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Abstract

Ordinal classification scales are commonly used to define a patient’s disease status in screening 

and diagnostic tests such as mammography. Challenges arise in agreement studies when evaluating 

the association between many raters’ classifications of patients’ disease or health status when an 

ordered categorical scale is used. In this paper, we describe a population-based approach and 

chance-corrected measure of association to evaluate the strength of relationship between multiple 

raters’ ordinal classifications where any number of raters can be accommodated. In contrast to 

Shrout and Fleiss’ intraclass correlation coefficient, the proposed measure of association is 

invariant with respect to changes in disease prevalence. We demonstrate how unique 

characteristics of individual raters can be explored using random effects. Simulation studies are 

conducted to demonstrate the properties of the proposed method under varying assumptions. The 

methods are applied to two large-scale agreement studies of breast cancer screening and prostate 

cancer severity.
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1 Introduction

Ordered categorical scales are commonly utilized in screening and diagnostic tests such as 

mammography to assess a patient’s disease status or health outcome. Some examples 

include the Kellgren/Lawrence five-category scale which grades radiographic changes of 

osteoarthritis,1 the Dermatology Index of Skin Disease Severity (DIDS) scale used to 

classify severity of inflammatory skin disease in patients with psoriasis and dermatitis,2,3 

and the Gustilo and Anderson scale for grading severity of open fractures.4 In the cancer 

setting, breast cancer status is classified from mammograms using the BI-RADS scale,5 and 
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the severity of prostate cancer using the Gleason grading scale.6,7 Usually some degree of 

subjectivity in interpretation is required on the part of the rater, which often leads to 

substantial inconsistencies between raters’ classifications of the same subject, as has been 

demonstrated in widely used testing procedures including mammography.8–11 Discrepancies 

may be due to either a different interpretation of the ordered categorical scale, or if the rater 

perceives the subject’s disease status to be more or less severe than another rater based upon 

the X-ray, mammogram, or biopsy. These inconsistencies have motivated several large-scale 

studies to assess accuracy and agreement between raters’ classifications and factors that may 

influence these properties, including cancer,9–12 rheumatology, and bone fractures.1,4,13

Measures of association are frequently reported in inter-rater agreement studies in 

conjunction with measures of agreement when an ordered categorical scale is used to assess 

a patient’s disease status or health outcome. Both measures provide a useful summary of the 

strength of relationship between raters’ classifications.14–16 However, due to the ordinal 

nature of the data and limited availability of statistical methods, it can be challenging to 

evaluate levels of association and agreement between raters, and especially so when multiple 

raters (more than two or three) are participating in the study.

Whereas agreement measures focus on quantifying levels of exact agreement between raters, 

measures of association incorporate additional valuable information about the extent of 

disagreement between raters’ classifications. For example, two raters’ classifications of a 

patient’s test result two or three categories apart implies stronger disagreement than if their 

classifications were only one category apart. Values of association measures can differ 

substantially from measures of agreement in the same setting since strong association and 

yet poor agreement between raters’ classifications may occur.16,17 In this paper, we focus on 

developing a population-based modeling approach and measure of association that easily 

incorporate the ordinal classifications of any number of raters (at least three) and patients’ 

test results, where missing classifications can be accommodated.18 When raters and test 

results in the study are random samples from their respective populations, inferences can be 

made regarding the underlying populations under study.

Existing approaches for evaluating levels of association between a single pair of raters’ 

ordinal classifications include Cohen’s weighted kappa,19 a nonparametric rank-invariant 

approach which treats classifications as ranks,17,20 an odds ratio smoothing procedure,21 

latent trait, and log-linear models.22–25

Methods that can be used to assess association between multiple raters include a modeling 

approach3 using generalized estimating equations with a weighted kappa measure 

formulated in a similar manner to Cohen’s kappa.19 Nelson and Pepe27 describe an 

exploratory graphical approach to examine the variability between raters’ ordinal ratings. 

However, these approaches generally do not extend easily to assessing association between 

more than a few raters, where Gonin et al.’s approach includes a fixed term for each rater 

with increasing complexity as the number of raters grows larger. Shrout and Fleiss’s 

intraclass correlation coefficient (ICC)[2,1] is a commonly used summary statistic to assess 

reliability between multiple raters’ ordinal classifications and Mielke et al. discuss Cohen’s 

weighted kappa for multiple raters.28–30 Extensions of Cohen’s kappa statistic tend to be 
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sensitive to the same flaws as Cohen’s original kappa statistic.31,32 Other researchers have 

explored Bayesian approaches using generalized linear mixed models (GLMMs) with nested 

random effects to assess agreement for ordinal classifications and binary classifications.33–35 

Many of these approaches are not easily implemented in standard statistical software 

packages. Our proposed approach flexibly includes the ordinal ratings of any number of 

raters without increasing complexity and accommodates missing data. We provide freely 

available functions in the R software package for the implementation of the methods.36

In section 2, the proposed model and framework for assessing association between multiple 

raters’ ordinal classifications are defined. The proposed model-based measure of association 

is developed in section 3 with a brief overview of existing approaches. Simulation studies 

are conducted in section 4 to investigate the properties of the proposed approach. 

Applications to two large-scale medical studies are presented in section 5, and a description 

of how to assess unique traits of individual raters and test results in an agreement study in 

this population-based setting is presented in section 6. A brief discussion follows in section 

7.

