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Abstract

The majority of the targeted therapeutic agents in clinical use target proteins and protein function. 

Although DNA and RNA analyses have been used extensively to identify novel targets and 

patients likely to benefit from targeted therapies, these are indirect measures of the levels and 

functions of most therapeutic targets. More importantly, DNA and RNA analysis is ill-suited for 

determining the pharmacodynamic effects of target inhibition. Assessing changes in protein levels 

and function is the most efficient way to evaluate the mechanisms underlying sensitivity and 

resistance to targeted agents. Understanding these mechanisms is necessary to identify patients 

likely to benefit from treatment and to develop rational drug combinations to prevent or bypass 

therapeutic resistance. There is an urgent need for a robust approach to assess protein levels and 

protein function in model systems and across patient samples. While “shot gun” mass 

spectrometry can provide in-depth analysis of proteins across a limited number of samples, and 

emerging approaches such as multiple reaction monitoring have the potential to analyze candidate 

markers, mass spectrometry has not entered into general use because of the high cost, requirement 

of extensive analysis and support, and relatively large amount of material needed for analysis. 

Rather, antibody-based technologies, including immunohistochemistry, radio immunoassays, 

ELISAs and more recently protein arrays, remain the most common approaches for multiplexed 
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protein analysis. Reverse-phase protein array (RPPA) technology has emerged as a robust, 

sensitive, cost-effective approach to the analysis of large numbers of samples for quantitative 

assessment of key members of functional pathways that are affected by tumor-targeting 

therapeutics. The RPPA platform is a powerful approach for identifying and validating targets, 

classifying tumor subsets, assessing pharmacodynamics, and identifying prognostic and predictive 

markers, adaptive responses and rational drug combinations in model systems and patient samples. 

Its greatest utility has been realized through integration with other analytic platforms such as DNA 

sequencing, transcriptional profiling, epigenomics, mass spectrometry, and metabolomics. The 

power of the technology is becoming apparent through its use in pathology laboratories and 

integration into trial design and implementation.

Introduction

Targeted therapy has demonstrated marked activity in a number of diseases. However, for 

most diseases and most agents, targeted therapy has not delivered on its initial promise: 

favorable treatment responses have been limited to subsets of patients who have the 

predicted biomarkers, and often have been of short duration. Some of the apparently limited 

efficacy of targeted therapy likely arises from an unrealistic expectation that monotherapy 

would be broadly active in complex and heterogeneous diseases such as solid tumors.

The basic precepts of pharmacokinetics and pharmacodynamics in drug development have 

too often been ignored in the implementation of targeted therapy. The role of 

pharmacodynamic analysis in oncology is to determine both the early effects of drug 

inhibition on the target and downstream signaling, and the longer-term adaptation of the 

tumor to the effects of the drug. This is limited by the challenges of obtaining and assessing 

tumor tissue at the appropriate time points after the delivery of a therapeutic agent. 

Furthermore, biopsy tissues are often small and of diverse tumor and stromal composition; 

thus, applicable proteomic approaches to effectively analyze the samples are elusive. The 

objective of such approaches is to broadly determine the effects of the targeted agent 

(expected and unexpected effects) on the target and on downstream signaling events, cross-

talk, and feedback loops. Delayed adaptive responses to the therapeutic agent can inform 

analytic approaches that can then be used to determine resistance mechanisms and to 

facilitate the choice of rational combination therapies to prevent resistance and convert what 

are often cytostatic effects of single agents into cytotoxic effects.

