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Summary

Many species of cold-blooded animals experience substantial and rapid fluctuations in body 

temperature. Because biological processes are differentially temperature-dependent, it is difficult 

to understand how physiological processes in such animals can be temperature-robust. [1-8]. 

Experiments have shown that core neural circuits such as the pyloric circuit of the crab 

Stomatogastric Ganglion (STG) exhibit robust neural activity in spite of large (20 °C) temperature 

fluctuations [3, 5, 7, 8]. This robustness is surprising because the temperature dependencies of 

ionic currents in the STG are not tuned [7]. This is apparently paradoxical because: a) each neuron 

has many different kinds of ion channels with different temperature dependencies (Q10s) that 

interact in a highly nonlinear way to produce firing patterns; b) across animals there is substantial 

variability in conductance densities that nonetheless produce almost identical firing properties. 

The high variability in conductance densities in these neurons [9, 10] appears to contradict the 

possibility that robustness is achieved through precise tuning of key temperature-dependent 

processes. In this paper we develop a theoretical explanation for how temperature robustness can 

emerge from a simple regulatory control mechanism that is compatible with highly variable 

conductance densities [11-13]. The resulting model suggests a general mechanism for how 

nervous systems and excitable tissues can exploit degenerate relationships among temperature-

sensitive processes to achieve robust function.
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Results

Temperature sensitivity of physiological processes such voltage-dependent ion channel 

gating are described by an approximate, empirical measure, the Q10, defined as the fold-

change per 10 °C from some reference temperature:

(1)

Here RT is the rate (or magnitude) of the process at temperature T and Rref is the reference 

value at temperature Tref. A Q10 of 1.0 therefore means that a process is temperature-

independent. Experimentally, Q10s for single-channel conductance tend to lie in the range of 

1.2-1.5. On the other hand, Q10s for ion channel gating or inactivation are typically in the 

range 2.0 – 4.0 [14], meaning that the rate of channel opening, for example, can speed up 

more than two-fold per 10 °C increase.

Activity in single neurons and circuits results from the interaction of many nonlinear 

voltage-gated conductances, and is therefore generically very sensitive to changes in kinetic 

properties of conductances [4]. This is evident in warm-blooded homeotherms such as 

humans, where changes in brain temperature of only a few degrees can result in seizures, 

loss of consciousness or death. Figure 1A illustrates temperature sensitivity in model 

pacemaker neurons that have been assigned random Q10s over a realistic range (2 - 4). Each 

neuron has the same set of 8 conductances with fixed densities. At the reference temperature 

(10 °C) the neurons show identical bursting activity (green traces in Figure 1A). However, 

this activity is severely disrupted as temperature is varied from 5-25 °C, with each different 

assignment of Q10s causing qualitatively different changes. In contrast, the biological data 

reproduced in Figure 1B shows temperature robust pacemaker activity in isolated PD cells of 

the STG [3]. Notably, the duty cycle of these neurons (the percentage of time the neuron is 

firing during a burst cycle), which is important for coordinating relative muscle contraction 

timing, is tightly preserved even though the cycle frequency increases with temperature. 

Pacemaker duty cycle robustness, in concert with synaptic and intrinsic mechanisms of the 

follower cells [7], allows temperature compensation of phase relationships in the wider 

circuit.

Together with other studies [7, 15] the extreme sensitivity of the models in Figure 1A shows 

that temperature robust behavior is not expected for ion channel Q10s selected from a 

biologically realistic range. Therefore, some tuning of either the Q10s or the channel 

densities must occur in temperature-robust biological systems. It is conceivable that ion 

channel Q10s can be tuned on an evolutionary timescale or on short timescales as a result of 

protein modification. On the other hand, channel densities are known to be under regulatory 

control [11-13] and biological data show that conductance expression is highly variable in 

neurons, including the pacemaker cells of the STG (Figure 1C). This is consistent with 

theoretical studies that show there are many possible combinations of neuronal parameters 

consistent with a given type of activity [16-20], suggesting that neurons can somehow find 

entire families of temperature robust combinations of channel densities.
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Temperature robustness via channel density regulation

Consider a physiological property, P, of a neuron – this could be spike frequency, burst duty 

cycle or any other relevant property. Temperature robustness of P arises when the derivative 

of P with respect to temperature, T, is close to zero over some temperature range:

For convenience we restrict attention to a single compartment neuron model with fixed 

capacitance. In this case, all physiological properties depend on the dynamics of the ionic 

currents in the cell. We can thus write the temperature dependence of P in terms of the 

temperature-dependence of each current, Ii, using the chain rule [2, 21, 22]:

The contribution of each current, Ii, to P is weighted by the corresponding channel density, 

ḡi. Thus,

(2)

where xi is the unit current due to each channel type (so that Ii = ḡixi). Informally, this 

relationship can be summarized as:

Within some range of the ḡi, each current affects membrane potential dynamics to either 

increase or decrease property P (or it has no effect, in which case it is irrelevant). Therefore, 

the dP/dxi terms in (2) are either positive or negative. The dxi/dT terms depend only on the 

Q10 s corresponding to current i, which are always positive and monotonic. Re-writing 

equation (2) and setting dP/dT = 0, gives:

(3)

Here we have split the currents according to whether dP/dxi is positive or negative. For a 

large number, n, of different conductances with a mixture of positive and negative 

contributions (1 < k < n), condition (3) is easily satisfied at a single temperature by solving 

for ḡi. If, in addition, the dP/dxi terms are sufficiently smooth, P will be approximately 

temperature invariant over an extended temperature range. Most importantly, if (3) is 

O'Leary and Marder Page 3

Curr Biol. Author manuscript; available in PMC 2017 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



satisfied for one set of conductance densities, {ḡi}, then linearly scaled densities {αḡi} also 

satisfy (3), where α is a scaling factor. This shows that a single temperature robust solution 

can extend to entire families of temperature-robust solutions with linearly correlated 

conductance densities.

Intuitively, the above argument says that temperature robustness is achieved when the 

temperature dependencies of multiple processes that negatively and positively affect P 
approximately cancel. This approximate cancelling has been called ‘antagonistic balance’ 

[2, 22]. The important point to take from equation (2) is that the weighting of each 

contribution to overall temperature dependence is controlled by conductance density, 

equivalently, the expression levels of channel proteins in a biological neuron. Clearly, non-

permissive situations can exist, for example if a property depends on only one gating 

variable of a temperature sensitive conductance.

Equation (3) says that if a property is influenced positively and negatively by multiple 

temperature-sensitive currents, then temperature robustness can be achieved by controlling 

conductance densities alone. Furthermore, whenever such solutions exist, linearly correlated 

temperature-robust sets of conductances will also exist. In neurons that express many types 

of conductance, there will generally be many positive and negative contributions to a given 

property, making equation (3) easier to satisfy. Together, this shows that regulation that gives 

linearly correlated conductances can be sufficient for temperature robustness.

Existence of temperature robust channel density configurations in models with 
mismatched Q10s

We examined the temperature robustness of duty cycle (fraction of cycle period that the 

neuron is active) in model bursting pacemaker neurons. Duty cycle is important for 

coordinating rhythms in central pattern generating circuits, such as in the pyloric circuit of 

the STG. Moreover, temperature robustness of this property is far from trivial to achieve, as 

Figure 1A illustrates.

To provide an initial set of candidate models, we randomly sampled conductance densities as 

well as Q10s in a single compartment conductance based model (Figure 2A). For each 

sample, all of the voltage-dependent gating variables as well as the unitary conductances and 

calcium dynamics were assigned random Q10 values over a realistic range. Q10s for each 

gating variable were randomised uniformly in the range (1< Q10 <4) and unitary 

conductances in the range (1< Q10 < 1.5). As expected, most (94%) of the 116,400 models 

we sampled failed to maintain bursting activity over a temperature range (5-25 °C).

However, among the 7013 models that did maintain bursting activity across temperature, 560 

(0.5%) of the models maintained duty cycle within a 5% range. The distribution of duty 

cycle variation in all models over 5-25 °C is shown in Figure 2B, along with the distribution 

of variation in cycle period. Notably, period is less temperature-robust than duty cycle in 

these models. Biologically, most neurons and neural circuits, including those found in the 

pyloric circuit exhibit increases in frequency of bursting or spiking as temperature increases 

[6-8]. Interestingly, the distribution in duty cycle total variation peaks at 10.5%, very close to 

the biologically observed value of 13% in isolated pacemaker neurons of the crab pyloric 
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rhythm [3]. Thus, in a neuron with only 8 conductances it is relatively easy to find 

combinations of Q10s and conductance densities that are temperature robust.