2 An ordinal model of association

2.1 Introduction

We assume that a subject’s true disease or health outcome can be modeled as a continuous 

unobserved latent trait variable.33,37,38 In our setting, each of J raters independently grades 

the same sample of I subjects’ test results by assigning classifications Yij = c (i = 1,…., I; j = 

1,…, J; c = 1,…, C) according to an ordered categorical scale with C categories based upon 

their personal assessment of the subject’s true underlying continuous disease status Wij. The 

latent variable Wij can be written in the form of a linear model as Wij = β0 + ui + vj + εij 

with intercept β0 and a crossed random effects structure with subject random effects ui, (i = 

1,…, I) and rater random effects vj, (j = 1,…, J), assumed mutually independent with 

 and  distributions respectively, and errors εij distributed as N(0, σ2). The 

classifications Yij = c are equivalent to αc−1 ≤ Wij ≤ αc where the set of strictly 

monotonically increasing thresholds α0,…,αC divides the underlying continuous latent 

variables Wij into C + 1 intervals with α0 = −∞ and αC = +∞.37

The ordinal GLMM provides an ideal framework for modeling the ordinal classifications of 

multiple raters.37,39,40 It flexibly incorporates missing data since every rater may not classify 

every subject in the sample. A crossed random effect structure of raters and subjects’ test 

results appropriately accounts for the dependency between classifications due to all raters 

grading the same sample of subjects. An issue arises with ordinal data where the absolute 

location β0 and scale σ of the latent variable are not identifiable. This is dealt with here wlog 

by setting β0 = 0 and σ = 1.37 A variety of link functions can be used as part of the ordinal 

GLMM framework. In our setting, the probit link function is especially appealing due to the 

continuous latent disease status assumption underlying the model and for the ease of 

mathematics and is our choice of link function. It has been previously demonstrated that 

nearly identical results are obtained when a logistic link is used in the GLMM.41,42
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The ordinal GLMM with a probit link function models the cumulative probability that a 

subject’s test result is classified into category c or lower (c = 1,…,C)

(1)

This can also be rewritten as the probability of a subject’s test result being classified into any 

particular category , where Φ is 

the cumulative distribution function (cdf) of the standard normal distribution.

Rater random effects vj (j = 1,…, J) account for the uniqueness of each rater’s 

classifications, where a large rater random effects variance component  indicates a more 

heterogeneous group of raters. Similarly, a large variance component  for the subject 

random effects ui (i = 1,…, I) suggests a set of test results displaying a broad range of clarity 

of disease status. In section 6, we show how random effects can be estimated for raters and 

subjects included in a study, which can provide useful information and feedback for training 

purposes of individual raters.

To obtain estimates of the parameter vector  for the ordinal 

GLMM in equation (1) we fit the GLMM model using an approximate maximum likelihood 

approach. The marginal likelihood function takes the form

with indicator function dijc = 1 if yij = c and 0 otherwise. Due to the high dimensionality of 

the crossed random effects, no closed-form solution for maximizing the likelihood function 

is available. However, multivariate Laplacian approximation provides an attractive and 

viable solution to obtaining approximate maximum likelihood estimates .43 Large-sample 

approximate standard errors are estimated by taking the square-roots of the diagonals of 

matrix H at convergence , where  is the 

second-order derivative of the log-likelihood function l(θ; u, v, y) evaluated at the 

approximate maximum likelihood estimates of θ and is generated during the model-fitting 

process. This fitting approach is available in the ordinal package in R for fitting ordinal 

GLMM models with crossed random effects, one of the few statistical software packages 

currently able to do so. Also explored were adaptive quadrature methods for fitting the 

ordinal GLMM model, but these were not feasible for our ordinal GLMM model due to the 

large number of random effects.38,44,45 Simulation studies presented in section 4 

demonstrate that reasonably unbiased estimates are obtained using the ordinal package under 

a wide range of varying conditions.
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In the following section, we develop a chance-corrected model-based measure of association 

which is based upon the ordinal GLMM parameters 

and αC = +∞ in equation (1).

3 A measure of association in the population-based setting

Measures of association are a popular choice for comparing raters’ ordinal classifications, 

incorporating information about agreement and disagreement into a comprehensive 

summary measure. While measures of exact agreement can be used for both nominal 

(unordered) and ordinal classifications, measures of association are appropriate only for 

classifications based upon an ordered categorical scale. Here, we develop a chance-corrected 

measure of association based upon the ordinal GLMM in equation (1). We first define two 

probabilities which are instrumental in the development of a chance-corrected measure of 

association—observed and chance association.

3.1 Observed and chance association

Observed association, p0a is the proportion of time raters j and j′ (j ≠ j′) classify the same 

patient’s test result into the rth and sth categories respectively (r, s = 1,…, C), weighted by 

how many categories apart they are. While any weighting scheme can be applied, two 

conventional choices are: linear (absolute error) weights wrs = 1− |r − s |/(C − 1); and 

quadratic (squared-error) weights wrs = 1− (r − s)2/(C − 1)2 for pairs of classifications in the 

rth and sth categories respectively (r, s = 1,…, C) by two raters j and j′ (j ≠ j′). Based upon 

the ordinal GLMM in the population-based setting p0a takes the form (derivation in 

Appendix 1)

(2)

where  and , which itself is a natural measure 

comparing the variability amongst subjects’ test results, , relative to the overall variability 

present between classifications. Large variability between test results relative to the 

variability between the raters will yield a value of ρ close to 1. In this population-based 

setting over many raters, observed association p0a takes values between 0.5 and 1 (proof in 

Appendix 3).