The failure to identify methods to effectively assess early pharmacodynamic responses 

(whether to use peak inhibition, the area under the curve, or the trough levels of target 

inhibition as the key determinants of patient response) obviously contributes to the low 

success rate of current targeted therapy trials. Indeed, for most agents, we do not know 

which of these criteria indicate an effective response. Perhaps a “hit and run” approach of 

maximal target inhibition that induces cell death or, conversely, chronic inhibition, will 

provide the optimal patient benefit. This remains unknown for most agents. Although a 

systems biology approach allows us to generate predictions through in vitro and animal 

model studies combined with mathematical modeling, the implementation of these 

approaches in humans is limited by several challenges. These include accurately measuring 
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the pharmacodynamics of target inhibition, understanding the pharmacokinetics and off-

target activity of current targeted agents, and working with a narrow therapeutic index of 

target inhibition between tumor and normal tissue for many drugs. A careful evaluation of 

the mechanisms of drug resistance (pre-existing, acquired and adaptive resistance) will be 

necessary to design rational combination therapies that can prevent the emergence of 

resistance or overcome established resistance. Indeed, adaptive resistance, the ability of the 

tumor to rewire signaling networks to bypass the effects of the targeted therapy, may 

represent the major mechanism of targetable resistance.

In general, targeted therapy is designed to capitalize on the vulnerabilities of tumor cells that 

arise from the rewiring of functional networks as a consequence of the genomic and 

epigenetic changes in the tumor or their effects on the tumor microenvironment. Targeted 

agents typically inhibit, or in rare instances stimulate, protein function. Thus, in order to 

determine the consequences of target engagement, we need to develop technology that can 

assess target inhibition as well as the resulting functional changes to the signaling networks. 

The ability to quantitate RNA levels has rapidly matured; however, the correlations between 

RNA and protein levels and protein function vary markedly for different proteins, ranging 

from very high to very limited correlations and thus very limited predictive ability.1, 2 

Furthermore, transcriptional analysis, RNA-Seq in particular, is sufficiently complex that it 

is challenging even under the best circumstances to impute the treatment effects on protein 

networks and signaling functions. Thus, there is a need to directly assess the effects of the 

targeted agents on hundreds of different proteins, both predicted and unexpected.

Pharmacodynamic assays for large-scale protein level determination

Two technologies have emerged to fulfill these criteria, each with different strengths and 

weaknesses. The first technology is mass spectrometry, which can assess thousands of 

proteins and post-translational events (such as phosphorylation or methylation) that can 

change function in a single assay.2, 3 Mass spectrometry can unambiguously identify and 

quantify both wild-type and mutant proteins, identify expected and unexpected proteins and 

post-translational modifications, and determine the presence of splice variants. Mass 

spectrometry is, however, limited in its ability to detect rare events, such as proteins or post-

translational modifications that are present at low levels, due to a bias toward common 

molecules such as actin or albumin. This challenge can be partially overcome by new mass 

spectrometry technologies such as SRM, MRM and SWATH; however, even at their most 

effective implementation, these technologies lack the sensitivity of a high affinity antibody. 

The necessity to generate protein fragments that will “fly” in the mass spectrometer also 

limits the ability to identify post-translational modifications to those with convenient 

proteolytic cleavage sites and an appropriate charge. Indeed, in a recent analysis of human 

ovarian and breast cancer xenograft tissue,3 only about 60% of phosphorylation sites 

identified by parallel antibody-based approaches could be detected, and fewer sites could be 

quantitated by mass spectrometry. Furthermore, for deep analysis, mass spectrometry 

requires significant amounts of starting material, expensive equipment, and specialized 

operators and analytical approaches, all of which limit its utility to a few centers. 

Nevertheless, mass spectrometry assays designed to assess patient samples have become 

commercially available and have been implemented in CLIA laboratories.
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The second technology is antibody-based analysis, including flow cytometry and its mass 

spectrometry-based CyTOF variant, multiplexed immunohistochemistry, and forward- and 

reverse-phase protein arrays. Bar coding of antibodies can allow for concurrent detection of 

nucleotides and proteins, which facilitates the analysis of DNA, RNA and proteins in a 

single assay.4 In terms of the analysis of signaling networks, reverse-phase protein arrays 

(RPPAs) have emerged as a cost-effective, robust, sensitive, and tissue-sparing technology 

that can assess hundreds of different signaling molecules in a single assay.5–8 This 

technology is limited by the need for high-quality monospecific antibodies, which is being 

met by the development of antibodies in commercial and academic laboratories. In addition, 

large-scale efforts to validate the utility of antibodies to a broad spectrum of targets are 

being conducted through the Human Proteome Atlas and the National Cancer Institute and 

research centers with RPPA platforms.9 However, even antibodies predicted to be highly 

specific can be plagued by unexpected off-target activity, resulting in spurious results. 

