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Abstract

The advent of high throughput next generation sequencing (NGS) has accelerated the pace of 

discovery of disease-associated genetic variants and genomewide profiling of expressed sequences 

and epigenetic marks, thereby permitting systems-based analyses of ocular development and 

disease. Rapid evolution of NGS and associated methodologies presents significant challenges in 

acquisition, management, and analysis of large data sets and for extracting biologically or 

clinically relevant information. Here we illustrate the basic design of commonly used NGS-based 

methods, specifically whole exome sequencing, transcriptome, and epigenome profiling, and 

provide recommendations for data analyses. We briefly discuss systems biology approaches for 

integrating multiple data sets to elucidate gene regulatory or disease networks. While we provide 

examples from the retina, the NGS guidelines reviewed here are applicable to other tissues/cell 

types as well.
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1. Introduction

Technological advances in genomics and genetics, accelerated exponentially by the Human 

Genome Project (HGP), have begun to transform most disciplines in biology and medicine. 

Systems biology and personalized medicine are no longer beyond reach. Whole genome 

sequencing (WGS) is not limited to a chosen few, and Precision Medicine Initiative has 

emerged as the approach of the 21st century for prevention and treatment of human disease 
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(www.nih.gov/precision-medicine-initiative-cohort-program). Even evolution and 

anthropology have embraced the power of genomic technology. The pace of discovery since 

the middle of the last century is astonishing; it was less than 40 years ago when chain-

terminating inhibitors were used for efficient and accurate sequencing of DNA (Sanger et 

al., 1977b), putting us on the current path in genetics and genomics (Figure 1A). The 

following decades demonstrated remarkable technological and conceptual progress in 

human gene mapping and gene discovery, leading eventually to the HGP and the first draft 

of 3 billion letters of human genome (Lander et al., 2001; Venter et al., 2001). The HGP 

represented a milestone in biomedicine as it enabled the identification of putative genetic 

defects by comparing a disease sample with a standard reference genome. Soon thereafter, 

HapMap (hapmap.ncbi.nlm.nih.gov) and the 1000 Genomes Project (www.

1000genomes.org) produced extensive catalogs of human genetic variations (Genomes 

Project et al., 2015; International HapMap et al., 2010), making it possible to investigate 

even complex phenotypes and multifactorial diseases using genomewide association studies 

(GWAS).

First massively parallel sequencing approach was reported by Sydney Brenner's group and 

utilized microbeads for producing gene expression profiles from yeast and a human cell line 

(Brenner et al., 2000). More widely used next generation sequencing (NGS) methods fueled 

a revolution in biomedical sciences by addressing the need of generating inexpensive, 

reproducible, and high throughput nucleic acid sequence data (Bentley et al., 2008; Johnson 

et al., 2007; Margulies et al., 2005b; Mortazavi et al., 2008; Nagalakshmi et al., 2008; 

Shendure et al., 2005; Sultan et al., 2008). NGS has opened opportunities and challenges of 

“big data science” to biologists and clinicians for genomewide evaluation of genetic 

variations, expression of distinct RNA species, and epigenetic changes associated with 

development, aging, and disease (Marx, 2013) (Figure 1B,C). "Omics" is now a widely used 

term for describing high throughput cataloging and/or analysis of cellular molecules. We are 

moving forward to identify all functional genomic elements (ENCODE Project) 

(Consortium, 2011; Kellis et al., 2014) and understanding the role of non-coding variants in 

tissue-specific contexts (GTEx Project) (Consortium, 2015; Gibson, 2015). The massive 

surge in genomic, transcriptomic, and epigenomic data has led to systems level approaches 

for quantitative analysis of the dynamic interplay of molecules within a specific cell/tissue. 

NGS-based approaches have also quickly gained broad applicability in medicine; from 

genetic diagnosis and disease networks to drug discovery and pharmacogenomics. In Section 

2 of this review, we will discuss basic concepts in NGS technology and expand on the 

Illumina platform that is widely used by genomic biologists.

Retinal degenerative diseases (RDDs) have been early targets of genetic and genomic 

advances. The X-linked retinitis pigmentosa locus, RP2, was the second gene mapped by 

polymorphic DNA markers (Bhattacharya et al., 1984), and rhodopsin was the first gene 

associated with visual dysfunction (Dryja et al., 1990; Farrar et al., 1991) when positional 

cloning was still in infancy (see Figure 1A). Since then, significant progress has been made 

in defining the genetic architecture of ocular diseases (Swaroop and Sieving, 2013), 

specifically in RDDs with 240 genes identified as of January 2016 (sph.uth.edu/retnet). 

Equally significant was the pioneering discovery of Complement Factor H (CFH) variants 

that are strongly associated with age-related macular degeneration (AMD) (Klein et al., 
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2005), a common multifactorial blinding disease, which greatly benefitted from the advances 

in HGP, genomic technologies, and genomewide association studies (Swaroop et al., 2009). 

NGS-based methodologies, and in particular whole exome sequencing (WES), are now 

becoming routine in identifying causal variants associated with Mendelian diseases. The 

exponential increase in discovery of rare variants by NGS has provided enhanced impetus 

for causal gene discovery in complex diseases. We discuss these approaches and discoveries 

in Section 3.

Each of us carries millions of genetic variations that define our unique identity (Genomes 

Project et al., 2015). While a majority of these variations do not seem to have an obvious 

pathological impact, some are associated with human traits or clinically identifiable 

diseases. Despite the remarkable advancements in discovering disease-associated or causal 

variants (mutations), molecular mechanisms and cellular pathways that underlie the 

pathophysiology have not been adequately delineated in most cases, in part because of our 

incomplete understanding of “normal” biological function. Furthermore, signaling and gene 

regulatory networks that control fundamental biological processes, including organogenesis 

and aging, are poorly understood in mammals, especially in the context of the nervous 

system. NGS-based transcriptome analysis (RNA-seq) (discussed in Section 4) allows 

profiling of global patterns of expression of distinct RNA species (including mRNA, 

miRNA, lncRNA, and tRNA) that perform unique functions within a given cell/tissue during 

development or disease pathogenesis. Temporal transcriptome profiling of "normal" and 

"mutant" retina can help define how genetic changes lead to cellular dysfunction and 

elucidate gene networks associated with homeostasis and disease. Recent successes in 

generating expression profiles from single retinal cell types (Kim et al., 2016)(Siegert et al., 

2012) or even from single cells (Macosko et al., 2015) are providing novel molecular 

insights into cell fate determination and disease mechanisms. Epigenetic changes are another 

major factor in influencing physiology and biological pathways. NGS can be used to 

evaluate changes in histone modification (by chromatin immunoprecipitation followed by 

NGS, ChIP-seq) or chromatin structure (DNase I or Tn5 accessibility profiling, DNase-seq 

or ATAC-seq respectively). Application of NGS in epigenetic profiling is discussed in 

Section 5. Additionally, ChIP-seq can be utilized to identify targets of DNA-binding proteins 

or transcriptional regulators, which constitute essential components of gene regulatory 

networks (GRNs) as demonstrated for Neural Retina Leucine Zipper (NRL) or Cone-Rod 

Homeobox (CRX) in the context of retinal development and disease (Corbo et al., 2010; Hao 

et al., 2012; Yang et al., 2015).

The integration of heterogeneous "omics" data poses major challenges for delineating the 

complex interplay of genes in pathways and networks. In-depth characterization of genes is 

valuable in elucidating basic biology and has contributed substantially to our current 

knowledge. However, cells encompass a complex internal spatial architecture with highly 

organized compartments, and genes (and their products) do not function in isolation. NGS 

represents a unique opportunity for investigating genome-scale data sets to build system-

level gene networks. The field of vision in general, and retina in particular, has undergone an 

extensive expansion in gene discovery, which has not been accompanied by detailed cell- or 

tissue-specific global transcriptome and epigenetic profiling that would permit downstream 

studies on genotype-phenotype association. In Section 6, we will highlight two system level 
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approaches - network inference and expression quantitative trait locus (eQTL) analysis - to 

extract meaningful information by integrating large data sets.

This review primarily focuses on general aspects of NGS technology and data analysis. A 

list of definitions for commonly used terms is provided in Box 1, and description of distinct 

file types specific to NGS are included in Box 2. We encourage readers to peruse the 

following recent reviews on NGS and its applications: (Boycott et al., 2013; Bras et al., 

2012; Conesa et al., 2016; Davey et al., 2011; Furey, 2012; Koboldt et al., 2013; Ozsolak and 

Milos, 2011; Yang et al., 2015)

2. Next Generation Sequencing Technologies

The era of genomics was born in 1977 with the sequencing of the bacteriophage phiX174 by 

Fredrick Sanger (Sanger et al., 1977a). Subsequent improvements made the Sanger method 

the dominant sequencing approach, which was then employed for the monumentally 

ambitious HGP (1990–2003) (Collins et al., 2003; Watson, 1990). This endeavor required a 

large workforce and a 15-year worldwide effort to sequence approximately 3 billion base 

pairs of the human genome (http://www.genome.gov/11006929). Concomitantly, a privately 

funded human genome sequencing project employed a strategy of “whole-genome, random 

shotgun sequencing” in which DNA fragments of known lengths were directly cloned into 

vectors, sequenced, and assembled computationally (Venter et al., 2001). This approach 

became the standard for DNA sequencing and evolved into NGS and associated 

technologies. Notably, a handful of scientists were able to generate a complete human 

genome sequence in 4 months (Wheeler et al., 2008) by massive parallelization of the 

biochemical sequencing steps (Margulies et al., 2005a). Though distinct NGS platforms 

employ different approaches, all techniques make use of massive parallelization of the 

biochemical and sequencing steps without the need for cloning.

2.1. Applications of NGS Methodology

The plethora of new applications of NGS is truly remarkable as nearly every type of nucleic 

acid can be assayed by this technology (Lander, 2011). NGS techniques can be broadly 

classified into applications for investigating genome, transcriptome, and epigenome. 

Genomic assays include WGS, WES, and targeted resequencing of specific regions to 

discover variants associated with cell function or disease. NGS-based transcriptome analysis 

(RNA-seq)(Mortazavi et al., 2008) encompasses quantitative gene expression profiling, 

discovery of novel transcribed sequences (Trapnell et al., 2010), and non-coding RNA 

species such as miRNA and lncRNA (Graveley et al., 2011; Guttman et al., 2009). 

Epigenome methods generally focus on chromatin structure and include DNase-seq 

(Yaragatti et al., 2008), ATAC-seq (Buenrostro et al.), DNA methylation (Lister et al., 2008), 

and histone modification ChIP-seq (Barski et al., 2007). We have also included TF ChIP-seq 

(Johnson et al., 2007; Jothi et al., 2008; Lefrancois et al., 2009; Robertson et al., 2007) in the 

Epigenome section.
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2.2. Current NGS Platforms

In less than a decade, increased throughput of sequencing and dramatic reduction in costs 

have led to NGS becoming a widely used genomic technology. Since the release of the first 

commercially available system (GS20 from 454 Life Sciences) with a throughput of 20 

megabase pair (Mbp) per run (Margulies et al., 2005b), the NGS technology has improved 

immensely. The current Illumina HiSeq X system is capable of producing 1.8 terabase pair 

(Tbp) of sequencing data per run, nearly a 100,000-fold increase within a 10-year period. 

During this relatively brief span, several NGS systems such as HeliScope from Helicos 

BioSciences (Thompson and Steinmann, 2010) and 454 GS FLX from Roche have been 

discontinued, whereas a few others including SOLiD (Shendure et al., 2005) and Ion Torrent 

(Rothberg et al., 2011) are holding on to their share in the market. The new NGS systems 

include single molecule sequencers (e.g., RS (Eid et al., 2009) from Pacific Biosciences and 

minION (Clarke et al., 2009) from Nanopore), which can provide high read lengths and 

resolution of DNA modifications. Table 1 lists a survey of currently available sequencers and 

their technical specifications. The juggernaut of the industry are the sequence-by-synthesis 

(SBS) (Bentley et al., 2008) systems from Illumina that boast a wide range of applications, 

relative ease of use, multiple levels of throughput, flexibility in configuration, and relatively 

low sequencing cost. Thus, the following sections will focus on Illumina sequencing 

technology.

2.3. Illumina Sequencing Methodology

The NGS technologies using the Illumina platform employ a massively parallel SBS 

methodology which involves sequencing the ends of millions, or even billions, of DNA 

fragments in parallel and performing read assembly for analysis. The routine sequencing 

protocol includes three steps: sample library construction, cluster generation, and SBS. All 

sample libraries are composed of double-stranded DNA inserts flanked by known adapter 

sequences capable of hybridizing to the oligonucleotides on the Sequencer’s flow cell 

surface. The flow cell is the heart of the technology, consisting of a thick, glass fluidic 

device, reminiscent of a microscope slide, with single or multiple channels (lanes) coated 

with a lawn of two designed oligonucleotides (Fedurco et al., 2006; Turcatti et al., 2008). 

