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1. Introduction

Atherosclerosis in the carotid and vertebrobasilar artery causing 
cerebral infarction is the chief cause of stroke worldwide [1].  
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ABSTRACT

Background: Risks of stroke link with complications of hyperglycemia. Gueichih-Fuling-Wan (GFW), ac-
cording to Chinese Medical Code literature, has the promotion of blood circulation and attenuates the swol-
len plot.  Recent pharmacological studies have pointed out its efficacy in patients with cerebral ischemia 
or diabetes. Therefore, this study determined whether GFW has the protection against cerebral ischemia/
reperfusion (I/R) injury in streptozotocin (STZ)-induced hyperglycemic rats and LPS-induced inflammation 
in BV-2 microglial cells.
Methods: Extracts of GFW were filtered and frozen to dry for use.  Hyperglycemia was induced by intrap-
eritoneal injection of 70 mg/kg STZ.  Fourteen days after STZ injection, GFW (1, 2 and 4 g/kg) was orally 
administered once daily for seven days.  Rats were subjected to cerebral ischemia/reperfusion and sacrificed 
for infarction analysis and neuronal apoptosis detection twenty-one days after STZ injection.  MTT assay 
was used for cell viability; nitrite quantification and western blot analysis of iNOS and COX-2 were used to 
explore the effects of GFW on LPS-induced inflammation in BV-2 microglial cells.
Results: GFW significantly ameliorated cerebral infarction while dosage was more than 1 g/kg (by 38.03% 
at 2 g/kg and 52.44% at 4 g/kg), and attenuated neurological deficits by 23.48% (at 2 g/kg) and 47.25% (at 
4 g/kg).  Furthermore, GFW (2, 4 g/kg) notably decreased TUNEL- and cleaved caspase-3-positive cells in 
the immunohistochemical stain (P < 0.01 and P < 0.001, respectively).  GFW remarkably increased in Bcl-2 
and decreased in caspase-3 and Bax/Bcl-2 ratio protein expressions by Western blot. GFW (0.25, 0.5, 1 mg/
ml) significantly reduced LPS-induced NO production in BV-2 microglial cells. And GFW attenuated iNOS 
and COX-2 expression in LPS-treated BV-2 cells.  Conclusions: In summary, GFW has good bioactivities to 
protect cerebral I/R injury in hyperglycemic rats, which might be due to inhibition of cellular apoptosis and 
neuroinflammation.

Stroke, the leading cause of and disability and death, is a multi-
factor disease that forms a possible end state for diabetes, athero-
sclerosis, and hypertension [2].  Statistically, ischemic stroke is 
significant major stroke damage, which induces the reduction of 

 DOI 10.7603/s40681-016-0021-5



16BioMedicine | http://biomedicine.cmu.edu.tw/ December 2016 | Volume 6 | Issue 4 | e72

been reported the neuroprotective effect of GFW on cerebral isch-
emia injury in hyperglycemic rats.  Therefore, this study explored 
the neuroprotective mechanism of GFW in STZ-induced hyperg-
lycemic rats with an ischemia/reperfusion brain injury in vivo and 
LPS-induced inflammation in BV-2 microglial cells in vitro.

2. Materials and methods

2.1. Reagents

Streptozotocin (STZ) was purchased from Sigma-Aldrich (St. 
Louis, MO), Zoletil® from Virbac Laboratories (Carros, France).  
BCA protein assay kit was from Thermo Fisher Scientific (Lafay-
ette. CO).  NovoLink Polymer Detection System Kit was from 
Leica Microsystems Inc. (Newcastle Upon Tyne, UK).  Apo-
BrdU-IHCTM In situ DNA Fragmentation Assay Kit was from 
BioVision (Milpitas, CA); anti-Caspase-3, anti-Bcl-2, anti-Bax 
and anti-β-actin antibodies from Santa Cruz Biotechnology (Santa 
Cruz, CA).

2.2. Extraction of GFW

Gueichih-Fuling-Wan (abbreviated as GFW), a traditional 
Chinese remedy, consists of five medicinal herbs in equal pro-
portions: Cinnamomum cassia Blume; Paeonia lactiflora Pall; 
Paeonia suffruticosa Andr, Poria cocos (Schw.) Wolf; and Prunus 
persica (L) Batsch.  Each medicinal herb (200 g) was extracted 
twice with 2 L boiling distilled water for two hours.  Extracts 
were filtered and frozen to dry.  The yield of extracts was 11.54 %, 
and GFW freshly prepared in distilled water before experiments.

2.3. Ethics statement

The experimental protocol was approved by the Institutional Ani-
mal Care and Use Committee of China Medical University (permit 
number 99-12).

2.4. Animals and drug administration

Male Sprague-Dawley (SD) rats with body weight 225-275 g 
were purchased from BioLASCO Co., Ltd. (Taipei, Taiwan).  
Animals, fed with regular chow, were housed in standard cages.  
The room temperature is at constant 22 ± 1°C; relative humidity 
is 55 ± 5% and with 12 h inverted light-dark cycle.  A minimum 
number of animals and duration of observations required for con-
sistent data were used, rats randomly allocated into four groups 
(n = 6/group): hyperglycemia, hyperglycemia treated with GFW 
(1 g/kg, 2 g/kg, 4 g/kg, p.o.).  Hyperglycemia was induced by in-
traperitoneal injection of streptozotocin (STZ) (Sigma; St. Louis, 
MO) at 70 mg/kg [33].  Three days after STZ injection, overnight 
fasting and plasma glucose was sampled from animal tail venous 
blood, and determined by using an automatic glucometer (ACCU-
CHEK Active, Roche Diagnostics Ltd.; Mannheim, Germany).  
Those animals, with plasma glucose level higher than 300 mg/dl, 
were considered for diabetes [32].  The day of STZ injection was 
designated Day 0.  Fourteen days after STZ injection, GFW was 
orally administered once daily for seven days.  Rats were subject-
ed to cerebral ischemia/reperfusion and sacrificed for infarction 
analysis and neuronal apoptosis detection twenty-one days after 
STZ injection.  GFW (1, 2 and 4 g/kg) was given orally, as shown 
in Fig. 1.

oxygen and glucose leading to neuronal excitotoxicity [3, 4].  The 
previous study reported that diabetic rats might be more suscep-
tible to the cerebral vascular accident [5].  Increased likelihood of 
mortality and reduced functional recovery in acute hyperglycemia 
was higher than non-diabetic patients after ischemic stroke [6].  
Epidemiological studies found diabetics 2-3 times as often as 
non-diabetics, a stroke rate twice that of the general population 
[7-9].  Patients with diabetes in the environment of high blood 
sugar are likely to suffer atherosclerosis and reduced blood flow, 
which lead to ischemia and cell death in the ischemic area.  Dia-
betes alters central nervous system dysfunction associated with 
cognitive change and function abnormality, which increases the 
performance of reactive oxygen species and inflammatory media-
tors, and spawns neuronal apoptosis and neurodegeneration after 
reperfusion injury.  It would exacerbate the likelihood of stroke 
damage [10-12].  Treatment options for stroke nowadays are lim-
ited and affect mainly only symptoms.  Therapeutic applications 
are relevant for preventing or inhibiting neurological cell death 
for a variety of neurodegenerative conditions including ischemia, 
and stroke.

Inflammation contributes to stroke-related brain injury in 
both the core and the ischemic penumbra.  It is believed to be es-
pecially dangerous after reperfusion.  Numerous evidences show 
that post-ischemic inflammation induces the deleterious damage 
of neuronal cells after stroke, and the activation of microglia, in 
particular, has been thought as the main contributor by releasing 
proinflammatory and neurotoxic factors.  LPS (lipopolysaccha-
ride), the polysaccharide component of the cell wall of gram-
negative bacteria, is the most frequently used model to investigate 
the inflammatory responses of microglia [13-15].  Stimulation of 
microglia with LPS induces the release of nitric oxide (NO)-me-
diated neuron death in vitro [16].  Inducible NO synthase (iNOS) 
is quickly transcribed and expressed in microglia after stimula-
tion with bacterial LPS and cytokines [17].  Cyclooxygenase-2 
(COX-2) also plays a predominant role in inflammation [18].  Ex-
cess oxygen free radicals could directly generate and damage ce-
rebral tissue through the activation of apoptotic and necrotic cell 
signaling pathways.  The molecular mechanisms of inflammation 
induced by LPS in microglial cells have been well reported [19-
23].  In most neurodegenerative diseases, the neuronal loss is due 
to apoptosis.  It could particularly be a possible mechanism for 
hyperglycemia-induced neuronal cell death, which is a successive 
occurrence of processing including condensation of chromatin, 
shrinkage of cell and nucleus, membrane bleb, and DNA fragmen-
tation.  Therefore, to interrupt the signaling networks that link to 
neuronal damage to apoptotic degradation is a possible treatment 
option in neurodegenerative disease [24-26].  Caspase enzymes 
and Bcl-2 family, two major families of proteins, are the key ele-
ments in apoptosis.  Caspase-3 plays a pivotal role in apoptosis 
[27], whereas, there are two classes in Bcl-2 family to regulate 
apoptosis: the antiapoptotic proteins, including Bcl-2, Bcl-xL and 
proapoptotic proteins, including Bax and Bak [28].

Gueichih-Fuling-Wan (abbreviated as GFW), a traditional 
Chinese herbal medicine, has mainly treated gynecological dis-
eases for thousands of years.  GFW has the neuroprotective effect 
in diabetic rats through reducing advanced glycation end prod-
ucts (AGEs) accumulation and oxidative stress [29].  GFW also 
could improve vascular function and hemorrhological factors in 
spontaneously diabetic rats [30].  Recent studies show that GFW 
had the neuroprotective effect against cerebral ischemia in rats 
[31], and ameliorated memory deficits and neuronal apoptosis in 
streptozotocin-induced hyperglycemic rodents [32].  No paper has 
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2.5. Surgical procedures of cerebral ischemia/reperfusion

Male SD rats were deeply anesthetized by an injection of 50 mg/
kg of zoletil® (i.p.).  Surgical cerebral infarction and ischemia/
reperfusion were as previously described [34].  The rat was 
placed supine and both common carotid arteries were exposed 
and were tied off with a plastic line (0.1 mm in diameter).  The 
different concentrations of distilled water, GFW (1, 2, 4 g/kg) are 
orally administered once daily for seven days before 3-vessels oc-
clusion in rats, respectively.  After 90 min of occlusion following 
by reperfusion for 24 h, the brain of each rat was removed after 
transcardial perfusion of 0.9% NaCl and 4% paraformaldehyde.  
Each brain was then placed into a plastic rat brain matrix and was 
coronal sectioned into 2 mm slices.  The samples were stained 
with 2% 2,3,5-triphenyltetrazolium (TTC) solution in a 37°C for 
20 min and were fixed with 10% formalin solution.  The cerebral 
infarction areas of the first six sections from the frontal lobe were 
measured using an image analysis system (Image-Pro Plus 6.0 
Media Cybernetics, USA).  The ratio of infarct area to total brain 
area in each section of the rat brain was calculated, and the data 
were expressed as a percentage (%).

2.6. Assessment of neurological functions

The effects of GFW on neurological deficit score after ischemia 
for 2 h and following by reperfusion for 24 h in hyperglycemic 
rats with I/R brain injury were assessed as described according to 
a previous report [35].  The degree of neurological deficit is rated 
0-5: 0 represents no neurological dysfunction and 1 represents 
contralateral forelimb consistently flexed.  2 represents decreas-
ing grip ability on the contralateral forelimb with tail pulled and 
3 represents spontaneous movement in all directions but circling 
toward contralateral side when pulled by the tail.  4 represents 
nonspontaneous walking with drowsiness, unconsciousness and 5 

represents death.

2.7. TUNEL assay and immunohistochemical stain

Rats were deeply anesthetized by injection of zoletil® (50 mg/
kg, i.p.) on day 22 after STZ injection.  Intracardial perfusion 
with 200 ml of 0.9% saline followed by 4% paraformaldehyde 
in 0.1M PBS was performed before animals were decapitated.  
Brains were removed, immersed in 10% paraformaldehyde, sec-
tioned at 2-mm intervals using a rodent brain matrix slicer (RBM-
4000C; ASI Instruments; Warren, MI), processed and embedded 
in paraffin, cut 2.5 μm thick on a microtome and processed for 
TUNEL and immunohistochemical staining.  TUNEL assay of 
brain sections used Apo-BrdU-IHCTM In Situ DNA Fragmentation 
Assay Kit (BioVision, Milpitas, CA).  Incubated the brain slices 
with proteinase K for 20 min followed by 3 % H2O2 in methanol 
for 5 min to inactivation of endogenous peroxidase.  TdT was 
added at room temperature and incubated overnight.  Dark brown 
color indicated DNA breaks after incubation with DAB (3, 3’-
diaminobenzidine tetrachloride) and hydrogen peroxide, followed 
by counterstaining with methyl green.  Percentages of positive 
TUNEL staining cells within brain areas were estimated.

Brain slices were incubated with the anti-caspase-3 antibody 
(sc-7148, dilution 1:200, Biotechnology, Inc.; Santa Cruz, CA) 
overnight and immunohistochemical labeled by NovoLink Poly-
mer Detection System Kit (Leica Microsystems Inc., Newcastle 
Upon Tyne, UK).  Ratios of caspase-3-positive cells within brain 
areas were estimated.

2.8. Determination of expression of caspase-3, Bax and Bcl-2 
by Western blot

Injection of zoletil® (50 mg/kg, i.p.) sacrificed rats for biochemi-
cal studies.  Brain tissues were quickly removed, and the cere-

STZ (70 mg/kg, i.p.)
GFW (1, 2, 4 g/kg, p.o.)
once daily

Neurological deficit score
Infarction area (TTC)
TUNEL assay
 Caspase-3 (IHC)
Caspase-3, Bax, Bcl-2 (WB)

Cell viability (MTT)
NO production
iNOS, COX-2 (WB)

Ischemia
(2 h)

LPS (0.5 μg/ml)

+ GFW (0.25, 0.5, 1 mg/ml)
BV-2 microglial cells

Reperfusion
(24 h)

Animal study

Microglial cells

Day 0 Day 14 Day 21

Fig. 1 - Schedule of drug treatment and determination of central neurological function in vivo and LPS-treated BV-2 microglia 
cells in vitro.  Upper panel: GFW (1, 2, 4 g/kg) was orally administered once daily for seven days, and surgical cerebral ischemia 
was completed for 2 h on day 21 before reperfusion.  The animal was sacrificed, and the central neurological functions were 
evaluated 24 h after reperfusion, infarction area (TTC), TUNEL assay, caspase-3 (IHC), caspase-3, Bax and Bcl-2 (western 
blot analysis) were performed in animal study.  Lower panel: GFW (0.25, 0.5, 1 mg/ml) and LPS (0.5 μg/ml) were added to 
BV-2 microglia cells to evaluate cell viability (MTT), NO production, iNOS and COX-2 expression level (western blot) in  
microglia cells.
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bral cortex and hippocampus were separated on the ice.  A 10% 
homogenate was prepared in lysis buffer, centrifuged at 12,000 
(rpm) for 30 min at 4°C.  Use the BCA protein assay kit to de-
termine the samples protein concentration.  Seventy mg protein 
was separated on 10% sodium dodecyl sulfate-polyacrylamide 
gels (SDS-PAGE) and transferred to polyvinylidene difluoride 
(PVDF) membranes.  Membranes were incubated for one hr with 
5% dry skim milk in TBST buffer at room temperature to block 
non-specific binding, then with the anti-Caspase-3, anti-Bax, anti-
Bcl-2, anti-β-actin antibodies.  Later, membranes were incubated 
with alkaline-phosphatase-conjugated secondary antibody for one 
hour at room temperature; bands visualized with chromogenic 
substrate 5-bromo-4-chloro-3-indolyl phosphate in the presence 
of nitroblue tetrazolium.

2.9. