary to 

other precision medicine efforts to molecularly characterize solid tumors for arriving at 

subtypes that can predict prognosis and therapeutic response.

Materials and Methods

Mouse experiments

All animal experiments were performed under protocols approved by the Vanderbilt 

University Animal Care and Use Committee and in accordance with NIH guidelines. Mice 

were stimulated with TNF-α as a time course, and their duodena (proximal small intestine) 

were collected for analysis as previously described (31, 32). For DISSECT, a previously 

published protocol was used (16). For FFPE embedding, tissues were fixed in formalin for 

24 hours prior and then were subjected to standardized embedding procedures. Tissues were 

incubated in RPMI when outside of the body for extended time.

Human tissue acquisition

Human normal colon and colorectal cancer tissues were obtained under protocols approved 

by Vanderbilt University through the Cooperative Human Tissue Network (CHTN). Clinical 

and pathology reports were attached to each sample prior to de-identification of patient 

information. An optimized CHTN collection SOP was used. Briefly, specimen sizes were 

limited to 5 mm in diameter and fixed for 24 hours in magnetically stirred formalin (to 

facilitate diffusion), after which the specimen was embedded with a standardized FFPE 

protocol. The time from which the specimen was excised from the patient to the fixative 
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(during which the tissue was examined by the pathologists or their assistants) was recorded 

as the post-excision time (PET). Specimens with substantial tumor cell content determined 

by haematoxylin and eosin staining were selected for analysis. Overall, 7 normal colon 

samples and 13 CRC samples were selected.

DISSECT disaggregation on FFPE tissues

50μm sections were freshly cut from each block and placed in 1.5mL microcentrifuge tubes 

(Fisher). Samples were heated to 65°c for 25 minutes to melt wax, then washed 3 times with 

1mL of histoclear for 8 minutes each. Tissues were then rehydrated in 2 washes each of 

100%, 70% and 50% ethanol, then 3 washes of PBS. Samples were washed for 10 minutes 

in PBS with 0.3% Triton X-100, then washed a final time in PBS before incubation in the 

HIAR buffer (DAKO). Samples were incubated in the buffer under high heat and pressure 

for 20 minutes (actively heating for the first 4 minutes), followed by 20 minutes cooling of 

the bench. Samples were then washed 3 addition times in PBS and stored at 4° until staining.

Tissues were blocked at room temperature (RT) for 30 minutes in 2.5% donkey serum 

(Jackson ImmunoResearch) in PBS and stained overnight at RT with antibodies diluted in 

the same buffer. Additional blocking with carefully chosen serum combinations were 

applied if secondary antibodies were used. After appropriate washing, samples were 

incubated for 30 minutes in 4% PFA to crosslink antibodies to their targets. Samples were 

washed, and then incubated for 25 minutes at 37°C in 200μL PBS with 1mg/mL each of 

collagenase (Calbiotech) and dispase (Life Technologies). Tissues were passaged 5-10 times 

through a 27ga needle to mechanically dissociate them into single cells. Cells were 

incubated with a nuclear intercalating agent prior to analysis.

Cytometry analyses

For both fluorescence cytometry and mass cytometry, cells were initially gated using DNA 

content (Hoescht – fluorescence cytometry) or intercalator (Iridium – mass cytometry) 

following established procedures to identify intact single cells and eliminate cell doublets 

and clusters from analysis (16, 76, 77). Single cells were then analyzed for intensity of 

antibody conjugates. Fluorescence cytometry was performed on a BD LSRII with 5 lasers 

and mass cytometry was performed on a Fluidigm-DVS CyTOF 1 instrument. Epithelial-

specific analysis was achieved by gating cells positive for pan-Cytokeratin (PCK).

Immunofluorescence imaging

FFPE tissues were sectioned at 5 μm and processed using standard immunohistological 

techniques, stained with appropriate primary or primary/secondary antibodies. DISSECT-

processed tissues were also imaged pre- and post- disaggregation in a whole-mount format. 

Slides were imaged using a Zeiss Axiophot fluorescence/brightfield microscope with a Zeiss 

Axiocam with 5 channel imaging capabilities. Quantitative analysis of goblet cells in the 

villus was performed on ImageJ using the particle analysis module. Ratios of areas occupied 

between the CLCA1 channel and nuclear channel were calculated with a correction factor 

for the typical size of a goblet granule against the typical size of a nucleus.
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Quantitative immunofluorescence imaging and immunoblotting of signaling proteins

The same antibody clones were used for FFPE-DISSECT-CyTOF. Quantifications were 

performed as described previously (16).

Antibody reagents

Antibodies used in this study are listed tables S1 and S3. All signaling antibodies were 

previously validated and used in mass cytometry applications (16).

Data analysis and Statistical analysis

t-SNE analysis was performed using the viSNE implementation on Cytobank.org following 

established single-cell analysis workflows (78–80). Gating for cell types was performed by 

considering a first decade (101) threshold for cell type specific markers. Unpaired t-tests and 

correlation analyses were performed using Prism (Graphpad). Multiple comparison tests 

were performed with ANOVA with Tukey post-hoc test (Graphpad). Correlative distances 

and heat maps were generated using MATLAB (Mathworks). Hierarchical clustering and 

dendrogram analysis were performed using the dendextend package in R (42).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Schematic of the FFPE-DISSECT process for preserving native epithelial signaling
Thick (50 μm) tissue slices were sectioned from FFPE blocks, antigen retrieved, and then 

processed following the steps of the DISSECT procedure. RT, room temperature; PFA, 

paraformaldehyde.
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Fig. 2. FFPE-DISSECT enables the identification of cell types and quantification of phospho-
protein signaling activities
(A) IF imaging of dissociated cells from FFPE murine intestinal tissues prepared by FFPE-

DISSECT, stained for cell type markers CK18, CLCA1, and DCLK1. Scale bar, 50 μm. (B) 
IF imaging of a single epithelial cell stained for nucleic acid, CK18, and CLCA1. Scale bars, 

10 μm. (C) Flow cytometry bi-plots of the mouse ileum prepared by FFPE-DISSECT. 

Manual gating of goblet cells by CK18 and CLCA1, and tuft cells by DCLK1. CK18 and 

CLCA1 singular positive cells are back-gated to a bi-axial plot not used for the original 
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gating to demonstrate that the cells comprise an overlapping goblet cell population. (D) IF 

imaging of intact FFPE intestinal tissues as 5 μm sections, compared to single cells prepared 

by FFPE-DISSECT, stained for p-cJUN (early signal) and p-STAT3 (late signal) in response 

to TNF-α at the indicated time points (hr: hours). Scale bars, 20 μm. (E) Quantification of p-

cJUN and p-STAT3 from single-cell suspensions generated from murine duodenal tissues, 

prepared immediately by DISSECT (green), or FFPE-embedded and then by FFPE-

DISSECT (magenta), followed by flow cytometry. Median intensities calculated from single 

cell distributions are displayed for comparisons. Tissues were harvested at specified time 

points after TNF-α administration. Data are means ± SEM from n=3 animals. Data scales 

are Z-score values derived from mean centering and variance scaling of each set of time 

course experiment. Data are representative of n=3 animals.
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Fig. 3. Comparison between mass cytometry data generated by FFPE-DISSECT and the 
validated DISSECT method on the same intestinal tissue
(A and B) Dynamic signals of TNF-α stimulation time courses, and enriched in either (A) 

crypts or (B) villus.from murine duodenal harvested from specified time points after TNF-α 
administration. Tissues were split in two, with one set processed immediately by DISSECT 

(green), and the other set FFPE-embedded and then processed by FFPE-DISSECT 

(magenta). Both sets of tissues were analyzed by mass cytometry with the same cross-

reacting signaling antibody panel. (C) Correlation analysis combining all villus signaling 

markers, comparing mass cytometry data generated by DISSECT against FFPE-DISSECT. 