Which conductance parameters contribute to duty cycle robustness? Figure 2C shows 

histograms of Q10 values for which temperature robust bursting (top panel) and temperature 

robust duty cycle (bottom panel) exist. Permissible Q10s for bursting are broadly distributed, 

indicating that individual Q10 values are relatively unimportant. Some Q10s (colored red) 

show detectable deviations from uniform distributions, indicating that bursting is sensitive to 

the corresponding kinetic parameter. These distributions did not alter markedly when we 

selected parameter sets with robust duty cycles (Fig 2C, lower panel), except for the 

calcium-dependent potassium conductance, (gKCa), which favored lower Q10 values. 

Therefore, in this model, many combinations of conductances can offset temperature-

dependent deviations in kinetics as expected from the previous analysis (Equation 3). As 

reported previously [15], there was no obvious correlation among the parameters of robust 

models (data not shown).

Although many sets of conductance densities give rise to temperature robust duty cycle, 

these represent a small fraction of densities that give temperature robustness of a bursting 

rhythm to begin with, which in turn occupy a small volume of all feasible conductance 

densities. Moreover, it is clear that a smaller fraction still (solutions toward the left-hand 

region of the shaded region of Figure 2B) have temperature robust period as well as duty 

cycle. In this sample, only two parameter sets can maintain both properties within 10%. 

Thus, robustness to one property imposes a strong constraint on the ability to be robust to 

additional properties.

Activity-dependent channel regulation can generate temperature robust neuronal 
properties

The fixed conductance densities of the models in Figure 2 allowed us to construct models 

that regulate their conductances using activity-dependent feedback. We recently showed [11, 

12] how a simple model of gene regulation can be coupled to a single, global activity sensor, 

such as a putative calcium-activated pathway depicted in Figure 3A. Briefly, the expression 

rates of each gene, mi, is proportional to the deviation of calcium concentration, [Ca], from 

an equilibrium value, Caeq:

(4)

The origin of Caeq is discussed extensively in [11] and arises when one considers the 

interaction between calcium-dependent processes that interact to control gene expression. 

Together, Caeq, and the expression rate constants, Ki, constitute a regulation parameter set 

for a model, which is assumed to be fixed for a particular cell type [11, 12]. For example, 

cells with a constitutively repressed channel gene would have a correspondingly low 

expression rate. We note that these rates are very slow relative to spikes and calcium 

oscillations, so these equations effectively average out calcium concentration. Channel 
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densities in the model evolve in proportion to the expression levels of the corresponding 

genes:

(5)

where A is some constant representing channel turnover rate. From random initial 

conditions, the model settles to a steady-state (ss) in which the channel genes, and thus 

channel density, are linearly correlated, as can be seen by integrating equations (4-5) and 

calculating the approximate ratios of the steady state densities, :

(6)

further analysis in [11, 12] shows further that this model converges.

Equation (6) provides a way to estimate regulation parameters from fixed models. We used 

the subpopulation of 560 fixed models in Figure 2 that maintained duty cycle within 5% to 

derive initial guesses for the Ki and the average calcium concentration, Caeq.

Equation (6) is approximate due to nonlinearities between steady-state average calcium and 

conductance density [11]. We thus sampled regulation parameters in a neighborhood and 

subjected the resulting self regulating models to temperature perturbations (400 samples for 

each of the 560 candidate parameter sets, 235,600 in total). In this sample, models are not 

only required to maintain duty cycle within a 5% range over 5-25 °C, they must also, by 

necessity, maintain average calcium concentration as temperature changes. A fraction (<1%; 

2098 parameter sets) satisfied these criteria and generated self-regulating duty cycle-robust 

neurons.

Figure 3B shows the initial and steady-state conductances of an example self-regulating 

model and its corresponding set of assigned Q10 values. Multiple runs of the model 

generates a population of cells with variable underlying conductances that are linearly 

correlated [12], as predicted by quation (6). These correlations recapitulate direct 

measurements of mRNA expression and conductance densities in identified neurons of the 

STG [9, 10, 13, 23] (Figure 1C).