Indeed, the demonstration of a single dominant band of the correct size on Western blotting 

that correlates in expression with RPPA is a minimal requirement for antibody utility. 

Multiple antibodies that perform well on Western blotting do not perform well in RPPA 

because of the essential dot-blot characteristics of the RPPA assay, in which materials that 

do not enter or run through the Western blot gel are present in the “dot” and can interact with 

the antibodies. Additional information can increase the confidence that the antibody is 

indeed faithfully reporting the protein or phosphoprotein levels on RPPAs. Correlations with 

mRNA levels in the same samples provide “one-way” confidence as translational and post-

translational controls can result in markedly different mRNA and protein levels. That is, if 

RNA and protein levels are highly correlated, this adds to the confidence; if they are not, 

they are non-informative. For phosphoproteins, the demonstration of increased 

phosphorylation of the specific site in the presence of growth factors and decreased 

phosphorylation by phosphatases in the RPPA analysis increases our confidence in the 

antibody. In cases where the identification of the target of the antibody remains unclear, 

immunoprecipitation followed by mass spectrometry with confirmation of the target by other 

approaches may be necessary. Together, these factors indicate that the single antibody, dot-

blot nature of the RPPA makes it paramount to validate the antibody targeted in the RPPA 

assay, itself.

The implementation of RPPAs requires a suite of robotic platforms for printing, staining and 

imaging; however, these instruments are much less expensive than the equivalent mass 

spectrometry equipment. Due to the limited availability of high-quality antibodies, as well as 

the cost and technology constraints, most RPPA centers limit assessments to a range of 300 

different targets, with a mixture of total and post-translationally modified antibodies being 

analyzed. The antibodies used in the assay can be selected to represent key elements of the 

signaling pathways or cellular functions of interest, which greatly improves the utility of the 

analysis.1 Of importance, as each antibody is analyzed on a separate slide, it is possible to 

add additional antibodies to the analysis at any time. Indeed, once denatured and printed on 

a slide, proteins and phosphoproteins are remarkably stable, with virtually identical results 

being obtained on slides stained years apart.
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Advantages and challenges of RPPA

RPPA, which is essentially a high-throughput “dot blot” enhanced by the use of serial 

dilutions to improve quantification, was initially popularized by the team of Liotta and 

Petricoin (Figure 1).5, 10, 11 RPPA has many characteristics that make it a highly attractive 

approach to multiplex protein analysis. Sample preparation is similar to that used in Western 

blotting, which is familiar to most laboratories. The ability to rapidly extract and denature 

proteins decreases protein degradation and protects labile post-translational events such as 

phosphorylation. Most high-quality antibodies are currently produced against peptides or 

phosphopeptides, which makes the denaturation conditions used in RPPA optimal for 

sensitivity and specificity. The technology is sufficiently sensitive to detect femtograms of 

proteins in nanograms of starting material. This makes RPPAs useful for small sample 

amounts, including those from needle or core biopsies, rare populations of cells isolated 

from the tumor or stroma, or different tumor and stromal populations isolated by laser 

capture microdissection. As over 1,000 samples can be assayed on a single array, this allows 

for the comparison of many different samples and conditions in a single study, which 

decreases the complexity of normalization and analysis across assays. However, approaches 

such as replicate-based normalization, which prints multiple controls across different slides, 

allows for merging data across experiments.1 The ability to array many samples in dilution 

series and to perform multiplex analysis facilitates the assessment of proteins with diverse 

dynamic ranges. Indeed, protein levels of interest within the cell vary by over ten orders of 

magnitude. Quantification is robust and accurate due to serial dilution of the samples. 