Chance association pca is the proportion of time rater j classifies subject i into the rth 

category and rater j′ (j ≠ j′) classifies subject i′ (i ≠ i′) into the sth category (r, s = 1,…, C) 

simply due to coincidence, weighted according to how many categories apart the ratings are. 

For the ordinal GLMM pca takes the form (derivation in Appendix 2)

Nelson and Edwards Page 5

Stat Methods Med Res. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

It can be shown in this population-based setting that poa ≥ pca ≥ 0:5 (see Appendix 3 for 

proof). Estimates  and  can be obtained from fitting the corresponding ordinal GLMM 

in equation (1) as outlined in section 2.

3.2 A proposed population-based measure of association

The proposed model-based measure of association κma is a linear function of observed 

association p0a in equation (2). Two adjustments that we make to this linear function to 

derive the proposed measure κma are to minimize the effects of chance association on κma so 

that the measure is chance-corrected, and to ensure that κma is scaled to take values between 

0 and 1 so that it is easily interpretable in a similar manner to Cohen’s weighted kappa 

statistic.19 First, we minimize the effects of chance association on κma by finding the values 

of the fixed threshold terms  with  which minimize 

the expression for chance association in equation (3). The expression for pca takes a 

minimum value of 0.5 when the monontonically increasing threshold values denoted as 

 take the values (0.00001, 0.000002,…) (see Appendix 3). We 

then substitute these threshold values into the expression for κma. Finally, we scale κma to lie 

between 0 and 1 for similar interpretability to Cohen’s weighted kappa statistic. Since 0.5 ≤ 

p0a ≤ 1, multiplying the expression for κma by 2 and subtracting 1 scales κma so that 0 ≤ κma 

≤ 1. The form of κma (4) is thus

(4)

A value of κma near 0 indicates poor chance-corrected association between raters, while a 

value closer to 1 suggests very strong chance-corrected association between raters. We 

demonstrate in section 4 that, in contrast to Cohen’s weighted kappa, κma is unaffected by 

changes in the underlying disease prevalence.

Estimation of κma for a dataset involves first fitting the GLMM in equation (1) and obtaining 

estimates  and . These values are used to calculate the coefficient 

which in turn is incorporated into the estimate .
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The variance var  is derived using the multivariate delta method as a function of the 

rater and subject random effects variance components (assumed independent) where 

 and  for large I and J. The variance of  is calculated 

as

Since κma is a function of ρ, the delta method is again applied

For practical purposes, functions in R to fit the ordinal GLMM in equation (1) and to 

estimate κma and var  for an inter-rater agreement dataset are available from the first 

author and in supplemental material on the journal’s website. Figure 1 demonstrates the 

effects of the rater random effect variance  on the proposed measure of association κma as 

the subject random effects variance  increases. The strongest association is observed for 

small values of the rater variance . The association measure κma increases with ; this is 

due to more clearly defined disease status observed in a more heterogeneous group of 

subject test results.

3.3 Cohen’s weighted kappa with model-based parameters

Cohen’s weighted kappa statistic is a chance-corrected statistic for assessing association 

between two raters, based upon the observed weighted proportion of pairs in agreement and 

chance weighted proportion of pairs in agreement expected under a statistical model of 

independence.16,19 Here, we generate a population-based Cohen’s weighted kappa statistic 

for multiple raters incorporating ordinal GLMM probabilities of observed and chance 

association p0a and pca (defined in section 3.1) for comparison with our proposed measure of 

association κma (4). This statistic will be referred to as κGLMM,a and takes the following 

form, with choice of weights described in section 3.1
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3.4 Shrout and Fleiss’ ICC[2,1]

Shrout and Fleiss’ [2,1] statistic is derived from a two-way ANOVA model and is commonly 

used as a measure of association to assess reliability between raters.28 While six forms of the 

ICC are described in their paper, the ICC[2,1] is an appropriate statistic when all subjects are 

graded by the same set of raters who are assumed to be a random subset of all possible 

raters. This statistic has been demonstrated to be equivalent to Cohen’s weighted kappa with 

quadratic weights when comparing two raters’ classifications.46

4 Simulation studies

Simulation studies were conducted under a varying range of scenarios as presented in Table 

1 to investigate the behavior of the proposed measure of association κma and the parameters 

of the ordinal GLMM in equation (1). Simulation scenarios included increasing rater and 

subject-level random effect variances and numbers of raters and items (sample size) and 

assessing their impact on estimation of the parameter vector  and 

κma when estimated using the ordinal package in R. Effects of non-normally distributed 

random effects parameter estimation were also explored.