Quantitative data from different time points were used to generate a range of variation for 

correlation analysis. Data are means ± SEM from n=3 animals. Data scales are Z-score 

values derived from mean centering and variance scaling of each set of time course 

experiment. **** P ≤ 0.0001, by t-test.
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Fig. 4. Cell-specific signaling in the murine duodenal epithelium
(A) t-SNE analysis of mass cytometry data from the mouse duodenum exposed to TNF-α 
for 1 hr, prepared by FFPE-DISSECT. Color overlaid represents the relative quantification of 

cleaved caspase 3, p-ERK, and p-P38 events, respectively. Labelled cells: apoptotic – 

CC3+ (3.07%), TA cells – p-4EBP1+ (4.13%), goblet – CLCA1+ (5.44%), enterocytes - 

CKAE+, CLCA1−, CHGA−. Numbers on right axis represent min and max value of the 

color scale. (B) Bi-plots of CC3 with p-ERK or p-P38, demonstrating negative correlation in 

the former and positive correlation in the latter. (C) Signaling specific to epithelial cell types 

(enterocyte- CKAE+, CLCA1−, CHGA−, goblet – CLCA1+, enteroendocrine – CHGA+) 

calculated by integrating signal values over the entire TNF-α time course, comparing mass 

cytometry data generated by DISSECT against FFPE-DISSECT. Data are means ± SEM 

from n=3 animals. Data scales are Z-score values derived from mean centering and variance 

scaling over data values for the three cell types for each method. (D) IF imaging to confirm 

cell type-specific signals (p-ERK, p-ATF2, p-4EBP1) at baseline, unstimulated. Scale bars, 

20 μm. Data are representative of n=3 animals.
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Fig. 5. Mass Cytometry analysis of human colorectal cancer specimens prepared by FFPE-
DISSECT
(A to C) Percentage of (A) CK20+ fully differentiated epithelial cells, (B) CLCA+ goblet 

cells, and (C) CHGA+ enteroendocrine cells in samples of normal human colon compared to 

samples of human CRC. Data are means ± SEM from n>7 different patient specimens. Inset 

depicts manual gating of differentiated cells by CK20. *** P ≤ 0.001, **** P ≤ 0.0001, by t-

test. (D) IF imaging of signaling markers (p-CJUN, p-S6, p-ERK, p-P38, CC3) comparing 

normal colon and CRC. Scale bar, 100 μm. (E) t-SNE mapping of mass cytometry data 

generated from human colon, MSS or MSI CRC specimens, overlaid with signaling and 

selected differentiation markers. Numbers on right axis represent min and max value of the 

color scale. The same scales were used between all samples. Proportional downsampling to 

20,000 cells was performed for more equivalent representation since some samples have a 

small representation of actual tumor cells. On average 60,000 cell events were collected per 

sample. Data are representative of n>6 human patient samples for each group (colon, MSS-

CRC, MSI-CRC).
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Fig. 6. Insights into the heterogeneous organization of signaling pathways in CRC from single-
cell data
(A) Heat map and hierarchical clustering derived from pairwise correlative distances 

between signaling markers calculated over all single cells in a sample. A high pairwise 

correlation signifies two pathways are regulated in the same way in all cells. Data are 

representative of n>6 human patient samples for each group (colon, MSS-CRC, MSI-CRC). 

(B) The mean value of all pairwise correlations between signaling markers calculated per 

sample, comparing between normal colon, MSS, and MSI. Data are means ± SEM from n>6 

different patient specimens. (C) Baker’s γ correlation coefficient comparing the similarity 

between hierarchical clustering trees computed between all samples within each group 

(colon, MSS, MSI). Data are means ± SEM from n>6 different patient specimens. (D) t-SNE 

maps of mass cytometry data generated from a MSI-BRAFV600E mutant tumor compared to 

MSS or MSI-BRAF wild-type tumors overlaid with the abundance of CK20 and CC3. 

Numbers on right axis represent min and max value of the color scale. The same scales were 

used between all samples. Number of cells noted from each single tumor. Data are 

representative of n=4 MSI-BRAFV600E mutant tumors, n=7 MSS tumors, and n=2 MSI-

BRAFWT tumors. (E) Percent CK20+ or CC3+ cells comparing MSI-BRAFV600E mutant 

tumors (n=4) compared to tumors of other genotypes (n=9). Dotted line represents the 2% 

threshold, and inset is the number of samples passing the threshold. (F) t-SNE maps of mass 

cytometry data generated from a MSS-KRASG12C mutant tumor compared to a MSS-KRAS 

wild-type tumor overlaid with abundances of p-ERK, Ki67, and CLCA1. Data are 

representative of n=2 KRAS mutant and n=2 KRAS wildtype tumors.* P ≤ 0.05, ** P ≤ 

0.01, *** P ≤ 0.001, by ANOVA followed by Tukey post-test (B,C) or t-test (E).
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