Although the analysis usually generates relative levels of protein expression and 

modification (phosphorylation, methylation, or cleavage based on antibody specificity), 

these can be converted to absolute levels by comparison to protein standards.12 RPPA 

technology can be applied to human normal tissue or tumor tissue, murine and other animal 

models, and to cultured cells. The analysis of biomarkers in blood and other fluids with 

RPPAs has also been demonstrated.13 RPPA technology complements both mass 

spectrometry and tissue microarrays by measuring total protein and phosphoprotein or 

cleaved-protein levels as well as other modifications for which there are high-quality 

antibodies.

Quality control and quantification

As with all technologies, rigorous implementation of standard operating procedures with 

stringent quality control is necessary to ensure high-quality results. One of the key 

challenges with RPPAs is the conversion of the serial dilutions into a single relative 

concentration for each sample. The first step to overcome this challenge is to determine the 

amount of assayable protein loaded onto each spot, which is usually achieved by using the 

median of a large number of antibodies and by ensuring that an adequate amount of protein 

is present to prevent over correction when loading the samples. Software such as 

SuperCurve or RPPanalyzer14, 15 inputs the spot values for a dilution series of a sample, and 

outputs a single value that corresponds to the relative protein concentration of the sample. 

The strength of SuperCurve is that it not only uses the curve obtained from one sample, but 

superimposes all the curves from all the samples on a slide to obtain a single unified curve 

that is much more robust to measurement noise and errors (Figure 2). Although SuperCurve 
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outputs relative protein amounts, it is possible to obtain an absolute concentration value by 

titrating samples with known protein concentrations.12

Pre-analytic challenges

All approaches to assess protein levels and post-translational modifications are limited by 

pre-analytic challenges. In terms of patient samples, critical considerations include the tumor 

content, intratumoral heterogeneity, warm and cold ischemia, and spatial changes in these 

characteristics. Concerns with tumor content and contributions of tissue from different 

microenvironmental compartments can be alleviated, in part, by using laser capture 

microdissection.6–8, 16 However, challenges also arise with this technique, including 

increased cost, sampling bias, difficulty in determining protein loading, potential damage to 

proteins, and proteins being post-translationally modified during the isolation process. Both 

mass spectrometry3 and RPPA technology17 have demonstrated that cold ischemia does not 

alter, to a major degree, the total protein amount or the composition of most phosphoproteins 

and, unexpectedly, appears to increase the amount of stress-related phosphorylation of 

particular targets in a predictable manner. Indeed, when an adequate dynamic range and 

sensitivity are present, mass spectrometry and RPPAs have demonstrated correlation 

coefficients for changes in the levels of phosphoproteins in the range of 0.75 to 0.83 in 

complex patient samples.3, 18 However, protein patterns can be markedly different in needle 

aspirates, core biopsies and tumor samples; thus, careful awareness of the type of samples 

being analyzed is required.18 While RPPAs (and mass spectrometry) can be utilized on 

formalin-fixed paraffin-embedded (FFPE) tissues, performance is degraded by the cross-

linking effects of formalin, unknown times of penetration of formalin into tissue, and 

oxidation of proteins over time. Thus, only a subset of proteins that can be analyzed on fresh 

or frozen tissue can be reliably assessed on FFPE specimens.19, 20

Uses of RPPA technology

As long as care is taken to ensure a high level of quality control, the RPPA platform 

facilitates robust analysis of cell lines, model organisms (including transgenic and knockout 

murine models), xenografts, patient-derived xenografts (PDX), and patient samples. Caution 

must be taken when assessing murine models or xenografts to ensure that the detection 

approach for the antibodies bound to the RPPA slide, which almost invariably includes an 

amplification step of secondary antibodies, does not react with murine antibodies that may 

be present in the tumor. However, there is an ample assortment of high-quality rabbit 

monoclonal antibodies and polyclonal antibodies from other species that can be used in 

murine models.