Sets of 1000 simulated datasets based upon the ordinal GLMM in equation (1) were 

generated for each simulation scenario in the following manner. A parameter vector 

containing true values  for C = 5 and the number of raters J and 

subjects I was specified for each set of simulations according to Table 1 (every 

combination). Random subject effects ui (i = 1,…, I) and rater effects vj (j = 1,…, J) were 

generated using R functions rnorm, rexp, and runif depending on the scenario and centered 

and scaled after choosing parameters λ and a to achieve the specified  and . A sample of 

n = IJ ordinal classifications Yij = c (c = 1,…, C) was then randomly generated from a 

multinomial distribution using the R function rmultinom according to the probability mass 

function

where dijc = 1 if Yij = c and 0 otherwise. The clmm function in the ordinal package in R was 

used to fit the ordinal GLMM (1) and obtain parameter estimates 

with their estimated standard errors for each simulated dataset.

Table 2((a) and (b)) displays simulation results for the proposed chance-corrected measure 

of association, κma. The true value of κma is presented for each simulation scenario along 

with the mean of the estimates  from the one thousand simulated datasets. The standard 

error (S.E.) is presented as the average of the one thousand standard error estimates . 

Slight bias is observed in the estimation of the proposed association measure κma for the 

smaller sample size (I = 100, J = 10) especially when the rater random effect variance  is 

large. This bias diminished at the larger sample size (I = 250, J = 100). Slightly increased 
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levels of bias in the estimation of κma were observed in both small and large sample sizes 

when the random effects were not normally distributed, though corresponding standard 

errors were similar to those for normally distributed random effects. These results indicate 

the proposed association measure is estimated in a reasonably unbiased manner for large and 

smaller sample sizes, varying random effects variances, and certain departures from the 

distributional assumptions such as normality of the random effects’ distributions.

Tables 3 and 4 present results for a selected range of the simulation studies, with further sets 

of simulations (Tables 3(c) and 3(d)) presented in the Supplemental Material online. 

Parameter estimates , a model-based measure of agreement 

and proposed measure of association  are presented in these tables.42 The standard 

deviation of the observed 1000 estimates is presented for each parameter, with standard error 

reported as the mean of the 1000 standard error estimates.

Results demonstrate that variance components and  were estimated with little or no bias 

at small values  for small and large sample sizes (I, J) and for both 

normally and non-normally distributed random effects. Low to moderate levels of bias in the 

estimation of  and  was observed for larger values of the rater variance component 

, especially for smaller sample sizes (I = 100, J = 10) and for non-normal 

random effects. For larger sample sizes (I = 250, J = 100) only minimal bias in the estimates 

of  and  was observed when the random effects were normally distributed; however, low 

to moderate bias remained in the estimates of  and  when non-normally distributed 

random effects were included.

Thresholds  were generally estimated with no or minimal 

bias. When the variability between raters’ classifications was large , some bias 

was noted. Some slight bias was observed in the estimates of α1,…, αC−1 for the simulation 

studies with non-normal random effects at smaller sample sizes, which receded at the larger 

sample size.

Coefficient ρ was estimated with slight bias at smaller sample sizes with the bias was more 

evident when the rater variability was large . This is likely due to ρ being a 

function of  and  which also exhibited moderate bias for large rater variability. This bias 

receded at larger sample sizes for normally distributed random effects.

In summary, the simulation results suggest the parameters of the ordinal GLMM and the 

proposed measure of association are estimated with very little or no bias using the ordinal 
package in R especially when the rater random effect variance are moderately low 

, which is common in real-life inter-rater agreement studies. Even at the smaller 

sample size (I = 100, J = 10), observed biases in parameter estimates were generally small, 

though some bias was observed in large and small sample sizes for non-normally distributed 

random effects.
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Figures 2(a) and (b) displays the effects of varying disease prevalence on the different 

summary measures of association, κma, ICC[2,1] and Cohen’s weighted κGLMM,a with 

linear weights as described in section 3.1 for an ordinal classification scale with five 

categories (C = 5). Cohen’s weighted κGLMM,a with quadratic weights generated very 

similar estimates to the ICC[2,1] coefficient and is not presented separately here. Table 5 

presents the percent of classifications in each of the five categories for the various disease 

prevalences used in Figure 2(a) and (b). True parameter values were used in the plots with 

the exception of Shrout and Fleiss’ ICC[2,1] statistic, which was averaged over sets of 200 

simulated datasets for each value of ρ. In Figure 2(a) and (b), it is seen that as ρ increases 

from 0 (minimum) to 1 (maximum), each measure of association increases in value and at a 

more extreme rate as ρ approaches 1. As shown in Figure 2(a), as disease prevalence varies 

from extremely high or low to being equally distributed over the five categories, κma remains 

unchanged and is thus robust to changes in disease prevalence, while the ICC[2,1] statistic 

fluctuates in value with varying disease prevalence, and increases especially when disease 

prevalence is extreme. Figure 2(b) demonstrates that Cohen’s linear-weighted population-

based GLMM measure κGLMM,a is also sensitive to changes in prevalence.

5 Applications to real-life studies

5.1 Breast cancer screening example

Beam et al.9 recently conducted a large-scale study to investigate factors that potentially may 

influence accuracy in radiologists’ interpretation of screening mammograms. A random 

sample of 104 radiologists independently classified screening mammograms of 148 women 

randomly selected via stratified sampling using a modified ordinal BI-RADS scale with five 

categories ranging from normal to probably malignant. Forty-three percent of the 148 sets of 

mammograms were from women with breast cancer. We examine levels of association and 

agreement between the radiologists in this dataset using our proposed methods and compare 

these with existing measures of association and agreement. Our population-based approach 

allows conclusions to be drawn regarding association between typical radiologists who 

interpet screening mammograms since the radiologists and patients were randomly selected 

from their respective populations. Table 6 presents a sample of the classifications made by 

individual radiologists.