Cluster generation proceeds when denatured DNA libraries are allowed to randomly 

hybridize to the oligonucleotide lawn in the channels by their adapter ends (Figure 2A). A 

covalently attached DNA fragment is created by extension of the flow cell oligonucleotides 

using the hybridized library fragment as a template. The original library strands are then 

denatured and washed away, leaving only the newly synthesized strand. A complementary 

copy of the covalently bound strand is then generated through bridge amplification, a 

process by which the strand bends to hybridize to an adjacent and complementary 

oligonucleotide, thereby allowing the polymerase to extend the complementary strand. 

Denaturation then results in two covalently bound complementary copies of the original 

DNA fragment. Bridge amplification is repeated 24 times to produce clusters of DNA clones 

in which half of the molecules represent the forward orientation and the other half the 

reverse. The reverse orientation strands are then cleaved and washed away leaving only 

clusters of identical forward strands (ready for SBS). A sequencing primer flanking the 

unknown insert region is hybridized just prior to the SBS. Fluorescently labeled and 

reversibly terminated nucleotides are then flowed across the lawn of clusters allowing only 
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the first nucleotide base to be incorporated (Figure 2B). The clusters on the flow-cell surface 

are then imaged by laser excitation, revealing a single color corresponding to the 

incorporated nucleotide. The fluorophore is cleaved off after imaging, and the terminator is 

reversed allowing for the incorporation of the next base. This process is repeated until the 

predetermined sequence (read) length is reached. The Illumina technology allows for single-

end (SE) or paired-end (PE) sequencing and single or dual indexing of libraries for multiplex 

(multiple) loading of libraries. In PE sequencing both ends of the DNA insert are sequenced, 

generating two reads per library fragment. To generate a second read, another round of 

bridge amplification is then performed, followed by cleavage of the forward strand prior to 

performing the second round of SBS. Both reads are processed together computationally. To 

take full advantage of the massive numbers of clusters generated in each experimental run 

and reduce costs, and depending on the depth of sequencing required, many samples can be 

multiplexed and sequenced simultaneously. The adapters of each library may contain distinct 

index sequences that are used to identify the library from which each read originates. Up to 

24 libraries may be pooled together in each lane of the flow cell using single indexing, and 

as many as 96 libraries combined when dual indexing is used.

2.4. NGS Experimental Design

Careful planning can maximize the success of NGS experiments, yielding useful data for 

extracting biologically relevant information. In addition to the basic precepts, such as the 

number of samples, replication and controls, the experimental design should consider the 

depth at which each sample is to be sequenced, the optimal length of sequence reads, 

whether PE or SE sequencing is more appropriate, and which samples are combined for 

multiplexing. PE sequencing is usually preferred to SE sequencing because of gain in 

coverage and enhanced accuracy of alignment, especially for mapping and quantification of 

RNA-seq data. Long sequencing reads (over 50 bp) are not needed for miRNA-seq and 

epigenomic assays, and SE sequencing may be sufficient in many experiments. In addition 

to a reduction in costs, multiplexing of samples can minimize lane or NGS-run bias and 

should be employed based on depth considerations. For example, it is better to pool 24 

libraries and sequence these on three lanes of a flow cell, as compared to preparing three 

pools of 8 libraries and sequencing each pool in a single lane.

2.5. Basic Raw Data Pre-processing and Quality Assessment

Sequencing reads from the Illumina platform are generated in a binary base call (BCL) file 

format that is incompatible with most open source analysis software. Therefore, the first pre-

processing step involves the conversion of BCL files to the universally accepted FASTQ 

format (Figure 2C; Box 1). Only high quality reads that successfully pass Illumina's 

"Chastity Filtering" are kept for further sequence analysis, which can be performed by a 

multitude of available software. The next step in data pre-processing is to eliminate the 

Illumina adapters, and poly(A) or poly(T) sequences (added during cDNA and library 

preparation) that may be present at the end of the reads. We recommend Trimmomatic 

software (Bolger et al., 2014) though others such as Cutadapt and FASTX-Toolkit can be 

used. Quality control (QC) software (such as FASTX-Toolkit, FastQC, NGS QC Toolkit, and 

PRINSEQ (Schmieder and Edwards, 2011) can then be applied to provide crucial 

information about the quality of sequencing reads including quality score distribution along 
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the reads, GC content, read length, and level of sequence duplication. Many of these tools 

can perform both sequence trimming and QC analysis. Once the FASTQ files have been 

validated, sequence alignment and bioinformatic analysis is performed based on the goals of 

the experiment, as discussed in Sections 3–5.

3. Genome

WGS, WES, and targeted re-sequencing are powerful and relatively unbiased methods for 

discovering disease-associated genetic variations and genes. WGS provides a unique 

window to investigate genetic or somatic variations, leading to new avenues for exploration 

of normal and disease phenotypes. However, the massive quantity of data and the 

requirement of significant computational resources make WGS cost prohibitive for routine 

genetic and biological studies at this stage (as of March 2016). In contrast, WES focuses on 

capturing and sequencing protein-coding regions (exomes), limiting the data to a more 

functionally informative part of the genome. WES has become a popular choice for genetic 

studies, primarily for disease gene identification and clinical diagnosis, yielding coding and 

splice-site variants from a large number of samples within a relatively short time-span (e.g., 

WES of 96 samples can be completed within a week). This method is best suited for 

identifying highly penetrant variants associated with Mendelian diseases. Targeted re-

sequencing involves the capture and sequencing of selected genomic regions and 

complements WES and WGS. In this review, we focus on WES, describing various capture 

methods, computational tools and applications.

3.1. Whole Exome Sequencing

Whole exome sequencing (WES) involves capture and sequencing of the coding regions (the 

exomes) of genome (Ng et al., 2009; Priya et al., 2012). WES has become the method of 

choice for mutation identification since a majority of disease-causing variants for monogenic 

disease are detected in the protein-coding regions that comprise less than 2% of the genome 

(Bamshad et al., 2011). Currently, four major exome capture/enrichment kits are available: 

Nextera Rapid Capture Exome and TruSeq exome enrichment (both from Illumina), 

SureSelect XT Human All Exon (Agilent), and SeqCap EZ Human Exome Library (Roche/

NimbleGen). They differ in the target selection regions, bait (capture probe) length, bait 

density used for capture of exonic sequences, and the total number of targeted nucleotides 

(see Table 2 for distinguishing features). For instance, NimbleGen, and Agilent targets cover 

64.1 Mb and 51.1 Mb, respectively, whereas the two Illumina platforms target 62.08 Mb of 

the human genome. The four kits only share 26.2 Mb of the total targeted nucleotides. We 

have used Nextera Rapid Capture Exome platform extensively. Briefly, this protocol uses 

transposase-mediated fragmentation and adapter ligation using 50 ng of DNA, followed by 

two rounds of exome capture with biotinylated DNA baits complementary to the target 

exomes (Figure 3). A performance comparison of the four platforms demonstrated high 

target enrichment for the consensus coding sequence (CCDS), with the Nextera exhibiting a 

sharp increase in read depth for GC-rich sequences compared to other technologies 

(Chilamakuri et al., 2014).
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WES is relatively comprehensive, inexpensive, and rapid for identifying coding and splice 

site mutations compared with other variant detection methods and adopted extensively in 

clinical diagnostics. However, several limitations exist. None of the WES capture probe sets 

seem to target all of the exons listed in the Consensus Coding Sequence project (CCDS) 

(Farrell et al., 2014), RefSeq (O'Leary et al., 2016), or Ensembl (Cunningham et al., 2015) 

databases. The capture step is not uniform and tends to have bias against high GC rich 

regions. In addition, identification of variants is restricted by capture design, which would 

generally skip unannotated or as yet unidentified exons and variants residing in the non-

coding and/or regulatory region of the genome. Furthermore, only 92–95% of exons are 

captured in WES and mutations may be missed even if the region is included in the capture 

probe design. Capture kits are also not very efficient in identifying structural variants such as 

translocations and inversions.

3.2. Primary Analysis of WES data

After quality control analysis of NGS data (described in Section 2.5), we have four 

additional steps in our WES pipeline to identify genomic variants with high accuracy 

(Figure 3).

3.2.1. Sequence Alignment—The short reads generated in the NGS are first aligned to a 

reference genome with mapping tools (Table 3), such as BWA and STAR, producing 

sequence alignment/map (SAM) files. Accurate and efficient mapping of WES data is 

essential for variant identification.

3.2.2. Post-Processing—The post-processing steps are required to minimize the number 

of false positive variants arising in the WES data and include the removal of duplicate reads 

generated by PCR amplification, realignment around insertion-deletion variants (indels), and 

base quality recalibrations. Local realignment of the BAM files is essential to minimize the 

mismatching bases, thus eliminating false positive single-nucleotide variants near indels. 

This extended post-processing realignment step is not required for transcriptome and 

epigenome data analysis. Finally, base quality recalibration adjusts the quality score of each 

base using the known variants in a database and helps improve the accuracy of variant 

calling.

3.2.3. Variant Analysis—A number of open source tools are available for variant calling 

(Table 4). Application of multiple sample variant calling software is recommended to reduce 

false positive variants. We can also improve variant calling in regions with fewer reads by 

utilizing reads from multiple samples concurrently.

3.3. Secondary Analysis

The primary analysis of WES data provides a large number of genomic variants. Additional 

steps are needed to understand the role of these variations in the context of the disease trait 

under investigation. These steps include variant annotation, estimation of variant incidence 

in the population (frequency), and customized filtering steps to identify candidate disease-

causing variants (variant prioritization).
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3.3.1. Variant Annotation—A single exome analysis can reveal 20,000–30,000 variants. 

Thus, assigning functional information (annotation) to the variants is important. The first 

step in gene annotation focuses on determining whether a single nucleotide variant reflects 

synonymous, non-synonymous, non-sense codon, or consensus splice site changes. In 

addition, a variant can be an indel that may impact transcript structure. The next step 

involves estimating the incidence (minor allele frequency, MAF) of the variant in the general 

population. Large-scale genomic studies such as the 1000 Genomes Project, ESP6500, 

dbSNP, ExAC (Table 5) have catalogued sequence variants from thousands of exomes and 

genomes, which serve as a valuable resource for allele frequency estimations. Another 

aspect of annotation includes base conservation and functional predictions, which can be 

accessed using LJB23 database (Liu et al., 2011), Combined Annotation Dependent 

Depletion (CADD) database, and Genomic Evolutionary Rate Profiling (GERP) score (Table 

5). Three major tools are used to classify variants: ANNOVAR, SnpEff and Variant Effect 

Predictor (Table 5). The choice of software and reference transcript annotation can have a 

large impact on variant interpretation (McCarthy et al., 2014). ANNOVAR is a popular 

software for variant analysis because of its capability to integrate most of the functions 

discussed here (Yang and Wang, 2015).

3.3.2. Variant Prioritization—Identification of a disease causing or associated variant in 

exome sequencing experiments requires a customized filtering process depending on the 

question being pursued, as discussed below. A number of reviews provide general 

recommendations for identifying disease variants (Bamshad et al., 2011; Ratnapriya and 

Swaroop, 2013).

3.3.3. Filtering WES Data in Mendelian/Monogenic Diseases—Traditional 

positional cloning methods for identifying Mendelian disease genes involve collecting large 

pedigrees, performing linkage analysis to map the disease locus, and screening candidate 

genes for a segregating rare variant. This process is time consuming and requires a minimum 

number of individuals to reach statistical significance in linkage analysis. WES and targeted 

re-sequencing have dramatically altered the analysis landscape, and we can now identify 

mutations in small families or even single affected individuals.

The search of causal variants includes applying a cut-off for MAF and focusing on variants 

with a major effect on gene function (non-synonymous, truncation, and splice variants). 

Inheritance pattern is another filter that can be applied; for example, a recessively inherited 

disease variant is likely homozygous whereas a dominant disease variant is heterozygous. 

However, there can be exceptions to these rules. For instance, recessive disease variants can 

be compound heterozygous. Segregation with affection status is another critical filter that 

can be applied to family-based studies. In a large cohort, the search for either identical 

variants or additional rare variants in the same gene can further strengthen the evidence for 

causality. WES was first employed in vision research for the analysis of an Ashkenazi 

Jewish family with three affected siblings and resulted in the identification of a mutation in a 

novel gene, DHDDS, as a cause of retinitis pigmentosa (Zuchner et al., 2011). At this stage, 

62 retinal disease genes have been identified using WES, three by targeted capture, and 

another two by taking advantage of WGS (RetNet; see Table 5).
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A rapid pace of evolution in variant detection methods has made it possible to obtain more 

accurate diagnosis and prognosis in clinical practice and yielded opportunities for precision 

medicine initiatives (Amendola et al., 2016). However, previously unknown and dynamic 

aspects of the genome in health and disease are presenting great challenge for interpreting 

the effect of a specific variant in causing the phenotype. Each individual carries thousands of 

unique variants in the genome (Genomes Project et al., 2015). WES of an individual can 

identify as many as 100 loss of function variants that may not have any dramatic effect on 

the phenotype (MacArthur et al., 2012; Sulem et al., 2015), yet many loss of function 

mutations lead to lethality or disease. A large number of variants (dozens to hundreds, 

depending on the study design) can pass the filtering methods described above, and 

determination of causal variant(s) needs careful examination. Finding a rare variant even in a 

known disease gene is not sufficient to suggest causality. If a pedigree is available, one must 

look into the mode of inheritance and perform linkage or homozygosity mapping to narrow 

down genomic regions to focus the search. In the absence of the family data, one has to 

depend on the overall burden of rare variants in a disease population compared to healthy 

controls. Distinct complementary approaches can therefore help in identifying few candidate 

variants and genes that must be evaluated further (using in vivo and in vitro model systems) 

to elucidate their functional impact in causing the disease.