RPPAs have been used extensively in the baseline characterization of cell lines across 

lineages, and to assess the response of cell lines to chemotherapy and targeted agents or 

perturbations with siRNA or miRNA. Combining results from RPPAs with other platforms, 

such as the analysis of DNA and RNA, provides the overall analysis with additional power. 

These approaches have provided insights into potential biomarkers of sensitivity to drugs 

and of network structures.1 RPPAs have provided information related to the functional 

effects of microRNA that was not apparent in the analysis of transcriptomic and seed 
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sequence data.21 Further, RPPAs have helped to unravel the complexities of the action of 

siRNA.22 The RPPA platform has proven to be a powerful approach for determining the 

mechanisms underlying the effects of genomic aberrations, which has provided both a new 

level of understanding and potential therapeutic avenues to explore.23–25 In cell lines, 

RPPAs have demonstrated that phosphorylation levels are highly predictive of the efficacy of 

targeted therapies (Figure 3). For example, the IC50 of lapatinib response is inversely 

correlated with phospho-EGFR expression across 49 lung cancer cell lines (r = −0.465 p = 

0.00077). This suggests the efficiency of assessing the functional activity of the EGFR 

pathway rather than total EGFR levels in the tumor to identify whether a patient is likely to 

benefit from EGFR-targeted therapy. One of the most cogent observations has been that, 

compared to non-small cell lung cancer cell lines and tumors, small cell lung cancer cell 

lines and tumors have elevated levels of PARP, the target of a family of therapeutics 

classified as PARP inhibitors (PARPi).26 The elevated PARP levels in small cell lung cancer 

have been associated with increased sensitivity to PARPi, both in vitro and in vivo. 

Strikingly, these predictions from cell lines have been confirmed in an unexpected degree of 

responsiveness to PARPi among patients with small cell lung cancers. Subsequent studies 

have identified potential biomarkers that may identify patients likely to benefit from 

PARPi.27 Recent patient studies have identified both predictive protein markers and potential 

pharmacodynamic markers of response to PARPi, albeit in a different tumor system.28

The ability to analyze a number of key pathways has enabled investigators to identify critical 

pathways involved in the behavior of newly developed cell lines,29 PDXs,30, 31 and patient 

tumor samples. The most cogent example of this is the analysis of several thousand patient 

samples from the Cancer Genome Atlas (TCGA), for which RPPA technology has provided 

information on signaling pathways (Figure 4) activated by genomic and transcriptomic 

aberrations, correlations with DNA, RNA, miRNA and methylation, identified new patient 

subtypes,32 and provided prognostic utility.1 It has also served to identify both disease-

specific and pan-cancer therapeutic opportunities.31, 33

In a comprehensive genomic, transcriptomic, and proteomic analysis of the processes 

involved in the responsiveness and resistance to BRAF inhibitors in melanoma model 

systems, RPPAs provided the most useful information, both in terms of mechanisms for 

bypassing the BRAF inhibitors and therapeutic avenues34 to prevent that bypass. Indeed, in 

many analyses, RPPAs provided new information on prognosis that was not apparent from 

an analysis at the DNA or RNA level.35, 36 In ovarian cancer, RPPA analysis has similarly 

proven to be superior to DNA and RNA analysis at predicting patient outcomes.37 Protein 

levels assessed through RPPAs have been shown to be powerful predictors in endometrial 

cancer.38 Even in breast cancer that had been highly characterized by multiple platforms, the 