The ordinal GLMM in equation (1) was fitted to the dataset consisting of n = 15,392 (IJ = 

104 × 148) classifications using the clmm function in the ordinal package in R. The 

procedure took less than 2 min to run. Parameter estimates are presented in Table 7. Based 

upon the dataset, estimated model-based probabilities of being classified into each of the five 

ordered categories were 35% (normal), 15% (benign), 17% (probably benign), 22% 

(possibly malignant), and 11% (probably malignant).

Estimates of the various measures of association for the Beam mammogram study are 

presented in Table 6 including the proposed measure of association κma, Shrout and Fleiss’ 

ICC[2,1] statistic, and Cohen’s GLMM-based weighted kappa with quadratic weights, 

κGLMM,a (section 3.3). Quadratic weights were also used for κma. Commonly used measures 

of (exact) agreement are also presented, including Fleiss’ kappa κF and Light and Conger’s 

kappa κLC, both adaptations of Cohen’s original kappa statistic, and an ordinal GLMM 
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model-based agreement measure κm.42,47–49 Model-based observed agreement is estimated 

as , indicating low to moderate observed agreement between typical pairs of 

radiologists in this setting. In contrast, observed association is very strong at , 

suggesting that while pairs of radiologists may not often provide identical classifications to 

the same patient’s mammogram, raters’ classifications may typically disagree by only one 

category on the five-category ordered categorical scale, rather than by several categories.

The proposed measure of association was estimated as  indicating 

moderate chance-corrected association between radiologists who typically interpret 

screening mammograms, based upon the table in Landis and Koch.50 Our proposed 

approach provides a chance-corrected measure of association for the study that is not 

affected by disease prevalence. The Shrout and Fleiss’ ICC[2,1] coefficient was estimated at 

0.652 (95% c.i. = (0.601, 0.706)) suggesting moderately strong heterogeneity between 

subjects’ mammograms relative to the variability between raters’ classifications. Cohen’s 

GLMM-based weighted kappa with quadratic weights was estimated at , also 

a higher value than  likely due to a prevalence effect as depicted in Figure 2(a).

Each of the estimated measures of (exact) agreement indicated only low levels of chance-

corrected agreement between raters, including the model-based measure of (exact) 

agreement  Fleiss’ kappa , Conger’s and Light’s kappa 

, and Cohen’s GLMM-based (unweighted) kappa .

Overall, there appears to be substantial discrepancies between raters’ ordinal classifications 

for grading screening mammograms in this population, reflected in the low and moderate 

levels of chance-corrected agreement and association.

5.2 Gleason grading study for prostate cancer

Allsbrook et al.51 reported on a study conducted to examine agreement and association 

between 41 general pathologists each classifying the same sample of 38 biopsy slides for the 

severity of prostate cancer. They utilized a modified earlier version of the Gleason grading 

scale consisting of four categories defined as: category (i) Gleason scores 2–4 (mild 

disease); category (ii) Gleason scores 5–6; category (iii) Gleason score 7; category (iv) 

Gleason scores 8–9 (severe disease). However, there were two missing observations, and 

since the proposed approach accommodates missing data, this did not lead to any further 

issues. A sample of this dataset is presented in the supplemental material online.

To assess the association in a unified approach between the ordinal classifications of the 41 

raters, the ordinal GLMM with a crossed random effects structure in equation (1) was fit to 

the dataset using the clmm function in the ordinal package in R. The resulting parameter 

estimates and summary measures are presented in Table 7.

Based upon this sample of 38 slides, the probabilities of being classified into the four 

categories (from mild to severe disease) according to the GLMM model were 17%, 30%, 

21%, and 32% respectively. Observed association between the raters was estimated to be 

very strong at . The chance-corrected measure of association κma with quadratic 
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weights was estimated as  indicating moderate levels of chance-

corrected association between the 41 general pathologists, where a value of 1 indicates 

perfect association. In comparison, Shrout and Fleiss’ ICC[2,1] statistic is estimated at 0.734 

(95% confidence interval 0.642, 0.824) reflecting the stronger heterogeneity between 

patients’ biopsies slides  relative to the variability observed between raters’ 

classifications . Cohen’s GLMM-based weighted kappa with quadratic weights 

was also estimated at a high value as . These large values of the ICC[2,1] 

coefficient and κGLMM,a compared to κma in the Gleason grading study may be attributed to 

the tendency of these two measures to be influenced by the prevalence of disease (high or 

low), and to take higher values when ρ is large, as in the Gleason Grading study, where 

 as demonstrated in Figure 2(a). The agreement measures κm, κF, and κLC all 

suggested low (exact) agreement.

Overall, these results indicate that chance-corrected (exact) agreement between the general 

pathologists is low, but chance-corrected association is moderate, where the proposed 

measure κma does not over-estimate the strength of association between the pathologists as 

the other measures do due to a high value of ρ. The proposed methods used here allow 

classifications of all 41 pathologists to be analyzed and interpreted in one unified approach. 