Figure 3C shows membrane potential traces during acute temperature ramps, for five 

different neurons indicated in Figure 3B (color coded). Figure 3D quantifies duty cycle 

robustness with respect to temperature in this population of cells. Scaled membrane potential 

traces of the top cell in Figure 3C are shown in Figure 3E. The action potential waveform in 

the scale traces deviates with temperature, indicating temperature induced changes in the 

gating kinetics of the underlying conductances, which is to be expected given the substantial 

mismatch among the underlying Q10s (Figure 3B). Nonetheless, this set of regulation 

parameters, along with the other 2098 parameter sets, drives conductance densities toward 

regions of parameter space where temperature effects are balanced to maintain duty cycle.
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Discussion

While many sets of conductances and Q10s are temperature robust over some range, these 

represent a very small fraction of a random sampling of parameter space. Indeed, the 

conductance densities of successful self-regulating models form a very specific slice through 

parameter space. The general form of the model we present here demonstrates how a simple, 

biologically plausible control rule can allow neurons to land in these spaces of “good 

solutions” where temperature compensation occurs automatically. The signature of this 

control rule is found in the tight correlations in channel expression that is seen 

experimentally in temperature robust neurons. We speculate that over evolutionary 

timescales, the gene sequences and resulting enzymatic interactions that control gene 

expression have been shaped to make some organisms, tissues and cells acutely temperature 

robust by similarly constraining the underlying regulatory balance of multiple temperature-

dependent components. Although we have focused on the context of rhythmic neuronal 

activity that is observed to be robust in crustaceans, the principle of how multiple, 

degenerate temperature-dependent processes can be co-regulated to ensure robustness likely 

generalizes. For example, many species of cold-blooded homeotherms need to be robust to 

acute temperature fluctuations in the nervous system so as to maintain thermal homeostasis 

through the behaviors they employ that demonstrate their temperature preferences [24]. 

Even commonly used warm-blooded model organisms, such as rodents, exhibit remarkably 

robust nervous system function in the face of large temperature fluctuations [25]. What 

remains an open question is how robustness to one perturbation, in this case temperature, 

can coexist with robustness to other environmental challenges, each of which will potentially 

impose a new constraint on the available parameters, and thus on the regulatory mechanisms 

themselves.

Experimental Procedures

Single compartment pacemaker model neurons were constructed using channel kinetics 

described in [12]. The models had 7 voltage-dependent conductances: fast sodium (NaV), 

transient and slow calcium (CaT, CaS), A-type potassium (KA), calcium-activated 

potassium (KCa), delayed rectified potassium (Kdr), hyperpolarization-activated mixed 

cation (Ih) and a leak. Calcium dynamics has a first order decay as described in [12].

Temperature dependence was modeled in the time-constants of the channel gating variables, 

the maximal conductance and the time-constant of calcium buffering. For example, for a 

conductance g with gating variables, m and h, we have standard kinetic equations g = 
ḡmphq; τmṁ = m∞(V) – m; τhḣ = h∞(V) – h, where ḡ is maximal conductance, p, q are 

gating exponents, τx are gating time constants, x∞(V) are steady-state voltage dependencies 

and V is membrane potential. The temperature dependence is modeled as g = Rg(T)ḡmphq 

and Rm(T)−1τmṁ = m∞(V) – m, (with the same form for h), where T is temperature (in 

Kelvin) and Rx(T) = Q10,x
(T–Tref)/10. In the case of calcium buffering, the corresponding 

equation is RCa(T)−1τCa[Ċa] = 0.94ICa – [Ca] + 0.05. The coefficient of 0.94 (in units of μM 

nF / pA) is a geometric factor converting calcium current to concentration assuming the cell 

is approximated as a cylinder of 50 μm in diameter and 400 μm long and the steady-state 
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value of 0.05 (in μm) corresponds to approximate resting cytosolic calcium concentration 

[12].

Models that use calcium dependent channel regulation (Figure 3) are exactly as described 

previously [12]. Regulation parameters were chosen as described in the main text. The 

conductance densities, regulation parameters and Q10 values for all simulations are given in 

table S1 in the supplemental data. Duty cycle measurements were made using a spike 

threshold of −10mV. Simulation code is available at https://github.com/marderlab/

oleary_marder_2016

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

- Neural activity is generically highly temperature sensitive

- Neurons achieve temperature robustness with highly variable conductance 

densities

- Feedback regulation shapes variability to permit temperature robust neural 

activity

- Robustness to global perturbations constrains cellular regulation 

mechanisms
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Figure 1. Temperature robust neural activity is non-trivial but observed biologically in neurons 
with highly variable conductance expression
(A) Three example model neurons with identical conductance densities and randomly 

assigned Q10s for all kinetic parameters (values and ranges in Supplemental Table S1). 