RPPA platform was able to identify a new subset of breast cancer (called “Reactive”) with 

good outcome (Figure 5).32 Subsequent analysis of eleven different cancer lineages 

demonstrated that the Reactive subtype signature was found in many different cancer 

lineages where it also predicted patient outcomes.1 Furthermore, Figure 5 shows that the 

RPPA clusters are strongly associated with PAM50 calls (based on mRNA), HER2 

amplification status, TP53 mutations, and PIK3CA mutations, illustrating that RPPA data 

are correlated with mRNA and DNA, as expected. One of the more novel approaches offered 

by RPPAs is to characterize individual cancers in a “patient like me” approach, borrowing 

Lu et al. Page 7

Semin Oncol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



information from the responses of other patients to help define interesting therapeutic 

options.

RPPA technology is making the transition to the clinic.39 As mentioned, RPPAs have been 

used to identify a number of useful biomarkers, therapeutic targets and rational drug 

combinations to explore in clinical trials. This is contributing to novel therapeutic trial 

designs. The TheraLink HER Family Assay introduced by Theranostics Health, Inc. 

(Rockville, MD) is designed to identify tumors that are addicted to the function of cell 

surface receptors, in particular to HER2, by analyzing the level of the receptor in question, 

other receptors in the HER2 family, and the activation of the receptors and downstream 

signaling pathways based on phosphorylation events. Clinical trials are underway to 

determine whether multiplexed proteomic analysis can identify subsets of patients likely to 

benefit from specific therapeutic interventions that target activated nodes in the tumor.40

RPPA for pharmacodynamic analyses

RPPA technology is particularly adaptive to the analysis of pharmacodynamics. It can be 

applied to the small amount of material that is obtained from biopsies, including needle 

biopsies, as well as to cell populations purified by flow cytometry or laser capture 

microdissection. It has been used extensively to identify on- and off-target activity of drugs 

in cell lines, xenografts, and patient samples, and to identify on- and off-target activity 

within drug compound series.41 The ability to use intact cells to demonstrate that therapeutic 

compounds are effectively inhibiting the function of the targets provides a ready tool for 

promoting a therapeutic series.41 Characterizing the immediate consequences of target 

inhibition aids in determining both the degree and duration of target engagement by 

therapeutic agents.

The ability to characterize long-term adaptive responses is proving to be a particularly 

powerful approach to identify patients who are benefiting from a targeted agent prior to 

changes in the tumor being assessable through imaging. The functional consequences of 

therapeutic interventions as assessed by RPPAs are providing early signals to identify 

patients who will benefit from continued treatment with a particular intervention42, 43 and 

those who may benefit from the addition of another agent or switching to an alternative 

therapy. One of the most exciting uses of pharmacodynamic analysis of adaptive response is 

in elucidating feedback and feed-forward loops as well as homeostatic processes.44 The 

processes by which cells adapt to therapeutic perturbations identify potential targets for 

rational combination therapies.44 Several of these combinations have been validated and are 

likely to be tested in therapeutic trials in the near future.

Data sharing

A key step in the utilization of technology is in data sharing across the research community. 

All of our approaches and antibody validation information are freely available to the 

research community.45 We have made much of our data available through an interactive 

website (The Cancer Proteome Atlas, tcpaportal.org) that is associated with a number of 

analytical and visualization tools.46 These include association analysis, next-generation 

clustered heat maps, and correlations with patient outcomes. The data on over 7,000 TCGA 
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samples can also be obtained from the TCGA website and are available for integrated 

analysis with DNA and RNA at the cBioPortal (cbioportal.org). Extensive breast cancer cell 

perturbation data formed the basis for the HPN-DREAM8 breast cancer network inference 

challenge. RPPA data also featured prominently in DREAM7 challenges.47 These data 

represent valuable resources that are enriching community efforts to understand signaling 

networks, patient prognosis and tumor classification.

Conclusion

In most cancers, multiple genetic and epigenetic changes integrate into modified protein 

networks that manifest as the functional outcomes of cancer. Indeed, deconvoluting the 

myriad genomic and epigenomic changes that occur in cancer cells remains a key challenge. 