This approach leads to easily interpretable results, in comparison to studying agreement and 

association between each pair of pathologists, which leads to many statistics that can be 

difficult to interpret. Characteristics of each pathologist and the subjects’ test slides included 

in the study can be examined through their estimated random effect terms  if required, 

which is described for this Gleason grading study in the next section.

6 Estimation of individual rater and subject traits

The primary focus of population-based agreement studies is usually to draw conclusions 

about the strength of agreement and association between raters who typically classify 

patients’ test results in the underlying population. It can also be informative to examine 

unique characteristics of individual raters and subjects included in the study for rater 

awareness and training purposes which is discussed below.

Unique characteristics of each rater’s classifications are adjusted for in the ordinal GLMM 

in (1) via their random effect term vj, (j = 1,…, J). In the ordinal package clmm, predictions 

of the rater estimated effects  are generated as part of the modeling process 

as conditional modes, i.e. the modes of the distributions for the random effects given the 

observed data and estimated model parameters (also known as posterior Bayesian modes) 

using a Newton–Raphson algorithm.36 A corresponding measure of uncertainty for each 

estimated effect, the conditional variance computed from the second order derivatives of the 

conditional distribution of the random effects, is also generated in the model-fitting process. 

Figure 3(a) and (b) presents plots of the rater estimated effects (J = 41) and subject estimated 

effects (I = 38) respectively with 95% confidence intervals using the conditional variance for 

the Gleason grading agreement study (section 5.2). For example, pathologist 21 has a large 

negative estimated effect  indicating a rater who tends to consistently assign 

milder disease status to patient biopsy slides relative to the other raters. Rater 34 has a large 
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positive estimated effect  signaling a rater who assigns more severe disease 

categories to patients’ slides relative to other raters.

A similar approach can be used to obtain predictions of the subject estimated effects, 

. These estimates reflect the heterogeneity observed between the patients’ test 

results. For the Gleason grading study, subject estimated effects ranged from −2.1 to 0.98. 

Large positive (negative) subject effects indicate test results that clearly show disease (no 

disease), while values close to 0 suggest a test result whose disease status is less obvious.

7 Discussion

The use of ordered classification scales is widespread in medical tests and diagnostic 

procedures to grade a patient’s disease or health status.8–11 However, while strong reliability 

between raters is an important attribute of an accurate diagnostic procedure, poor agreement 

and association between raters have been reported in many of these settings.1,4,9–12 

Furthermore, in agreement studies with multiple raters using an ordinal classification scale 

to classify patients’ test results, it is challenging to assess levels of association and 

agreement in a unified approach since few statistical approaches are available or easy to 

implement.

In this paper, we have described a model-based approach to assess association between any 

number of raters (at least three) classifying subjects’ test results according to an ordered 

categorical scale. Missing data can be accommodated where some raters may not classify 

every subject in the sample. Many agreement studies report inter-rater reliability between 

two raters at a time which usually leads to several summary statistics with complexities in 

interpretation.52,53 The proposed model-based approach describes association between the 

group of raters in a unified and comprehensive approach with a single summary measure, 

lending itself to increasing power and efficiency and simpler interpretation. An important 

advantage is that the chance-corrected measure of association is not affected by the 

underlying disease prevalence, in contrast to other existing measures including Shrout’s and 

Fleiss’ ICC[2,1] statistic. Results can be generalized to the raters and subjects who typically 

undertake these procedures and tests when the study participants and raters are randomly 

sampled from their respective populations. The proposed approach can be fit efficiently to an 

agreement dataset using author-written functions in the freely available R software package, 

making it a viable and attractive approach to implement in practice.

Simulation studies demonstrated that estimation of the proposed measure of association 

appears fairly robust to varying sample sizes of raters and subjects, large and small variance 

components which measure the variability between the groups of raters and subjects, and 

non-normally distributed random effect distributions of the raters and subjects under a 

varying range of situations encountered in real-life studies. Some bias was noted in the 

estimation of κma when there was extreme variability between raters. Further work is 

required to fully explore the impact of non-normal random effects on the estimation of the 

measure of association, and to assess the effects of rater and subject characteristics on 

agreement by incorporating covariates into the ordinal GLMM model.
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Measures of association are often preferred over measures of agreement when assessing 

strength of relationship between ordinal classifications since they incorporate information 

about the extent of disagreement in addition to exact agreement. For parametric approaches 

such as Cohen’s weighted kappa and our proposed measure of association, less “credit” is 

assigned in the kappa statistic to pairs of raters’ classifications that disagree more and are 

further apart on the categorical scale by use of a weighting scheme.16 While the choice of 

weights is left up to the researcher, quadratic and linear weights are common options, and 

use of these schemes makes for easier comparability between studies. The ICC has been 

shown to be equivalent to Cohen’s weighted kappa statistic for pairs of raters’ ordinal 

classifications.46,54 Our simulation studies indicated that a modified version of Cohen’s 

weighted kappa with quadratic weights using population measures of chance and observed 

association yielded similar values to Shrout and Fleiss’ ICC[2,1] statistic, and was sensitive 

to the disease prevalence in a similar manner to Cohen’s original kappa.31

Liu and Agresti38 note that when the ordinal classifications are assumed to be based upon an 

underlying unobserved latent variable, such as disease status, the effects are invariant to the 

number of categories and thresholds of the categorical scale used, and that different studies 

employing different scales should lead to similar conclusions.
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Appendix 1 Derivation of observed association
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where,  and raters j and j′ (j≠ j′) are interchangeable since from the 

same large population of raters and z~N(0,1).