3.3.4. Filtering in Complex Diseases—The analysis and filtering of NGS data for a 

complex disease requires a different strategy to identify candidate causal variants in 

biologically relevant genes and pathways. GWAS has been a popular method for identifying 

genetic risk variants in complex diseases by comparing a large number of common and/or 

rare variants between individuals with a phenotype of interest (cases) and a set of unrelated 

(matched) controls (http://www.ebi.ac.uk/gwas/). Such studies have yielded a catalog of 

common SNPs associated with complex diseases affecting vision (Bailey et al., 2016; 

Fritsche et al., 2016; Grassi et al., 2011; Kirin et al., 2013). However, associated alleles are 

not causal, and majority of association signals are located in the non-coding region of the 

genome with ill-defined function (Chakravarti et al., 2013).

The concept of causal variants in complex disease is still evolving. AMD is one of the best-

studied complex diseases, where 52 common and rare variants at 34 genetic loci have been 

identified so far using GWAS and Exome-Chip approaches (Fritsche et al., 2013; Fritsche et 

al., 2016). However, the pathological role of the candidate genes or variants is not 

completely clear at a majority of the AMD loci and underlying disease mechanisms are 

largely unknown. Targeted re-sequencing of some of these loci has led to the discovery of 

high-risk rare, coding variants, providing crucial functional clues about causal genes. For 

example, a rare penetrant mutation, R1210C, was identified at the CFH locus (Raychaudhuri 

et al., 2011). Rare variants in other complement genes have also been identified in advanced 

AMD patients by targeted and WGS (Fritsche et al., 2016; Zhan et al., 2013). Rare variants 

exhibit very high odds ratio and are likely to be causal, as these are observed at very low 

frequency in the general population. However, these events are also rare in the disease 

population with few disease individuals carrying the disease-causing rare coding mutation at 

an associated locus. Even a genomewide survey of exome variants with low to moderate 

frequency (Exome Chip) did not lead to novel associations in a large AMD study (Fritsche et 
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al., 2016). Several explanations can be put forth. It is possible that the contribution of rare 

variants is small and common non-coding variants with regulatory functions are indeed 

disease-causing. Alternatively, the rare variants likely arise independently in genomes and a 

sequencing based approach (such as WGS) focusing on all rare events, rather than Exome 

Chip, might more successful. Indeed, one would predict that the effect of a single variant/

gene is not large and thus we must focus on biological pathways relevant to the disease 

biology or an integrated approach combining transcriptome and epigenome analysis with 

GWAS (discussed in Section 6).

We note that several statistical methods have been developed to evaluate the impact of 

multiple independent rare variants that cause functional damage in a combinatorial manner; 

these methods can be broadly classified as burden and non-burden tests. Burden tests 

collapse rare variants in a genetic region into a single burden variable, and then model the 

phenotype using the burden variables to test for the cumulative effects of rare variants in the 

region. These models include collapsing methods such as CAST, CMC, RareCover, and 

aSum and aggregation methods such as WSS, KBAC, and RBT (Lee et al., 2014). Non-

burden tests such as VT, C-alpha, EREC, and SKAT (Lee et al., 2014) aggregate individual 

variant score test statistics with weights when SNP effects are modeled.

3.4. Interpretation of Genetic Variations

Elucidating the functional impact of thousands of variants identified in WES or other NGS 

studies poses major challenges in for genetic diagnosis and personalized medicine. Rules of 

genetics are now being redefined. Even healthy individuals have been identified to harbor 

mutations in at least 8 severe Mendelian conditions but with no phenotype (Chen et al., 

2016), suggesting incomplete penetrance and/or existence of alleles that might be protective. 

The roles of synonymous (Plotkin and Kudla, 2011) and non-coding variants (Sakabe et al., 

2012) in disease causation are also becoming evident. Contributions of more than one 

mutations/variants in Mendelian disease are being recognized as modifiers (Genin et al., 

2008; Slavotinek and Biesecker, 2003), compensatory mutations (Jordan et al., 2015) or 

triallelic inheritance (Eichers et al., 2004). Modifier alleles might also explain vast clinical/

phenotypic heterogeneity that is commonly observed in RDDs (Ebermann et al., 2010; 

Khanna et al., 2009; Priya et al., 2014).

NGS presents immense opportunity to decipher exciting attributes of human history, biology 

and disease than merely cataloging primary genetic defects. Nonetheless, guidelines for 

systematically investigating the causality of the variants in human disease through functional 

assays are highly desirable (MacArthur et al., 2014). One needs to take account of biological 

context such as tissue types and species when designing such approaches. The lack of high 

throughput functional assays has been a major bottleneck in the field. For years, scientists 

have used mice and other model organisms for elucidating how genetic defects might cause 

retinal disease (Veleri et al., 2015). More recently, the use of human pluripotent stem cells 

(hPSCs), especially induced pluripotent stem cells (iPSCs), has significantly expanded the 

focus on investigating human disease (Merkle and Eggan, 2013). hPSCs are becoming 

routine for developmental studies and screening small molecules to rescue disease-

associated phenotypes (Kaewkhaw et al., 2015; Kaewkhaw et al., 2016), offering immense 
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opportunities in combination with NGS to make precision medicine a reality in the near 

future.

4. Transcriptome

The pattern of gene expression in a cell/tissue can broadly reflect its functional state. NGS-

based expression profiling by RNA-seq (Marioni et al., 2008; Mortazavi et al., 2008) allows 

comprehensive qualitative and quantitative mapping of all transcripts (Garber et al., 2011). 

Prior to NGS, transcriptome profiling techniques had limited scope and accuracy and were 

not quantitatively precise. Northern blotting and qRT-PCR analysis could not be employed at 

genomewide scale. Expressed sequence tag (EST) analysis (Adams et al., 1991; Gieser and 

Swaroop, 1992) and serial analysis of gene expression (SAGE) (Blackshaw et al., 2001; 

Blackshaw et al., 2003) were instrumental in profiling novel and known transcripts but were 

labor-intensive and had limited breadth and quantitative capability. Gene expression 

microarrays (Brown and Botstein, 1999) have been the mainstay of genomewide profiling 

during the last decade, yet several issues inherent to hybridization-based methods were not 

easily overcome; these included varying background noise, requirements for high RNA 

amounts, dependence of annotated probe sets included on the array, and lack of precise 

quantification. The massively parallel capabilities (as discussed in Section 2) of NGS has 

expanded the scope of transcriptional landscape dramatically with miniscule quantities of 

total RNA, low background noise, and quantification accuracy rivaling qRT-PCR, which has 

been the "gold-standard" for quantitative studies.

Massive datasets produced by RNA-seq create unique computational challenges for analysis. 

For convenience, we have divided the analysis in two parts – primary and secondary. The 

primary analysis includes read mapping, transcriptome reconstruction, expression 

quantification (Garber et al., 2011), and differential expression (DE) analysis. Read mapping 

refers to the alignment of short reads to the reference transcriptome and/or genome. 

Sequencing reads can also be used to generate contigs for de novo assembly and novel 

transcript identification. Transcriptome reconstruction focuses on identifying different 

transcript isoforms. Expression quantification refers to evaluation of transcript abundance at 

the gene or isoform level. Higher-level secondary analyses are generally required to extract 

biologically relevant information after the primary analysis is completed. The secondary 

data analysis can include DE analysis, de novo assembly, expression cluster analysis, co-

expression networks construction, and differential alternative splicing (DAS). DE analysis 

aims to identify dissimilarly expressed genes in different experimental conditions. De novo 
transcript assembly permits the discovery of novel unannotated transcribed sequences. 

Cluster analysis focuses on grouping the genes based on a specific characteristic, such as co-

expression or shared biological function. Co-expression network construction refers to 

elucidation of gene regulatory networks from expression data. DAS examines differential 

isoform expression across the biological samples or conditions. Thus, RNA-seq provides us 

the necessary data for a comprehensive evaluation of broader transcriptional landscape.
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4.1 Library Construction, Data Generation, and Primary Analysis

The basic steps in performing RNA-seq include library construction and generation of 

sequence data followed by primary analysis. Depending on the goals of the experiment (e.g., 

RNA species being investigated), a meticulous experimental design is essential for 

extracting biologically relevant information.

4.1.1. Library Construction and Data Generation—RNA-seq library construction 

protocols include similar basic steps, which require elimination of ribosomal RNA (rRNA), 

reverse transcription of the desired RNA species, fragmentation, adapter ligation, and 

enrichment (Figure 4). A number of issues must be considered to obtain high quality global 

expression profiles. First and foremost, the RNA species being investigated (e.g., mRNA or 

miRNA) should be enriched in the library since rRNA represents the dominant transcript 

species within any given cell/tissue; the commonly used protocols use oligo-dT beads for 

enrichment of mRNA. To minimize inherent 3' bias in this protocol (due to RNA 

degradation), high quality total RNA is necessary for library generation. A widely applied 

method to evaluate RNA quality is by using Agilent 2100 Bioanalyzer, which calculates 

RNA integrity number (RIN) on a scale of 1–10. We recommend RNA with RIN >= 7.0 for 

RNA-seq analysis. An alternative approach is to eliminate rRNA using beads containing 

complementary rRNA sequences; this approach permits an unbiased examination of the 

transcriptional landscape but requires a significantly higher sequencing depth per sample (Li 

et al., 2014a). The rRNA removal protocol is also essential when investigating non-polyA 

transcripts or if the quality of RNA is poor (RIN < 7.0). Nonetheless, this approach allows 

successful analysis of even substantially degraded RNA (Li et al., 2014a). We should 

mention that genomic DNA elimination is required for this protocol prior to reverse 

transcription.

The library preparation protocol should keep the fidelity of the genomic strand from which it 

is transcribed for correct alignment and assignment of sequencing reads to specific 

transcripts since many genes have overlapping transcribed regions on the same or opposite 

strand of the genomic DNA; therefore, a directional library protocol is necessary (Brooks et 

al., 2012). The desired length and depth of the sequencing depends on the RNA species 

being investigated. For example, 10–50 million sequence reads are sufficient for 

quantification of almost all of the known protein coding transcripts. Over 100 million 

sequence reads per sample might be necessary to evaluate low to moderately expressing 

novel transcripts or for non-polyA RNA species. The sequencing depth for mature miRNA 

libraries can be as little as 1–10 million reads. Except for miRNA, longer sequence lengths 

are desirable for sequencing reads to overlap neighboring exon boundaries (i.e., to cross over 

the intron) thereby leading to more accurate transcript assignment. In addition, PE 

sequencing can lead to more accurate read alignments for mRNA profiling.

The amount of starting RNA is an important consideration before initiating a specific library 

preparation protocol. We generally use 20–100 ng of total RNA for standard oligo-dT 

enrichment protocol and perform paired end sequencing to produce at least 30 million 

directional sequence reads. Although many library kits are available, we use the following 

kits: TruSeq Stranded mRNA Library Prep Kit (Illumina) for mRNA, TruSeq Stranded Total 
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RNA Library Prep Kit (Illumina) for total RNA, TruSeq Small RNA Library Prep Kit for 

miRNA, and SMARTer Ultra Low Input RNA Kit (Clontech) and Nextera XT DNA Library 

Preparation Kit (Illumina) for single cell or low amounts of starting RNA.

4.1.2. Sequencing Read Alignment—Alignment of RNA-seq reads is the crucial first 

step in transcriptome profiling. Over 90% of human transcripts are derived from more than 

one exon (Harrow et al., 2012); therefore, at least some of the reads must cross over introns 

and include exon-exon junctions for determining proper transcript structure. Early alignment 

algorithms used a priori knowledge of known splice junction sites for aligning RNA-seq 

reads to the genome but lacked the ability to discover novel or rare splice events. More 

recent approaches include the alignment of sequence reads to a reference transcriptome prior 

to the reference genome, which can overcome multiple mapping issues associated with 

pseudogenes. We have effectively performed spliced read alignment using TopHat2 

(Trapnell et al., 2009), and STAR (Kim et al., 2013). TopHat was one of the first algorithms 

that performed spliced-read alignments and also aligned reads to novel transcript isoforms 

and genes. More recently, STAR has become popular due to its successful alignment of 

spliced-reads, accuracy, and speed (Engstrom et al., 2013). In addition, STAR can now 

provide concurrent gene level quantification. Whole transcriptome level sequence 

alignments can be completed within minutes with appropriate computer configurations and 

memory (e.g., using 4 cores and 72 Gb RAM on Biowulf computing cluster of NIH - https://

hpc.nih.gov).