However, these myriad effects appear to integrate as a much smaller constellation of effects 

on proteins and protein networks. This provides the exciting possibility that these fewer 

protein events can be successfully targeted. Although the current results with targeted 

therapeutics are not fulfilling their initial promise, the potential for this promise yet exists. 

The objective is to convert the exciting short-term responses to targeted therapy into more 

durable responses with greater impact through careful analysis of the pharmacodynamic 

effects, adaptive responses and, in particular, the implementation of rational combinations of 

targeted agents or targeted agents with chemotherapy, radiation therapy, or immunotherapy. 

The ability to efficiently measure the effects of targeted therapy on the targets and protein 

networks through proteomic technologies that include RPPAs has the potential to contribute 

to the promise of personalized cancer therapy.
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Figure 1. 
(A) An RPPA slide for measuring a single protein in a set of samples. (B) Magnified view of 

the slide showing its layout based on the MD Anderson RPPA core specifications. Each slide 

can accommodate up to 1056 samples and 96 controls. (C) The samples and controls are 

printed in a 5-step dilution series, with 2-fold dilution at each step, in grids of 11 × 11 spots. 

Each of the 48 grids can accommodate up to 22 samples and 2 controls. (Reproduced from 

Tabchy et. al48. Copyright © 2011–2014 Prous Science, S.A.U. or its licensors. All rights 

reserved.)
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Figure 2. 
(A) A single unified intensity vs. relative concentration curve output from SuperCurve that 

uses spots from all the samples. (B) A map of the slide showing spot residual values that 

deviate from the curve in part A. Dark green represents near zero residual; white represents 

large residuals.
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Figure 3. 
Response to the drug lapatinib (IC50 values capped at 8.0) vs. phospho-EGFR expression in 

lung cancer cell lines. IC50 is inversely correlated with phospho-EGFR expression (Pearson 

correlation = −0.465, P-value = 0.00077), indicating that cell lines with higher expression of 

phospho-EGFR are more sensitive to the drug. The line of best fit is shown in red. 

Correlation with these previously-known findings further validate the data produced by the 

RPPA platform and the methods described.
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Figure 4. 
An example of the PI3K signaling network elucidated by RPPA from a TCGA cohort of 

3,467 tumor samples across 11 lineages. Interplay between proteins was quantified using 

scores from a probabilistic graphical model analysis that identified links between proteins. 

Only the strongest links are shown. The color of a link indicates tumor lineage, which is 

specified by the standard TCGA disease acronym. Green nodes are individual proteins; 

white nodes are related proteins that were highly correlated and therefore merged prior to 

network analysis. Positive (negative) correlations are indicated with continuous (dotted) 

lines. The graph shows that correlations between proteins and their associated pathways are 

highly lineage dependent. Only a handful of proteins are shown to be correlated across 

virtually all tumor lineages (Adapted from Akbani et al.1).
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Figure 5. 
(A) Clustered heat map of TCGA breast cancer RPPA data with samples in columns and 

proteins in rows. Five different clusters can be seen. The clusters are associated with PAM50 

calls, HER2 amplification status, TP53 mutation, and PIK3CA mutation status (p < 0.001, 

χ2 test). Some known biomarkers can be seen to be differentially expressed between the 

clusters, such as HER2, phosphoHER2, PR, AR, ER-alpha, and phosphoER-alpha. A newly 

discovered “Reactive” subtype (cluster 5) based on RPPA data can also be seen with 

biomarkers MYH11, Caveolin1, and Collagen6. (B) Kaplan-Meier survival curves for the 5 

clusters. The Reactive subtype (in dark blue) has good outcome (overall p = 0.005). (Heat 

map dynamically explorable at: http://bioinformatics.mdanderson.org/TCGA/

NGCHMPortal/)
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