Appendix 2 Derivation of chance association

Appendix 3

Theorem

It can be shown in the population-based setting over many raters with ordinal classifications 

that p0a≥pca≥0.5.

We begin with a proposition as follows:

Proposition

Under the model in equation (1), observed association is always greater or equal to chance 

association, i.e. p0a≥pca.

Proof

Choose two raters at random, and let their ordinal ratings for randomly selected items i and i
′ be denoted Yi1, Yi′2. We allow i = i′ to discuss the case where they look at the same 

randomly selected item. Let D=|Yi1 − Yi′2|. Let f and F be the mass function and cumulative 

distribution function of D, respectively.

We first show that p0a can be written as a weighted average of F(d) values, d = 0, 1, 2,…, C
−1
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Group terms by diagonals of the weight matrix corresponding to D = 0, D = 1, etc., and let 

w0=1≥w1≥w2≥…wC−1≥0 be the weights as determined by their off-diagonal locations.

And since w0 = 1 w1≥w2≥…wC−1≥0, all coefficients of F(d) terms above are nonnegative. 

Now, if we can show that D is stochastically smaller when i=i′ than when i≠i′, it will follow 

that p0a, the above expression with prs=Pr{(Yi1=r) ∩ (Yi2=s)} is greater than pca, the same 

expression with prs=Pr{(Yi1=r)∩(Yi′2=s)}

Suppress the asterisks on −∞= α0
*, α1

*, α2
*,…, αC

*=∞. Figure 4 shows the region {D≤1} 

in terms of the underlying variables Wi1,Wi2 and an irregular choice of α’s (when the 

threshold values αc are unequally spaced) when C=5. Regions where D=0 are squares on the 

diagonal line Wi1=Wi2. Regions where D=1 are rectangles, some of which are infinite in 

extent. Note that the region {D≤1}, and more generally {D≤d}, is symmetric about the line 

Wi1=Wi2.

Let R be any region symmetric about the line Wi1=Wi2. Define Tii′=Wi1+Wi′2 and Sii

′=Wi1−Wi′2)=(ui−ui′)+(v1−v2) under our model Wij=αc−(ui+vj). Note that Tii′, Sii′ are 

independent. Let GT denote the cdf of Tii′ and given Tii′=t, let the symmetric region R be 

defined by–b(t)≤Sii′≤b(t).

The inequality follows from the fact that | (ui−ui′) + (v1−v2) | is stochastically larger than | 

(v1−v2) |, they are the absolute values of normal variables with different variances. Since the 

probability of any region symmetric about the line Wi1=Wi2 is larger when i=i′, the random 

variable D is stochastically smaller when i=i′, and the result follows.

We can then demonstrate that pca≥0.5 using the following proof by induction: in equation 

(3), chance association pca is written as (for the ith item and jth rater)
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Simplest case

For an ordinal scale with C = 2 categories, where thresholds α0=−∞ and αC=2=+∞. To find 

the value of  which minimizes chance association pca, we set the first derivative to 0:

 minimizes the expression for pca (with the 

second derivative > 0) and leads to the minimum value of pca=0.5 for linear and quadratic 

weights.

For an ordinal scale with C=3 categories, where α0=−∞ and αC=3=+∞.

To find the values of  and  which minimizes chance association pca, we can set each of 

the first derivatives to 0 and jointly solve:

 and  minimizes the expression for pca (with the second 

derivatives > 0) and leads to the minimum value of pca=0.5. Since the ordinal GLMM model 

for association requires monotonically increasing thresholds, we set the thresholds to be 

, or −∞ < 0.00001 < 0.00002 < +∞. Including these threshold values into 

the expression for chance association, pca leads to a minimum value of pca=0.5.

More generally, for any number of categories C, where C > 2, where α0=−∞ and αC=+∞.

To find the values that minimize chance association pca, we can set each of the first 

derivatives to 0 and jointly solve  which minimizes the expression 

for pca (with the second derivatives > 0) and leads to the minimum value of pca=0.5. Since 

the ordinal GLMM model for association requires monotonically increasing thresholds, we 

set the thresholds to be  or 

with  and . By setting all the intermediate thresholds to be close to zero, 

this effectively turns the minimization into a two-category situation, which then leads to the 

minimum value of pca=0.5 as demonstrated above.

Thus, we have shown through proof by induction that the minimum value of pca is 0.5, and 

that this occurs when the monotonically increasing thresholds  take values 

−∞<0.00001<0.00002< … < +∞. Since we have demonstrated earlier that p0a≥pca, we can 

state that 1≥p0a≥pca≥0.5. These results hold for linear and quadratic weights.
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Figure 1. 