4.1.3 Gene and Transcript Quantification—Successful secondary transcriptome 

analysis is facilitated by accurate quantification of RNA-seq reads, which can be performed 

at the gene or transcript level depending upon study objectives. Gene-level quantification 

summarizes read counts assigned to coordinates of genomic features such as genes and 

exons and is appropriate in cases where considerable 3' bias exists in the data, short and/or 

single-end sequencing reads (e.g., <50 nucleotides) with low read-depth (e.g., <30 million) 

are obtained, or the reference transcriptome is poorly annotated (such as for non-model 

species). The algorithms for gene-level analysis include HTSeq (Anders et al., 2015), 

featureCounts function in SubRead software (Liao et al., 2014), RSEM (Li and Dewey, 

2011), and STAR (see Table 5 for web sites). In contrast to gene-level analysis, transcript-

level algorithms additionally assign reads probabilistically to putative transcripts of a given 

gene and can provide a more accurate representation of the transcriptome state, specifically 

when applied to high quality, PE sequencing reads. Software applications for transcript level 

quantification include RSEM, Cufflinks (Trapnell et al., 2010), and eXpress (Roberts and 

Pachter, 2013).

Regardless of the quantification method, expression values from the algorithms are obtained 

as feature counts, RPKM/FPKM (Reads/Fragments Per Kilobase of the exon model per 

Million reads) (Mortazavi et al., 2008; Trapnell et al., 2010), or TPM (Transcripts Per 

Million) (Li and Dewey, 2011). Feature counts are the most basic unit of measure and do not 

account for the length of a transcript or the depth at which the sample RNA was sequenced. 

Thus, feature counts are used primarily for normalization, DE analysis, and quantification of 

expression. RPKM and FPKM are used for SE or PE sequencing, respectively, to account for 
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the transcript length and sequencing depth, thereby allowing comparison across samples. 

Normalization (discussed later) of the counts is essential prior to calculating RPKM/FPKM 

values to reduce the disproportionate impact of highly transcribed genes. TPM calculates the 

relative abundance of a transcript by normalizing for sequence depths of specific transcripts 

rather than of the whole transcriptome dataset; it is thus a preferred metric for quantifying 

gene/transcript abundance (Alamancos et al., 2015; Burns et al., 2015; Shalek et al., 2013).

4.2. Secondary Data Analysis

Primary analysis of RNA-seq yields genome-aligned reads (BAM files) and quantified 

expression data that provides basic information on transcribed sequences. However, 

additional bioinformatic analysis is required for deciphering molecular insights into cellular 

functions. Here, we have focused on comparative analysis of transcriptomes, identification 

of novel transcripts and isoforms, differential alternative splicing (DAS), and generation of 

co-expression networks.

4.2.1 DE Analysis—DE analysis is generally used to compare transcriptomes of two or 

more groups of samples. From simple two-group comparison (sample A versus sample B) to 

more complex multivariate analyses, one needs to be aware of various considerations that 

make DE of RNA-seq different from microarray or qRT-PCR. Before performing DE 

analysis of RNA-seq data, it is critical to remove low-expressing transcripts or genes (e.g., 

those expressed at <1 FPKM), normalize for differences in sequencing depth, model 

overdispersion, and experimental factors. The data is then subjected to DE analyses using 

various tools that provide fold change in gene expression and statistical significance.

Typically, a large number of genes or transcripts are not expressed at high enough levels to 

be considered above background noise and are eliminated to avoid an adverse impact on 

normalization algorithms. This filter can be set to an arbitrary number, such as 1 count per 

million or 1 FPKM in 10% of the samples or even all replicates in any group. In retina RNA-

seq data, this filter can remove as much as 40–50% of all annotated transcripts (Brooks et 

al., 2012). Normalization is then required to account for differences in sequencing depth. It 

uses various algorithms, such as median, upper quartile, full quantile (Bullard et al., 2010), 

relative log expression (RLE) (Anders and Huber, 2010), or trimmed median of the mean 

(TMM) (Robinson and Oshlack, 2010). Alternatively, RNA spike-in or housekeeping gene 

matrices may be used for normalization (Jiang et al., 2011; Risso et al., 2014). We find 

TMM to be widely applicable for our DE analyses (Conesa et al., 2016) (Brooks et al., 

manuscript in preparation). After normalization, FPKM values are exported for secondary 

analyses including clustering and inference of co-expression network(s).

The count data generated from digital gene expression experimentations, such as SAGE and 

RNA-seq, demonstrate more variance than what is expected from a Poisson distribution 

model (overdispersion) (Robinson and Smyth, 2007), leading to an increase in type-I error 

(false positives) in DE analysis. This observed overdispersion should be compensated prior 

to DE analysis since traditional DE algorithms, such as student’s t-test and ANOVA, assume 

a normal distribution of data. Several software packages can perform this task utilizing 

different methodologies; these include DESeq (Anders and Huber, 2010), edgeR (Robinson 
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et al., 2010), Cuffdiff 2 (Trapnell et al., 2013), and limma (Law et al., 2014). After 

evaluating various methods, we have settled on limma for our DE analysis. The flexibility in 

the limma package allows us to model many different experimental factor configurations, 

minimize type-I errors, and permit the correction of experimental batch factors. The final 

steps in DE analysis are to filter the data for fold change and determine statistical 

significance. We initially set thresholds to have two-fold or greater change and a false 

discovery rate (FDR) of less than 5%.

4.2.1 Co-expression Network Inference—Co-expression networks can be developed 

based on expression patterns in transcriptome data sets; e.g., if two genes exhibit a strong 

correlation in their pattern of expression, these genes are predicted to demonstrate similar 

transcriptional regulatory mechanisms (Figure 5). A number of co-expression network 

inference algorithms have been developed, including Boolean Networks, Probabilistic 

Boolean Networks, Bayesian Networks, Dynamic Bayesian Networks, Differential 

Equations Methods, Linear Methods, Neural Network Methods and Information Theoretic 

Methods (see (Hecker et al., 2009) for a review).

A systematic performance analysis of network inference approaches concluded that no 

single method can be used on distinct data sets to obtain high confidence networks and that 

multiple inference methods may yield complementary information which can be combined 

for constructing a biologically relevant co-expression network (Marbach et al., 2012a). After 

evaluating different approaches, the average rank method was implemented for integrating 

networks generated by distinct algorithms (Marbach et al., 2012a). The quality of network(s) 

inferred by the average rank method depends on the quality of the data sets and efficiency of 

prediction algorithms.

4.2.2. Analysis of Alternatively Spliced Transcript Isoforms—Alternative splicing 

(AS) generates extensive transcript diversity in eukaryotes by producing multiple RNA 

molecules from a single gene. As many as 95% of human and other mammalian genes with 

multiple exons undergo AS (Pan et al., 2008; Wang et al., 2008), contributing to cellular and 

phenotypic complexity during development and disease (Revil et al., 2010; Singh and 

Cooper, 2012). While exon-microarrays first introduced genomewide profiling of distinct 

transcripts, NGS-based RNA-seq technology has dramatically accelerated the identification 

of novel transcript isoforms generated by DAS events. A number of computational tools 

have been developed for DAS analysis to obtain valuable information on skipped exons, 

alternative 5’ and 3’ splice site usage, mutually exclusive exons, and intron retention in 

transcribed sequences.

DAS analysis tools can be classified as count-based or multi-reads, depending on the 

methods for quantification of isoform levels (Pachter, 2011). In the count-based models, the 

total number of reads uniquely mapped to each genomic feature (exons in DAS analysis) is 

counted individually before testing for the statistical significance of count difference 

between the control and experimental groups. On the contrary, the reads can be mapped to 

multiple isoforms in the multi-reads model, which then test the difference in relative 

transcript abundance statistically across distinct conditions. DAS analysis requires higher 
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sequencing depth compared with differential expression analysis, as much as 100 million 

reads of 101 nucleotides PE sequencing (Liu et al., 2013).

A number of DAS analysis tools (see Table 3) permit the use of biological replicates across 

different groups. MATS, DSGseq, and SplicingCompass are count-based models, whereas 

Diffsplice represent multi-reads models (see Table 5 for web sites). All methods can utilize 

genome-aligned reads (as SAM and/or BAM file formats) as input, except for MATS, which 

can also use unaligned reads (FASTQ file format) if the reference genome sequence is 

provided. Evaluation of different DAS analysis tools with simulated and real RNA-seq data 

sets indicated that no single algorithm can satisfactorily elucidate all possible splice events 

and that the choice of DAS method is based on sample size, sequencing depth and quality, 

and availability of reference transcript annotation (Liu et al., 2014).

Regulation and functional consequences of AS can be inferred by integrating distinct RNA-

seq data sets using network based methods (Li et al., 2014b). For example, a tensor-based 

pattern mining method has been used to correlate exon splicing in different genes and across 

diverse conditions for identifying exon clusters that are regulated by a specific splicing 

factor (Dai et al., 2012). Such co-splicing clusters indicate regulation of exon usage in 

different contexts and may reveal insights into post-transcriptional control of gene 

expression. Along these lines, a label propagation algorithm can be utilized for systematic 

functional evaluation of distinct transcript isoforms (Li et al., 2014c). In this approach, gene-

isoform relations are modeled by aggregating multiple co-expression networks of transcript 

isoforms into a single one and then assigning specific roles based on their interaction with 

genes of known function.

4.2.3. Novel Transcript Identification using Transcriptome Assembly 
Techniques—Genome databases, such as RefSeq and Ensembl, include hundreds of 

thousands of transcribed sequences from numerous organisms and cell lines. However, 

transcript catalogs of unique neuronal cell types (e.g., distinct retinal cells) are still far from 

complete. Transcriptome profiling by RNA-seq provides both qualitative and quantitative 

depth, permitting the detection of low-expressed and novel transcripts, unannotated or fusion 

transcripts, and isoforms generated by alternate splicing or alternate promoter usage 

(Guttman et al., 2010; Kim and Salzberg, 2011; Trapnell et al., 2010). Transcriptome 

assembly (also called transcriptome reconstruction) of the sequence reads can be performed 

by genome-guided or genome independent assembly tools (Garber et al., 2011; Martin and 

Wang, 2011).

Genome-guided (also called reference-based or ab initio) transcriptome assembly is utilized 

when high-quality reference genome is available for the target transcriptome, and sequence 

reads are first aligned to the reference genome through a splice-aware aligner tool, such as 

TopHat or STAR. The genome-aligned reads are then assembled into transcripts using a 

graph-based algorithm (Guttman et al., 2010; Trapnell et al., 2010). In this assembly 

process, the first step is clustering of overlapping reads in each genomic region, followed by 

construction of all possible isoforms (transcripts) using one of the genome-guided assembly 

tools, such as Scripture (Guttman et al., 2010) or Cufflinks (Trapnell et al., 2010).

Chaitankar et al. Page 17

Prog Retin Eye Res. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In the genome independent (also called de novo) transcriptome assembly approach, 

overlapping sequence reads are first organized by De Brujin graph method and then 

assembled into transcript structures (Martin and Wang, 2011). An accurate transcriptome 

assembly in de novo approach relies upon the length of reads and sequencing errors since no 

reference genome is available. Thus, relatively longer sequence reads are preferred for a 

complete and high quality de novo transcriptome assembly (Martin and Wang, 2011). Oases 

(Schulz et al., 2012) and Trinity (Grabherr et al., 2011) are among the common genome 

independent assembly tools, which vary in terms of their performance and sensitivity. De 
novo assembly generally requires extensive computational resources and long processing 

times depending on the size of the transcriptome data set (Simpson and Durbin, 2012). 

Trinity can perform transcriptome assembly with a reference genome in de novo mode, 

which is useful when the reference genome of the organism in question does not exist or is 

incomplete but the reference genome of a closely related species is available (Grabherr et al., 

2011).

Alignment and assembly steps are critical for the success of novel transcript discovery. A 

large fraction of the novel assembled transcripts do not seem to be biologically relevant and 

likely represent transcriptional noise. Hence, different combinations of aligner-assembler 

pairs may be utilized to obtain novel high confidence transcripts, which can then be 

validated by independent methods including in silico replication by another assembly 

algorithm, q-RTPCR and/or in situ hybridization. Annotations associated with identical 

reference genome assembly from databases such as Ensembl (Cunningham et al., 2015), 

UCSC (Karolchik et al., 2003), and RefSeq (Pruitt et al., 2014) should be employed for 

accurate identification of novel transcripts.

Transcriptome reconstruction methods have begun to unravel complex dynamics of 

transcriptomes, yet numerous challenges remain (Guttman et al., 2010; Trapnell et al., 

2010): (i) We may not be able to detect the transcripts expressed at very low levels (e.g., 

lncRNAs) because of technical limitations, (ii) Construction of accurate transcript structures 

is difficult due to short sequence reads from unprocessed mRNAs containing intronic 

regions, and (iii) Sequence reads may be too short or not of sufficient quality to accurately 

map to transcriptome or genome (Martin and Wang, 2011; Trapnell et al., 2010).