Conductance densities were chosen to produce bursting pacemaker activity at the reference 

temperature (green traces). All models are subjected to an identical acute temperature ramp 

between 5 and 10 °C and between 10 and 25 °C (blue traces); temperature ramp is shown on 

the same timescale (red trace). (B) Example traces of a pharmacologically isolated PD 

pacemaker cell in the STG, subjected to acute changes in temperature, reproduced from [2]. 

Scale bar spans −75 to −25 mV (vertical) and 1 second (horizontal). (Right) summary 

measurements of PD duty cycle as a function of temperature across 12 different preparations 

[1]. (C) Single-cell ion channel gene expression data from PD pacemaker neurons, 

reproduced from [9]. Units are mRNA copy numbers from single cell real-time PCR, 

normalized to ribosomal RNA. Blue lines are linear fits where significant correlations were 

found.

O'Leary and Marder Page 11

Curr Biol. Author manuscript; available in PMC 2017 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Many sets of conductance densities can produce temperature robust neurons with 
mismatched Q10s
(A) Strategy for sampling temperature-robust combinations of channel densities and Q10s. 

Both channel densities and Q10s were randomly assigned to 116,400 single compartment 

models, which were then screened to find temperature robust pacemaking activity by 

measuring duty cycle and burst period during acute temperature ramps (parameters in 

Supplemental Table S1). (B) Total variation in cycle period and duty cycle over the 

temperature range 5 – 25 °C for all 7013 models that maintained bursting across 

temperature. Total variation is defined as the difference between maximum and minimum 
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cycle period/duty cycle across the temperature range. Marginal distributions of period 

variation and duty cycle variation are shown to the top and right of the plots. Yellow shaded 

region shows the subset of models that maintained duty cycle within 5% over the 

temperature range. (C) (Top panel) Histograms of Q10s for all channel gating variables and 

maximal conductances, and for calcium buffering time-constant and Q10. For maximal 

conductances, the horizontal axis ranges from 1.0 to 1.5. For calcium buffer time-constant 

the range is 20-100 ms. For all other Q10 histograms the range is 1.0 to 4.0.

Distributions that deviate substantially from the original uniform sampling distribution are 

shaded red (Kolmogorov-Smirnov statistic > 0.1.) Conductance abbreviations: NaV = fast 

sodium, CaT = transient calcium, CaS = slow calcium, KA = A-type potassium, KCa = 

calcium-activated potasium, Kdr = delayer rectifier potassium, Ih = hyperpolarization-

activated mixed cation conductance. (Bottom panel) as for Top panel, but for the subset of 

560 models that maintained duty cycle within 5%, as depicted in yellow shaded region of 

(B).
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Figure 3. An example of a self-regulating population of model neurons that establish 
temperature-robust sets of conductance densities
(A) Cartoon of the conductance regulation model used in this paper. Calcium concentration 

directly modulates the expression rates of all conductances densities by altering the rate of 

production of a channel intermediate (‘mRNA’) on an appropriately slow timescale (orders 

of magnitude slower than fluctuations in calcium due to spikes and membrane potential 

oscillations). (Lower panel) Example traces showing convergence of the model. Scale bar: 

50 mV (vertical), 500 ms (horizontal). See ref [11] for full model details. (B) (Left panel) 

Random initial conductance densities in 25 model neurons. (Middle panel) Steady-state 
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conductance densities in the same 25 model neurons in the left panel following convergence 

under the control of one example parameter set from the 2028 parameter sets that produced 

temperature-robust self-regulating neurons. (Right panel) Q10 values of the conductances in 

the model neurons in the left and middle panels. (C) Acute temperature ramps in five 

example model neurons selected from the steady-state population in (B). (D) Quantification 

of duty cycle in the five example neurons in (C) as a function of temperature. (E) Time-

stretched membrane potential traces from the blue model neuron in (C).
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