The effects of varying rater random effects variance  and subject random effects variances 

 on the proposed measure of association κma with quadratic weights.
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Figure 2. 
Plots of measures of association versus ρ at different prevalences (a) Shrout and Fleiss’ 

ICC[2,1] and κma; (b) κma and Cohen’s GLMM-based weighted kappa with linear weights 

κGLMM,a. The prevalence is varied (extreme low or high; moderately high or low; equal in 

each category) with the percent of observations falling into each of the C = 5 categories for 

each prevalence case given in Table 5.
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Figure 3. 
(a) Rater and (b) subject effects estimated as conditional modes for the Gleason grading 

study.51 Figure 3(a) shows J = 41 rater estimated effects and Figure 3(b) shows I = 38 

subject estimated effects respectively, with 95% confidence intervals based upon the 

conditional variance.
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Figure 4. 
The region {D≤1} in terms of the underlying variables Wi1, Wi2 and an irregular choice of 

α’s (when the threshold values αc are unequally spaced) when C=5.
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Table 1

Parameter values for the simulation scenarios examined.

Variance

components Random effects distributions
Number of items I,
Number of raters J

(1, 5)

(5, 1) ui ~ Exp(λ) and vj ~ Unif(a, −a) (I=100, J=10)

(5, 20) (I=250, J=100)

(20, 5)

(10, 10)
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Table 2

True values and mean estimates (mean standard error) of the proposed measure of association κma for each of 

the 20 simulation studies. Each set of simulations is based upon 1000 simulated datasets with C=5 categories.

(a) Normally distributed random effects

I=100, J=10 I=250, J=100

True κma Mean  (S.E.) Mean  (S.E.)

(1, 5) 0.091 0.110 (0.033) 0.094 (0.012)

(5, 20) 0.123 0.153 (0.050) 0.127 (0.017)

(10, 10) 0.316 0.347 (0.075) 0.320 (0.028)

(5, 1) 0.506 0.508 (0.046) 0.503 (0.021)

(20, 5) 0.559 0.560 (0.066) 0.551 (0.026)

(b) Non-normally distributed random effects

I=100, J=10 I=250, J=100

True κma Mean  (S.E.) Mean  (S.E.)

(1, 5) 0.091 0.104 (0.033) 0.091 (0.012)

(5, 20) 0.123 0.128 (0.044) 0.118 (0.016)

(10, 10) 0.316 0.312 (0.073) 0.293 (0.027)

(5, 1) 0.506 0.499 (0.047) 0.476 (0.021)

(20, 5) 0.559 0.540 (0.068) 0.504 (0.027)
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Table 7

Results for the beam mammogram study9 where 104 radiologists (J =104) classified mammograms of 148 

patients (I = 148) using an ordered BIRADS scale with C = 5 categories (1 = normal; 2=benign; 3=probably 

benign; 4=possibly malignant; 5 = probably malignant).

Parameter Symbol Estimate S.E. Z-value

Ordinal GLMM:

Thresholds: (α0 = −∞, α5 = +∞)

 Between categories 1 and 2 α1 −0.897 0.135 −6.643

 Between categories 2 and 3 α2 −0.197 0.135 −1.460

 Between categories 3 and 4 α3   0.761 0.135   5.630

 Between categories 4 and 5 α4   2.539 0.137 18.574

Subject random effect variance   2.442 0.427

Rater random effect variance   0.158 0.073

Rho ρ   0.678 0.026

GLMM-based observed agreement p0   0.430

GLMM-based observed association (quadratic weights) p0a   0.907

Measures of agreement:

 Model-based (unweighted) kappa
 (Nelson and Edwards41)

κm   0.241 0.015

 Fleiss’ kappa (Fleiss47) κF   0.297 0.001

 Light and Conger’s kappa
 (Light,48 Conger49)

κLC   0.298

Measures of association:
 (with quadratic weights)

 Model-based weighted kappa κma   0.475 0.022

 Shrout and Fleiss’ ICC[2,1]
 (Shrout and Fleiss28)

  0.652 95% c.i. = (0.601, 0.706)

 Cohen’s GLMM-based weighted kappa κGLMM,a   0.611
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Table 8

Parameter estimates for the Gleason grading study51 with J = 41 general pathologists classifying the severity 

of prostate cancer of I = 38 patients from biopsy slides using a modified version of the Gleason grading scale 

with C = 4 categories: Category (i) Gleason scores 2–4 (mild disease); Category (ii) Gleason scores 5–6; 

Category (iii) Gleason score 7; Category (iv) Gleason scores 8–9 (severe disease).

Parameter Symbol Estimate S.E. Z-value

Ordinal GLMM:

Thresholds: (α0 = −∞, α4 = +∞)

 Between categories 1 and 2 α1 −2.416 0.382 −6.326

 Between categories 2 and 3 α2 −0.218 0.377 −0.578

 Between categories 3 and 4 α3   1.168 0.378   3.094

Subject random effect variance   4.805 0.382

Rater random effect variance   0.480 0.368

Rho ρ   0.765 0.043

GLMM-based observed agreement p0   0.531

GLMM-based observed association (quadratic weights) p0a   0.917

Measures of agreement:

 Model-based (unweighted) kappa
 (Nelson and Edwards41)

κm   0.357 0.036

 Fleiss’ kappa (Fleiss47) κF   0.404

 Light and Conger’s kappa
 (Light,48 Conger49)

κLC   0.405

Measures of association:
(with quadratic weights)

 Model-based weighted kappa κma   0.554 0.043

 Shrout and Fleiss’ ICC[2,1]
 (Shrout and Fleiss28)

  0.734 95% c.i. = (0.642, 0.824)

 Cohen’s GLMM-based weighted kappa κGLMM,a   0.687
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