5. Epigenome

Epigenome encompasses a broad array of non-genomic regulatory factors that do not alter 

DNA sequence yet play a significant role in modulating biological processes including 

development and disease pathogenesis (Sadakierska-Chudy and Filip, 2015; Sadakierska-

Chudy et al., 2015). The analyses of epigenetic changes associated with disease states have 

provided new avenues for possible therapies of RP and AMD (Berner and Kleinman, 2016; 

Zentner et al., 2015). For example, a histone deacetylase inhibitor, valproic acid, seems to 

affect the severity of photoreceptor loss in two mouse models of retinal degeneration, Rd1 

and Rd10 (Mitton et al., 2014). More recently, P300 (a histone acetyltransferase that 

catalyzes acetylation of H3K27) and LSD1 (a histone demethylase with enhancer repression 

functions) have been employed with nuclease-deficient Cas9 system, opening a new window 
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of opportunity to direct epigenome editing for designing treatment paradigms (Hilton et al., 

2015; Kearns et al., 2015).

NGS technology has greatly facilitated global profiling of epigenetic modifications. In this 

section, we will primarily focus on chromatin immunoprecipitation followed by high 

throughput sequencing (ChIP-seq) to identify DNA binding sequences for transcription 

factors and to localize histone modifications, and on DNase I digestion and transposase-

mediated methods for determining chromatin accessibility (Barski et al., 2007; Buenrostro et 

al., 2015; Song and Crawford, 2010). We also highlight the guidelines and working 

standards for ChIP-seq and DNase-seq experiments provided by ENCODE and 

modENCODE consortia and describe relevant details for computational analysis of 

epigenetic data.

5.1. ChIP-seq

Identification of genomic regions occupied by DNA-binding proteins and elucidation of 

chromatin state by chromatin immunoprecipitation followed by NGS (ChIP-seq) (Figure 6) 

provide better understanding of regulatory factors associated with patterns of gene 

expression. The ChIP-seq assay involves sonication of formaldehyde-fixed (or unfixed for 

histone modification (HM) ChIP-seq) chromatin from cells/tissues, followed by precipitation 

of the protein or protein modification of interest using a target-specific antibody conjugated 

to magnetic beads. Double-stranded DNA is then isolated from the precipitated protein-

DNA complexes and used to generate libraries for NGS (Barski et al., 2007; Johnson et al., 

2007; Sheaffer and Schug, 2016).

Identification of antibodies specific to the protein or histone modification of interest 

constitutes the initial and critical step in conducting transcription factor (TF) ChIP-seq or 

HM ChIP-seq. The quality of the data obtained relies significantly on the specificity of the 

antibody used for immunoprecipitation of the target protein domain from fragmented 

chromatin. Antibodies may show poor reactivity to their target or bind to other DNA-binding 

proteins nonspecifically, leading to false inferences of protein binding localization (Landt et 

al., 2012). The ENCODE consortium recommends evaluation of antibody specificity using 

primary and secondary tests (Landt et al., 2012). A large number of ChIP-tested antibodies 

are commercially available for examining various histone modifications; however, many TF 

antibodies are not suitable for ChIP analysis as they either lack specificity or affinity to the 

target protein domain. The number of replicates for each experiment and library sequencing 

depth are critical considerations as well. At least two independent biological replicates 

should be performed to enhance the confidence in findings from ChIP-seq datasets. The 

depth of sequencing depends on the size of the genome occupied by the protein under 

examination (Jung et al., 2014; Landt et al., 2012). According to the ENCODE and 

modENCODE consortia, point-source factors (e.g., NRL and CRX) localize to specific 

points within the chromatin structure, whereas broad-source factors (such as H3K4me and 

H3K36me3) have broad chromatin footprints (Corbo et al., 2010; Feng et al., 2012; Hao et 

al., 2012; Roadmap Epigenomics et al., 2015). For point-source factors, each biological 

replicate is recommended to have at least 10 million uniquely mapped reads when using 

mammalian cells. Twenty million reads are preferred for broad-source factors to obtain 
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equivalent resolution. A total of 40–50 million reads is recommended for HM ChIP-seq 

experiments. About 500,000 to a few million cells are required for each ChIP-seq library, 

including controls (Sheaffer and Schug, 2016).

TF ChIP-seq has been used to profile genomewide binding sites of NRL, a transcription 

factor necessary for determining rod cell fate in the mammalian retina (Mears et al., 2001), 

to better understand transcriptional regulatory networks associated with rod photoreceptor 

development. The transcriptional targets of NRL include genes involved in 

phototransduction, gene regulation, morphogenesis, and even epigenetic modulation (such as 

Kdm5b, a histone demethylase involved in gene silencing) (Hao et al., 2012). CRX is 

another key photoreceptor specific transcription factor that controls photoreceptor 

differentiation (Chen et al., 1997; Furukawa et al., 1997). The addition of CRX ChIP-seq 

data (Corbo et al., 2010) to the NRL targetome has revealed an overlap of over 50% of 

targets, and all known rod-specific genes appear to have binding sites for both CRX and 

NRL (Hao et al., 2012).

Histone modification ChIP-seq has been performed for whole retina, and H3K4me2 histone 

marks have been observed to be associated with active rod genes, which lack repressor 

methylation H3K27me3 (Popova et al., 2014). However, whole tissue histone modification 

data might miss valuable epigenetic information on low expressed genes and those expressed 

in minor cell types, and such studies should be performed with purified cell types (Kim et 

al., 2016). New methods have been developed to perform single cell ChIP-seq experiments 

(Rotem et al., 2015).

We recommend high library diversity (i.e., using a variety of indices) to take full advantage 

of sample multiplexing as Illumina sequencing technology relies on the identification of 

individual DNA strand clusters via fluorescence (See section 2.3 and Figure 2) (Krueger et 

al., 2011). Illumina software must locate and define each library fragment cluster within the 

flow cell; thus, insufficient sequence diversity within each lane of a flow cell may lead to 

misidentification of closely spaced clusters with similar sequences that may result in poor 

quality of data. Therefore, many distinct samples are needed in a single flow cell lane for the 

best read quality in ChIP-seq experiments.

5.2. DNase-seq

DNase I digestion followed by sequencing (DNase-seq) is used to identify genomic regions 

having regulatory elements such as promoters or enhancers (Thurman et al., 2012; Wilken et 

al., 2015). DNase I cleaves the DNA preferentially in open chromatin regions (Cockerill, 

2011; Suck, 1994) that are often considered active or primed for activity due to their 

accessibility to TF binding and their proximity to active histone marks, such as H3K27ac or 

H3K4me (Ziemann et al., 2013). Thus, the ends of fragments produced by DNase I digestion 

of chromatin correspond to accessible genomic regions.

After digestion of chromatin with DNase I, adaptors are ligated to DNA fragments to 

produce libraries for NGS (Song and Crawford, 2010). Mapping of fragment sequences onto 

the genome can provide cut site frequencies at each base by counting the number of 

fragments with endpoints at a specific site (Wilken et al., 2015). Genomic regions with a 

Chaitankar et al. Page 20

Prog Retin Eye Res. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



high frequency of cut sites are referred as DNase I hypersensitivity sites (DHS) that can be 

correlated to active gene expression and to regulatory regions of interest. Resolution of 

DNase-seq experiments may be high enough to identify genomic regions that are protected 

from DNase I digestion by bound transcription factors, thereby yielding possible cis-

regulatory domains associated with nearby genes. It is also possible to predict binding of 

transcription regulatory proteins by searching for known sequence motifs within TF 

footprints present in open chromatin (Madrigal and Krajewski, 2012). DNase-seq has been 

used extensively resulting in a broad range of tools specific to TF footprinting and DHS 

identification (Table 6). We also have a better understanding of the sequence bias of DNase I 

enzyme and tools have recently been developed that take it into consideration (He et al., 

2014; Madrigal, 2015; Yardimci et al., 2014).

Genomewide profiling of open chromatin by DNase-seq has demonstrated complex regional 

diversity in cis-regulatory domains within mouse neural retina, cerebellum, cerebral cortex, 

and whole brain (Ueki et al., 2015). Significant overlap of DHS was observed between brain 

and retina. Interestingly, DHS could be identified even for some of the genes that are 

uniquely, yet highly, expressed in small cell populations, such as S-opsin (Opn1sw) in S-

cones or Pou4f2 in retinal ganglion cells of the mouse retina; however, prior understanding 

of gene regulation for cell-type specific genes is required to extract such information. Given 

that neuronal tissues contain numerous morphologically and functionally distinct cell types, 

whole tissue profiling provides data of limited value with respect to cis-regulatory 

mechanisms. We therefore recommend DNase-seq analysis be performed with purified cell 

populations or even single cells when possible.

5.3. ATAC-seq

The assay for transposase-accessible chromatin using sequencing (ATAC-seq) may be used 

to identify regions of active regulatory regions within the genome (Figure 6) (Buenrostro et 

al., 2015). ATAC-seq is a three-step protocol that requires only 500 to 50,000 cells, 

compared to around 50 million required for DNase-seq, making it a faster and more efficient 

alternative to DNase-seq (Buenrostro et al., 2013; John et al., 2013; Kulakovskiy et al., 

2009). ATAC-seq uses a hyperactive form of the Tn5 transposase to fragment chromatin and 

add Illumina sequencing adapters in a single step called tagmentation (Adey et al., 2010). 

These adapter-tagged fragments are then PCR-amplified with unique DNA index sequences. 

Prior to sequencing, and after PCR cleanup using Agencourt AMPure XP beads (available 

from Beckman Coulter), the libraries are quantified using Agilent 2100 Bioanalyzer or PCR-

based methods. The former would provide library size distribution, which may help in 

troubleshooting library preparation methods. For high quality data, DNA quantity peaks are 

clearly noticeable for fragments at 200 bp intervals corresponding to nucleosome binding 

regions (Buenrostro et al., 2013). Final library concentrations may vary depending on the 

number of PCR cycles and starting cell types; however, the DNA library amount should be 

greater than 2nM for sequencing on Illuima HiSeq 2500.

Paired-end sequencing enhances accuracy of alignment and helps in identifying PCR 

duplicates. Read lengths for ATAC-seq experiments can be limited to 34–50 bp for accurate 

mapping to the genome, although larger read length may be desired for accurate mapping 
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onto highly repetitive genomes (Buenrostro et al., 2013; Buenrostro et al., 2015). 

Sequencing depth > 50 million reads is recommended for the analysis of open chromatin and 

200 million reads for TF footprinting.

ATAC-seq has many benefits compared with DNase-seq and produces comparable data. We 

note that ATAC-seq has been successfully performed for single cell open chromatin profiling 

(Buenrostro et al., 2015). However, computational tools needed for Tn5 sequence bias 

correction (Green et al., 2012) are still under development.

5.4. Primary Data Analysis

The primary steps in computational analysis of epigenomic data include evaluation of 

sequence read quality, adapter trimming, read alignment, and identification of genomic 

regions of interest through peak calling (Figures 2C and 6). First, fastQC tool (Table 6) may 

be used to perform data quality analysis, producing a read report that includes per base 

quality, sequence duplication levels, and adapter content. Second, processing tools such as 

Trimmomatic are utilized to remove adapter sequences that are added during library 

preparation (Bolger et al., 2014). Paired-end sequencing improves the accuracy of trimming 

since both forward and reverse reads from a library fragment should contain the same 

amount of adapter contamination. Third, we routinely apply the bowtie2 read alignment tool 

to map reads to genome assemblies and have observed >75% alignments for successful TF 

ChIP-seq experiments in the retina. Bowtie2 utilizes paired-end read data to improve 

alignment accuracy by attempting to align the two reads from a DNA fragment within a pre-

specified distance from one another. This maximum fragment length variable (defined by the 

maxins parameter in Bowtie2) should be larger than most library fragment lengths (e.g., 2 

kb). Finally, we observed high percentage of duplicated reads in epigenetic data sets 

compared to whole genome sequencing due to relatively small starting DNA concentrations 

and high number of PCR cycles necessary in ChIP-seq and ATAC-seq experiments. These 

duplicate reads confound the identification of read-enriched regions necessary peak 

identification (see section 5.4.1) (Dozmorov et al., 2015). Therefore, PCR over-amplification 

is examined by qPCR using an aliquot of DNA prior to library amplification (Buenrostro et 

al., 2015). Both Picard MarkDuplicates and SAMtools rmdup (Li et al., 2009) functions can 

remove PCR duplicates from the aligned reads (Table 6). Picard has the option of identifying 

duplicates generated during the sequencing process and evaluating paired-end data with 

paired-reads that do not align to the same chromosome. Some of the peak callers, such as 

MACS, can also find identical reads generated during PCR (Feng et al., 2012).

Mitochondrial DNA should also be removed using any programming language capable of 

processing text efficiently (e.g., Perl, Python, or Bash) if the goal is to analyze the nuclear 

epigenome. In our experience, mitochondrial DNA reads may vary greatly depending on a 

number of factors, including cell type, cell condition (e.g., fresh or frozen), tissue condition, 

and age. Changes in cell lysis conditions and cell storage may help in reducing 

mitochondrial DNA. For comparative analysis, the data sets are normalized by total read 

count to avoid any differences related to read depth.

For ATAC-seq data sets, read alignment data needs to be compensated for 9 bp duplications 

that are introduced during Tn5 tagmentation step (Adey et al., 2010) (see Figure 6B). Thus, 
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precise cut sites for Tn5 transposase should be determined by shifting all positive-strand 

reads 4 bp downstream and all negative-strand reads 5 bp upstream in the genome 

(Buenrostro et al., 2013). Peak callers are then used to identify significantly accessible 

genomic regions (Boyle et al., 2008).

5.4.1 Peak Identification—Peak-calling algorithms are often used to recognize protein-

binding sites or chromatin state in ChIP-seq and significantly accessible genomic regions in 

DNase-seq and ATAC-seq data (Table 6). Many peak callers specialize in identifying 

specific patterns in the data through the use of different statistical models. MACS is a 

common ChIP-seq peak caller for identifying TF binding sites and both sharp and broad 

histone modification sites by examining positive and negative strand reads that flank protein-

binding regions (Feng et al., 2012; Liu, 2014). This pattern is used to predict fragment size 

using a sliding window algorithm. Significantly enriched regions after peak modeling and 

background correction are called peaks. MACS may also consider a control data set to better 

model the background noise. Other commonly used ChIP-seq peak callers are listed in Table 

6.

F-Seq appears to be a suitable peak caller for the identification of open chromatin in both 

DNase-seq and ATAC-seq data using a kernel density estimation model to describe the data 

(Boyle et al., 2008; Buenrostro et al., 2013; Koohy et al., 2014). This model determines 

regions with significant levels of read overlap to define peaks, and a bandwidth parameter is 

used to define the width of peaks. Other common peak callers for defining significant sites 

in open chromatin data are ZINBA and Hotspot (John et al., 2011; Rashid et al., 2011). Peak 

detection methods are under continuous development, and a variety of tools must be tested 

for obtaining the best results.

5.4.2 Differential Peak Analyses—Differential regions (DR) are regions that have been 

found to be significantly different between data sets. The algorithms used to detect these DR 

may vary significantly, and may work on sharp, broad, or both types of peak signals (e.g., 

MACS), and some may consider biological replicates (e.g., DiffBind) (Steinhauser et al., 

2016). The number and size of DRs identified also varies significantly depending on the 

detection method (Table 6). Therefore, it is important to select tools that are more likely to 

be optimized for the data set under scrutiny, and to validate significant results 

experimentally, if possible.

5.4.3 Identification of Enriched TF Motif Sequences—Identifying protein-DNA 

interactions is important for understanding gene regulatory mechanisms that drive cellular 

and organism level changes. DNA-binding proteins, such as TFs, often bind with a bias for 

certain sequence motifs. DNA-binding motifs are frequently represented via a position 

weight matrix (PWM) that contains the log-likelihood of each base appearing at each 

position of the motif as compared to a random background model (Stormo et al., 1982). A 

wide range of TF binding motif identification tools exists (Table 6); these tools vary in their 

underlying mathematical and computational methods (Tran and Huang, 2014). The use of 

multiple algorithms in parallel to obtain recurring motifs using ensemble methods has been 

recommended (Lihu and Holban, 2015). The identification of sequence bias inherent to 

DNase I and Tn5 for DNase-seq and ATAC-seq respectively, has also led to development of 
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novel algorithms which attempt to compensate for these technical effects (Madrigal, 2015). 

Multiple well-annotated databases of validated TF-binding motifs exist (Bryne et al., 2008; 

Newburger and Bulyk, 2009; Wingender et al., 1996); some of these databases also provide 

web-based platforms for motif mining. These web tools search for candidate TF binding 

sites in data produced from open chromatin assays, where each tool provides customized 

parameters that can be chosen by the user.

5.5 Secondary Analysis

In this section, we discuss additional computational approaches for elucidating 

transcriptional regulatory mechanisms.

5.5.1 Elucidating TF-Mediated Gene Regulation—Genomewide TF binding sites 

(TFBS), as identified by peak detection algorithms, can aid in decoding complexities 

associated with gene regulation. Location of TFBS may uncover regulatory targets of TFs; 

e.g., if a peak is identified in close proximity of a gene’s transcription start site (TSS), it is 

inferred as a putative target gene; however, further experimental validation is required to 

delineate biologically relevant interactions. TF ChIP-seq experiments are reasonably 

accurate but target inference is restricted to a single TF. In eukaryotes, multiple TFs 

cooperatively (synergistically or antagonistically) control gene expression (Chen et al., 

2015); hence, an array of TF ChIP-seq experiments is required to construct combinatorial 

and higher order regulatory networks. Significant efforts have been made by ENCODE and 

high throughput ChIP-seq projects to identify principles and dynamics of gene regulation 

(Garber et al., 2012; Gerstein et al., 2012). Genomewide maps of DNase I footprints and 

open chromatin regions identified by DNase-seq or ATAC-seq experiments complement the 

ChIP-seq data by providing active regulatory regions that can be interrogated for locations of 

TF binding motif sequences to uncover novel TF interactions (Neph et al., 2012; Vierstra et 

al., 2014).

6. Systems Integration

Cells in an organism contain numerous distinct small and large molecules that work together 

for maintaining physiology and survival. NGS methods yield high quality data that measures 

the levels or activity of some of these molecules at genome scale albeit independently. 

Systems biology aims to elucidate normal and abnormal functioning of the whole cell, tissue 

and the organism by integrating multiple data (such as genetic, epigenetic, proteomic, 

functional) on molecules into pathways and networks (Barabasi et al., 2011; Chuang et al., 

2010; Gustafsson et al., 2014; Kitano, 2002; Vidal et al., 2011). In this section, we highlight 

two specific systems frameworks that integrate NGS data sets to uncover gene regulatory 

networks and to identify variants that influence expression levels of gene(s) (called 

expression quantitative trait loci or eQTL). Table 7 lists available open source tools for 

regulatory network inference and eQTL analysis.

Systems biology methods assist in nullifying issues caused by false positives and false 

negatives obtained by analyzing single “omics” data set (Ge et al., 2003). For example, not 

all DE genes identified by the loss of NRL in photoreceptors are direct transcriptional targets 

and integration of this data with NRL ChIP-seq can reveal biologically relevant targets with 
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high confidence. Just as methods to analyze NGS data sets are not completely optimized and 

one can use different software, no benchmarking tools exist in systems biology. We note that 

systems biology paradigms are flexible and that multiple data sets can be combined using 

different parameters to answer a specific query (Figure 7).

6.1. Regulatory Network Inference

Precise control of gene regulation is central to biological processes and is modulated by 

complex yet highly organized and integrated networks that may span multiple levels 

(Thompson et al., 2015). Binding of TFs to DNA elements and chromatin re-organization 

factors including those associated with DNA methylation and histone modifications can 

stabilize transcription initiation complex at the promoter region and are largely responsible 

for controlling gene expression patterns. NGS-based transcriptome profiling provides 

quantified gene expression levels, which can be integrated with other molecular profiles 

(such as DNA methylome or histone methylation and acetylation) to initiate the construction 

of genome scale gene regulatory networks (GRNs) underlying development and disease 

(Yang et al., 2015). Inference of GRN using a single genomewide dataset would likely yield 

physical association networks in which many regulatory interactions may not be functionally 

relevant (Marbach et al., 2012b). Such networks especially those inferred from the 

expression data would likely contain large number of false positives (Ge et al., 2003). 

Integration of different NGS datasets is thus desired to infer a functional regulatory network, 

which is still a major challenge especially for mammalian systems. Computational and 

mathematical methods are begun to emerge lately to systematically integrate high-

throughput data sets for elucidating GRNs. For example, BETA (Binding and expression 

target analysis) combines ChIP-seq and RNA-seq data to elucidate gene regulation (Wang et 

al., 2013). BETA also conducts network motif analysis to identify putative collaborating 

factors that contribute to gene expression.

NGS data can be integrated for systems studies at the transcriptional and post-transcriptional 

levels to infer genetic interactions, such as those between genes/transcripts and miRNAs 

(Cheng et al., 2011). A comprehensive systems integration approach to reverse engineer 

networks has been formulated in a machine-learning framework that uses both supervised 

and unsupervised methods to predict regulatory edges by integrating RNA-seq, TF ChIP-seq 

and histone modification datasets along with prior knowledge of conserved motifs of TF as 

input features (Marbach et al., 2012b). A rank combined framework that assimilates data 

from NGS and other high throughput technologies (such as microarray or ChIP-chip) has 

been successfully implemented to discover novel central regulators that participate in 

modulating cellular plasticity in Th17 cells (Ciofani et al., 2012). This method ranks 

regulatory interactions based on multiple metrics including correlation and TF binding 

scores obtained from RNA-seq and microarray experiments, and DE scores computed from 

wild type and knockout experiments.

6.2. eQTL

Every human being carries millions of genetic variants in the genome (Genomes Project et 

al., 2015; Sudmant et al., 2015). While a majority of these variants may be benign, many can 

potentially impact cell/tissue specific gene expression patterns (Consortium, 2015) that 
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would in turn affect downstream traits ranging from morphological and functional diversity 

to disease and response to treatments (Albert and Kruglyak, 2015; Cookson et al., 2009). 

eQTL refers to a genomic region, which harbors sequence/structural variants that influence 

gene expression levels; these regulatory variants can be identified by combining global 

expression profiles from cells/tissues and under different conditions with genomewide 

genetic variations (Gilad et al., 2008). NGS methods can permit more precise quantification 

of eQTL variations across cell types or tissues and discern their regulatory impact of gene 

expression (Bahcall, 2015; Majewski and Pastinen, 2011). Regulatory variations that maps 

in close proximity to the target gene(s) in the genome are classified as cis-eQTLs and those 

mapping far away (even on a different chromosome) are called trans-eQTLs.

The concept of eQTLs is extremely attractive because it allows us to correlate genetic 

diversity to phenotypic manifestations. In many inherited retinal diseases, the presence of a 

genetic variation is not always associated with identical clinical phenotypes and other 

genomic variants are predicted to modify the impact of causal mutation; e.g., the presence of 

a common RPGRIP1L variant (A229T) can lead to highly penetrant retinal degeneration 

phenotype in ciliopathies (Khanna et al., 2009). However, in case of common multifactorial 

diseases the causality is difficult to establish, and GWAS of complex traits have discovered a 

vast majority of genetic susceptibility variants that have relatively small impact on the 

disease risk. Most GWAS-identified disease associated variants are localized in gene deserts 

or non-coding genome regions (Chakravarti et al., 2013) and likely manifest their influence 

through modulation of gene expression (i.e., eQTL). Functional implications of a disease-

associated eQTL should however be evaluated in the context of cells/tissues that are 

influenced by the disease. For example, genetic studies have discovered 45 independent 

common variants associated with AMD (Fritsche et al., 2016), and it is prudent to look at 

their impact on gene expression in the retina, retinal pigment epithelium or choroid. GTEx 

project was initiated with a goal to create the resource for systematic study of genetic 

variations in multiple reference human tissues (Consortium, 2015). GTEx consortium, 

however, does not include ocular cells/tissues. Our laboratory has therefore undertaken this 

task by generating RNA-seq data and genotypes for over 400 human retina samples.

7. Concluding Remarks

Precision medicine is designed to provide targeted therapies to patients based on their 

individual genetic architecture and disease. Though the current use of precision medicine in 

clinical settings is limited, substantial efforts, such as the Precision Medicine Initiative 

(www.nih.gov/precisionmedicine-initiative-cohort-program), are underway to facilitate a 

more rapid progression of the field. NGS methodologies have allowed the collection of 

valuable genomic information from individuals, thereby accelerating patient-oriented 

decision-making including assessment of disease risk and/or prediction of drug response. 

Systems biology approaches, such as network modeling of genetic variants, are expected to 

uncover and expedite the better understanding of disease causality and enable the design of 

customized treatments based on an individual's genetic and epigenetic profile.

In this review, we have primarily focused on genome, transcriptome and epigenome analysis 

with a goal to provide a comprehensive perspective of NGS methods and tools to scientists 
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in the vision field. WES and targeted sequencing are becoming standard methodology for 

identifying genetic variants/mutations in retinal research and clinical diagnosis. NGS-based 

methods are increasingly being used to evaluate drug targets and small molecules and their 

broader impact on retinal cell/tissue function (Chen and Palczewski, 2015; Kaewkhaw, 

2016). Over 240 genes have so far been associated with retinal diseases; however, 

underlying pathways leading to disease pathology are poorly understood. A vast majority of 

functional studies have focused on one or few genes, which provide useful though limited 

insight into molecular and cellular pathways. Genes and their products (such as proteins, 

miRNA) are part of combinatorial functional networks, and any genetic (sequence variation/

mutation) or epigenetic change can potentially have an impact on multiple physiological 

processes leading to cellular/organismic adaptation or disease (Yang et al., 2015). It is 

therefore imperative that we elucidate global profiles of transcriptome and epigenome, 

together with those of lncRNA, miRNA and other noncoding transcribed sequences, under 

normal (control) and abnormal (disease) conditions focusing on different cell types in the 

retina/eye and generate gene interaction networks. While a majority of reported NGS data in 

retina/eye originates from small number of samples and whole tissues (Farkas et al., 2013; 

Tian et al., 2015), several groups have initiated NGS studies on specific cell types (Macosko 

et al., 2015; Mo et al., 2016; Siegert et al., 2012)(Kim et al., 2016). An array of NGS data 

thus provides unprecedented opportunities to address fundamental questions related to gene/

genome organization, function and regulation, which in turn would dramatically influence 

our understanding of cell physiology and pathogenic mechanisms. A higher-order integrative 

analysis of different datasets would permit extraction of useful pathway and network 

information at systems level. We have briefly touched upon two such aspects and discussed 

strategies for elucidating regulatory networks and delineating causality of variants in 

complex disease.

The rapidly changing and ever evolving NGS field is now leading to applications where one 

can examine genomic, transcriptomic, and epigenomic landscape even at the level of an 

individual cell; such studies are expected to have a broad impact on biology and medicine 

(Wang and Navin, 2015). Single-cell RNA-seq has accelerated molecular profiling of rare 

cell populations in complex tissues. Drop-seq, a massively parallel transcriptome analysis 

approach, has been successfully applied to the mouse retina, leading to the identification of 

39 distinct cell populations representing specific subtypes of one of the seven major retinal 

cells (Macosko et al., 2015). Additionally, NGS-based epigenome technologies have adapted 

to solve specific questions on the translation of genotype information into phenotype; these 

include ChIP-exo (Rhee and Pugh, 2012) that can detect TF binding sites at the single 

nucleotide resolution, and FAIRE-seq (Bianco et al., 2015; Giresi and Lieb, 2009) that 

identifies open chromatin regions in fixed nuclei. Both ATAC-seq and ChIPmentation 

(Schmidl et al., 2015) take advantage of the flexibility and efficiency provided by the use of 

the Tn5 transposase in library preparation in order to assay open chromatin and protein 

binding, respectively. NGS assays must continue to adapt to the increasing demand for rapid, 

accurate, and cost-effective generation of epigenomewide analysis.

NGS based approaches are rapidly gaining broad applicability in biology and medicine. 

However, current computational methods are not able to harness the full potential of large 

genomic and epigenomic data sets being generated by innovations in NGS technology. Thus, 
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a greater focus is needed on developing novel tools for computational and systems level 

analysis. Machine learning including neural networks and support vector machines and other 

mathematical models are being built to integrate knowledge from NGS data generated at 

diverse molecular levels, but systems integration models are yet to be standardized. The pace 

of data production has added a new dimension of challenges to computational and systems 

biologists; thus, additional innovations are needed for extracting useful information to have a 

desired impact of NGS in solving challenges of biology and medicine.
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RIN RNA Integrity Number

RLE Relative Log Expression

SBS Sequence-By-Synthesis

SCS Single Cell Sequencing

SE Single-End

TF Transcription Factor

TFBS Transcription Factor Binding Site

TMM Trimmed Median Of The Mean

TSS Transcription Start Site

WES Whole Exome Sequencing

WGCNA Weighted Gene Co-expression Networks Analysis

WGS Whole Genome Sequencing
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Box 1

Glossary

Bioinformatics: An interdisciplinary field that encompasses biology and computer 

science to develop resources and software’s that aid in storage and analysis of omics data.

Systems biology: A discipline that focuses on understanding structure and function of 

biological systems on multiple stages including molecular, cellular, tissue, and organ 

levels.

Personalized medicine/Precision medicine: A disease diagnosis and treatment approach 

that aims in providing targeted therapies to patients based on their individual genetic 

architecture and disease.

Genome: Set of all genetic information in an organism.

Genomics: Large-scale study of all the genes in an organism.

Transcriptome: Full range of RNA molecules (miRNA, ncRNA, rRNA, tRNA, etc.).

Transcriptomics: Large-scale study of all the Transcripts in a cell.

Epigenetics: Processes affecting gene expression that do not alter DNA sequence.

Genome-wide association studies (GWAS): A method of identifying disease-associated 

variants across the whole genome.

DNA Sequencing: Process of determining the sequence of bases along a DNA molecule.

Whole Exome Sequencing: Sequencing of protein-coding regions of the genome.

Exome: Protein coding sequences of the genome.

Gene regulatory networks (GRNs): Logic maps that details how genes are regulated.

Expression quantitative trait locus (eQTL): Genomic regions that harbor DNA 

sequence variants that influence the expression level of one or more genes.

Chromatin: A complex of DNA and proteins that compacts and organizes chromosomes 

within the nucleus of eukaryotic cells.

Chromatin Immunoprecipitation (ChIP): An assay used in biology to identify protein-

DNA interactions, such as transcription factors or histones, in vivo.

Single-end Sequencing: Involves sequencing from only one end of a sequencing library.

Paired-end Sequencing: Involves sequencing from both ends of a sequencing library 

and provides more accurate alignment and gene/transcript abundance levels.

Multiplex Sequencing: Simultaneous sequencing of multiple sample sequence libraries 

in the same reaction vessel.

Fragment: A piece of unknown DNA resulting from sequencing library construction 

originally derived from DNA shearing, enzyme digestion, tagmentation, or reverse 

transcription of the experimental sample.
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Library: Set of all DNA fragments prepared for sequencing for an experiment.

Library size/Sequencing depth/Read depth:

Number of fragments sequenced.

Sequencing Read: Output from sequencing machine of the library fragments.

Coverage: Fraction of the genome mapped by sequenced reads.

Contig: A set of overlapping reads.

Variant Calling: Process of identifying single nucleotide variants from NGS data using 

various mathematical and computational tools.

Read mapping: Process of aligning sequence reads to a reference genome.

Transcriptome Reconstruction: Process of computational reconstruction of transcripts 

from sequencing reads

Peak calling: Process of identifying genomic locations where reads align.

Single Cell Sequencing: Sequencing at a single cell level.
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Box 2

Frequently used file formats and their descriptions in Illumina sequencing 
workflows

BCL (.bcl): Base call (BCL) is a binary file that is generated by Illumina sequencing 

instrument as an output in each sequencing cycle. bcl2fastq tool merges per-cycle BCL 

files into FASTQ files that are input of many downstream sequencing analysis tools such 

as aligners and de novo assemblers.

FASTQ file (.fastq or .fq): Once sequencing is completed, nucleotide sequence and 

quality score of each read is stored in FASTQ text file format for further analysis steps. 

An example of the first four lines of a standard FASTQ file is shown below.

Line 1. @HWI-D00541:31:C75NKANXX:4:1101:1333:1963 2:N:

0:GCCAAT

Line 2. 

GCTAGACATTGTTTTATCCAATCTCATCTTGCACTTCTCTAGCATC…

Line 3. +

Line 4.

BBBBBFFFFFFFBFFFFFFFFFFFFFFFFFFFFB/

BFFB<BFBBFFFFFFFF</7B

The first line always starts with @ character and represents the sequence identifier. The 

second line is the biological sequence of the read, which is composed of a four-letter 

nucleotide alphabet (A, T, G and C). The third line is again sequence identifier and 

always starts with + character. As in this example, the third line may sometimes consist 

of only a + character. The fourth line describes the quality score of corresponding 

sequencing read, which is coded with ASCII characters. We recommend readers to look 

at Cock et al., 2010 article for detailed information regarding FASTQ file variants (Cock 

et al., 2010).

SAM file (.sam): Sequence Alignment/Map (SAM) is a text file that stores alignment 

information of reads to reference genome or given sequence (Li et al., 2009). Some 

aligners such as STAR (Dobin et al., 2013) generate SAM file as an output of alignment 

process of short reads to reference genome. A SAM file includes a header section starting 

with @ character and alignment section consisting of multiple lines.

BAM file (.bam): Binary Alignment/Map (BAM) is the binary version of SAM file (Li et 

al., 2009). As SAM file does, BAM file stores alignment information of reads however 

BAM file is compressed (has smaller size) and more efficient in many sequencing 

analysis tools as it is compared to SAM file. A SAM file can be converted to a BAM file 

(or vice versa) with the help of SAMtools standalone software (Li et al., 2009).

BED file (.bed): A BED file is a tab-delimited text file that might consist of multiple 

lines each representing a single genomic region or feature such as an exon or gene body. 

There are three required fields (represented below) in a standard BED file named chrom, 
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chromStart and chromEnd. “chrom” stands for chromosome in which the region is 

located. “chromStart” represents the starting bp of the region, inclusively, with the first 

bp in a chromosome designated as 0. “chromEnd” is the end position of the region, 

exclusively. The other nine fields are optional and provide additional information about 

the genomic region such as relevant strand information or a context-specific score. 

Detailed information about BED file and its variants can be found at UCSC Genome 

Bioinformatics web site: http://genome.ucsc.edu/FAQ/FAQformat

chr2 116848098 116877168

chr2 118745757 118748810

chr2 120024806 120027453

chr3 89394289 89398779

chr3 94998833 95004869

Multi-FASTA file (.fa): A multi-FASTA file is a text file that consists of multiple FASTA 

format sequences. Below is a simple multi-FASTA file in which each sequence. identifier 

starts with > character and followed by single or multiple lines of biological sequence. 

We typically use multi-FASTA files of genomes and transcriptomes that can be 

downloaded multiple sources (e.g. Ensembl or Gencode web sites) while building 

genome and transcriptome indexes in sequencing data analysis.

>Nucleotide_Sequence1

CGCGCCCGGCCCGTAGCGTCCTCGTCGCCGCCCCCCGCGGACTAGCCCGGGTGGCCTCGTCTCGCAGCC

GCACTCCCCGTGAGCCCGCGTGGACGCTCTCGCCTGAGCG

>Nucleotide_Sequence 2

CGTAGCGCAGCGATCGGCGCCGGAGATTCGCGACACTGGCGCGCGGGCGAGCGCACGGGCGCTCACCCG

ACACTCCGCGCCGCCCGCCGGCCAGGACCCGCGGCGCGACAGTCCGGCAGCGCCGGGGTTAAGCGGCCC

AAGTAAATCGCGGCGCCGCGCTACAGCCAGCCT

> Nucleotide_Sequence3

GGCCCGCTGAGGCTTGTGCCAGACCACCTCCCCTCCCCCTTTTTGGAAACCTCAGGTACACGACATATC

CAGACGCGGGAT

GTF and GFF files (.gtf and .gff respectively): General Transfer Format or Gene 

Transfer Format (GTF) and General Feature Format (GFF) are text-based annotation files 

that stores gene structure information of any genome. In both GTF and GFF file, each 

line represents a single genomic feature (e.g. an exon structure information). A GFF file 

has nine required field separated by tabs, and the first eight fields of a GTF file are same 

as GFF file however the ninth field is always start with two mandatory attributes named 

gene_id value and transcript_id value. GFF and GTF files might be either as an input of 

aligner software or might be output of a genome assembler tool. Below is example lines 

from a mouse GTF file downloaded from Ensembl database.
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Figure 1. Timeline of human genetics and genomic technologies
NGS based applications have been utilized widely in vision and other biomedical research. 

A. From the discovery of DNA molecule until today, substantial scientific and technical 

advancements in human genetics and eye field are presented in a chronological order. The 

first NGS report was published a decade after the launch of human genome project. B. 
Cumulative number of biomedical research papers based on NGS technologies from 2008 to 

2015 in PubMed database. We believe the number of scientific reports based on NGS 

technologies will continue to increase as NGS become more available and affordable. C. 
Profiling genomic variations is more employed than expression and genome binding 

profiling in vision research studies. As of December 2015, the total number of NGS based 

studies doubled in the eye field compared to two years ago. PCR, polymerase chain reaction; 

RP, retinitis pigmentosa; HGP, human genome project; NGS, next generation sequencing; 

AMD, age-related macular degeneration; GWAS, genomewide association study.
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Figure 2. Illumina sequencing and data processing workflow
A. Denaturated NGS library fragments are flowed across a flow cell and hybridize on a lawn 

of complementary Illumina adapter oligos. Complementary fragments are extended, 

amplified via bridge amplification PCR, and denaturated, resulting in clusters of identical 

single-stranded library fragments. B. Fragments are primed and sequenced utilizing 

reversible terminator nucleotides. Base pairs are identified after laser excitation and 

fluorescence detection. C. Raw data is demultiplexed into individual libraries and assessed 
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for quality. Removing adapter reads reduces technical noise. Finally reads are aligned onto 

assembly of interest.
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Figure 3. WES workflow and analysis
Genomic DNA from cells or tissue is tagmented using hyperactive Tn5 transposase coupled 

with Illumina sequencing adapters as described in (http://www.illumina.com/products/

nextera-rapid-capture-custom-enrichment-kit.html). After PCR amplification, DNA probes 

specific to exonic sequences are used to isolate coding sequences using two-step 

hybridization. Library amplification with index primers allow for multiplexing a variety of 

libraries in the same sequencing flow cell. After sequencing and read mapping steps, PCR 

duplicates are removed using available computational tools. Realignment around indels, base 
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recalibration, variant calling and annotations are all WES-specific computational processes 

to extract variant information.
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Figure 4. RNA sequencing workflow and analysis
Total RNA is extracted and ribosomal RNA is either removed to enrich for other RNA 

species, or polyA-tailed RNA are isolated using poly(T) oligomer magnetic beads as 

described in (http://www.illumina.com/products/

truseq_stranded_total_rna_library_prep_kit.html). RNA is then fragmented using sonication, 

followed by cDNA synthesis, end repair, adapter ligation, and indexing. After PCR 

amplification and library quantification, RNA reads are mapped to known transcripts and the 
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whole genome to facilitate transcript identification and quantification. Multiple secondary 

analyses exist to understand the expression profile of cells and whole tissues.
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Figure 5. 
Construction of co-expression networks and functional enrichment of network modules A. 
Co-expressed genes (also called linked genes) can be identified and grouped into network 

modules (represented with different colors). Here we demonstrate example network 

structures of three network modules (red, blue and turquoise), built using Weighted Gene 

Co-expression Network Analysis tool (WGCNA)(Langfelder and Horvath, 2008). In each 

network module, genes are represented as nodes and co-expressed genes are linked. In co-

expression networks, it is believed that highly connected genes (also called hub genes) 
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represent biologically significant genes since their dysregulation may affect many other 

linked genes. B. Genes with similar expression patterns tend to group in the same network 

module, and are more likely to be in the similar biological processes/pathways. Biological 

relevance of network modules can be elucidated with diverse online functional enrichment 

analysis tools. Here we show the first two most significant Gene Ontology (GO) terms 

related to each module after functional GO enrichment analysis using DAVID online tool 

(Huang da et al., 2009). Additionally, heatmap shows expression patterns of genes in each 

network module across time points.
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Figure 6. ChIP and ATAC sequencing workflow and analysis
Retina is dissected from the eye, and cells are dissociated for follow-up studies.

A. (ChIP-seq): Isolated chromatin is fixed (or unfixed) and fragmented as described in 

(Sheaffer and Schug, 2016). Magnetic beads conjugated to antibody specific to the target 

protein are used to precipitate fragments bound to the protein of interest. Adapter ligation 

and indexing is followed by sequencing and quality control assessment. Reads are mapped 

onto the genome assembly and PCR duplicates are removed to minimize experimental 

artifacts. Mitochondrial DNA may also be removed to improve data set comparisons. Peak 

Chaitankar et al. Page 59

Prog Retin Eye Res. Author manuscript; available in PMC 2017 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



calling using one of the many available tools and DNA-binding sequencing motif analysis 

may facilitate the elucidation of the genome binding profile for the precipitated protein.

B. (ATAC-seq): Unfixed chromatin is obtained and tagmented as described in (Buenrostro et 

al., 2013). PCR amplification with index primers facilitates multiplexing strategies. 

Sequencing and mapping are followed by PCR duplicate and mitochondrial DNA removal 

using available bioinformatics tools or custom scripts. Open chromatin peak calling allows 

for the identification of active regulatory regions and may be combined with other NGS data 

sets to improve systems integration analyses.
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Figure 7. Integrating NGS data for systems-level understanding
Knowledge integration resulting from analyzing sequencing data from genomics, 

epigenomics, transcriptomics, and literature can help decode networks and variants 

underlying development and disease. A systems level study can yield better identification of 

disease genes and drug targets.
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Table 3

Commonly Used Tools for RNA-Seq Data Analysis Workflow.

Process Tool Description

Short read
alignment

Splice-
unaware

BWA Burrows–Wheeler Transform algorithm based tool
that accurately maps reads (up to 1Mbp) to a given
reference genome.

Bowtie2 Memory-efficient aligner for mapping very short
reads (ranging from 50 to 100bp) to large genomes.

Splice-
aware

TopHat2 Short read aligner for the discovery of novel splice
sites at exon-exon junctions.

STAR Spliced read aligner for de novo identification of
novel splice junctions. STAR is significantly faster at
read mapping compared with other sequence aligners.

Transcript
assembly

De novo Trinity Full-length transcript assembler for the identification
of novel transcripts from Illumina RNA-seq data.
Trinity uses a de Brujin graph-based method for the
construction of transcript structures and provides
accurate transcript assemblies when a reference
genome is unavailable.

Oases Short read assembler for RNA-seq samples with
missing reference genomes. Oases enables the
discovery of novel exon structures in previously
undescribed transcripts from Illumina, SOLID and
454 data.

Ab initio Cufflinks Transcriptome analysis suite for RNA-seq assembly
as well as quantification and differential expression
analysis. Cufflinks assembles short reads and predicts
novel exon structures on the reference genome.

Scripture A tool developed for stringently describing
abundantly expressed novel transcripts. It is more
appropriate to use Cufflinks instead of Scripture to
identify non-coding RNA that are generally
expressed at low levels (Cabili, M. N., et al. (2011).

Quantification

eXpress A transcript quantification tool based on the
Expectation Maximization (EM) algorithm for
estimation of transcript-level abundances.
Additionally, it provides analysis diverse options for
allele-specific expression, ChIP-seq and
metagenomic data.

RSEM Another commonly used EM algorithm-based tool
for accurate quantification of transcripts. RSEM is
also capable of estimating gene-level expression
levels.

Kallisto An ultra-fast and alignment-free transcript
quantification tool. Kallisto can approximate
expression levels of transcripts in minutes on a
standard desktop computer using a pseudoalignment
approach, and it does not require large memory for
quantification relative to other quantification tools.

Cuffquant Developed as a part of Cufflinks. Cuffquant
calculates a gene expression table at the transcript
level. The output of Cuffquant may be used as an
input to Cuffdiff 2 once properly normalized using
Cuffnorm.

Differential
expression

Cuffdiff 2 Differential expression analysis tool, part of the
Cufflinks transcriptome analysis suite, for group
comparison at transcript resolution. Cufflinks 2
supports robust alternate splicing and differential
promoter usage analyses.

edgeR An R/Bioconductor package for performing count-
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Process Tool Description

based differential expression analysis. edgeR
provides diverse statistical test options, including
generalized linear models and negative binomial
distribution based modeling. It is also suitable for
differential analysis of other data types i.e. ChIP-seq
and proteome peptide count data.

DESeq Another R/Bioconductor package for statistical
analysis of replicated high-throughput count data.
DESeq is built on a negative binomial distribution
model and can also be utilized for differential
expression at exon level resolution to resolve splice
event differences between samples.

limma A linear modeling-based tool for testing differential
gene expression for both microarray and RNA-seq
data. limma is an R/Bioconductor package that
provides diverse functionalities to users, including
data-preprocessing, transformation and
normalization.

Alternate splicing
analysis

MATS Detects altered exon usage. MATS uses a Bayesian
statistical model for testing differential splicing
events between groups and offers statistical
significance testing individually for each possible
event using a Markov chain Monte Carlo method.

Diffsplice A computational tool for the identification of splicing
patterns without transcript annotation data or pre-
defined splicing motifs. Diffsplice utilizes a non-
parametric approach to summarize significance level
of differential splicing events.

SplicingC
ompass

An R package that identifies differential alternative
splicing events at the gene level rather than exon
level. SplicingCompass creates a read count vector
for each gene and calculates geometric angles
between the vectors for discovering potential spliced
genes.

DSGseq A negative binomial model-based tool that uses exon
read counts for two-group comparison of alternative
splicing signatures. DSGseq supports the
identification of novel splicing events as well as
differential splicing.
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Table 4

Commonly Used Tools for Variant Analysis.

Process Tool Description

Variant
Calling

CRISP

Compares allele count distribution across
multiple pools or evaluates the probability of
identifying multiple non-reference base calls
occuring due to sequencing errors to identify
variants.

GATK

Built to process data originating from Illumina
sequencing technology, but can be adapted to
other sequencing technologies. Implements
MapReduce functionality to achieve parallelism
for faster data processing.

SAMTOOLS

Can identify variants from single or multiple
samples. BCFtools utility in SAMTools suite is
used to identify SNPs and short INDELs from a
single alignment file.

SNVer
Implements binomial–binomial model for
significance testing of inferred allele frequency
against sequencing error.

VarScan 2 A heuristic and statistical algorithm that detects
and classifies variants based on somatic status.

SomaticSniper

Implements Bayesian Statistics to compare
liklihoods of genotypes in cases and controls
obtained from existing germline genotyping
algorithm.
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Table 5

Web links (in alphabetical order) of resources & tools.

Resource/Tool URL

ANNOVAR www.openbioinformatics.org/annovar/

BEDOPS https://bedops.readthedocs.org/

Bedtools http://bedtools.readthedocs.org/en/latest/

Biomart http://www.ensembl.org/biomart/

Biowulf https://hpc.nih.gov

Bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml

CADD database http://cadd.gs.washington.edu/

ChIPQC https://github.com/Bioconductor-mirror/ChIPQC

CuffDiff 2 http://cole-trapnell-lab.github.io/cufflinks/cuffdiff

Cufflinks http://cole-trapnell-lab.github.io/cufflinks

Cutadapt http://dx.doi.org/10.14806/ej.17.1.200

dbSNP http://www.ncbi.nlm.nih.gov/SNP/

DiffBind http://bioconductor.org/packages/release/bioc/html/DiffBind.html

Diffsplice http://www.netlab.uky.edu/p/bioinfo/DiffSplice

DREME http://meme-suite.org/tools/dreme

DSGseq http://bioinfo.au.tsinghua.edu.cn/software/DSGseq

EdgeR https://bioconductor.org/packages/release/bioc/html/edgeR.html

ESP6500 http://evs.gs.washington.edu/EVS/

ExAC http://exac.broadinstitute.org/

FastQC http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

FASTX-Toolkit http://hannonlab.cshl.edu/fastx_toolkit/index.html

F-Seq https://github.com/aboyle/F-seq

Hotspot https://github.com/rthurman/hotspot

HPeak http://csg.sph.umich.edu//qin/HPeak/

MACS2 https://github.com/taoliu/MACS

MATS http://rnaseq-mats.sourceforge.net

MEME http://meme-suite.org/tools/meme

NGS QC Toolkit http://www.nipgr.res.in/ngsqctoolkit.html

Oases http://www.ebi.ac.uk/~zerbino/oases

ODIN http://www.regulatory-genomics.org/odin-2/basic-introduction/

PeakSeq http://info.gersteinlab.org/PeakSeq

Peakzilla https://github.com/steinmann/peakzilla

Picard http://broadinstitute.github.io/picard/

Profiling (GERP) score. http://mendel.stanford.edu/SidowLab/downloads/gerp/

Retnet https://sph.uth.edu/retnet/home.htm

RNA-STAR http://code.google.com/p/rna-star/

Samtools http://samtools.sourceforge.net/
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Resource/Tool URL

Scripture https://www.broadinstitute.org/software/scripture

SnpEff and http://snpeff.sourceforge.net/

SplicingCompass http://www.ichip.de/software/SplicingCompass.html

SPP https://github.com/hms-dbmi/spp

STAR https://github.com/alexdobin/STAR

Tophat https://ccb.jhu.edu/software/tophat/index.shtml

Trimmomatic http://www.usadellab.org/cms/?page=trimmomatic

Trinity https://github.com/trinityrnaseq/trinityrnaseq/wiki

Variant Effect Predictor http://www.ensembl.org/Homo_sapiens/Tools/VEP

Prog Retin Eye Res. Author manuscript; available in PMC 2017 November 01.

https://www.broadinstitute.org/software/scripture
http://snpeff.sourceforge.net/
http://www.ichip.de/software/SplicingCompass.html
https://github.com/hms-dbmi/spp
https://github.com/alexdobin/STAR
https://ccb.jhu.edu/software/tophat/index.shtml
http://www.usadellab.org/cms/?page=trimmomatic
https://github.com/trinityrnaseq/trinityrnaseq/wiki
http://www.ensembl.org/Homo_sapiens/Tools/VEP


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Chaitankar et al. Page 70

Table 6

Tools for analyzing NGS epigenetic data.

Process Tool Description

Quality Validation fastQC/ChIPQC Ensure high data quality throughout the analysis pipeline.
Check for overrepresented sequences and Kmers.

Adapter Trimming Trimmomatic Remove adapter sequences present in sequenced short
fragments (smaller than sequenced read length).

Read Alignment Bowtie2 Align reads to genome in order to understand read
distribution.

PCR Duplicate
Removal

Picard Remove reads sharing exact mapping position in order to
reduce PCR duplicate bias.

mtDNA Removal Samtools Remove reads mapping to mitochondrial DNA in order to
focus on epigenetics of autosomal DNA.

Peak Calling MACS2, F-Seq,
Hotspot,
HPeak, SPP,
PeakSeq, and
Peakzilla

Identify genomic regions with a significant
overrepresentation of mapped reads.

Peak/Genome
Annotation

Bedtools
Biomart/
BEDOPS

Assign peaks to genes/transcripts, or cluster genomic
regions by peak profiles.

Motif Discovery MEME,
DREME,
FCmotif

Identify transcription factor binding DNA motifs within
peaks.

Differential Peak
Analysis

ODIN/DiffBind Compare peaks present in different samples to identify
significant differences.
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Table 7

Systems Integration Tools

Method Tool Availability

Network
Inference

Integrative Inference Of
Regulatory Networks

http://compbio.mit.edu/flynet/

Binding And Expression
Target Analysis (BETA)

http://cistrome.org/BETA/

Integrated Regulatory
Network Framework

Available upon request to authors.

Physical Module
Networks

http://www.compbio.cs.huji.ac.il/PMN/Welcome.html

eQTL

Matrix Eqtl https://cran.r-project.org/web/packages/MatrixEQTL/

Eqtl https://cran.r-project.org/web/packages/eqtl/

Genetictools https://cran.r-project.org/web/packages/GeneticTools/
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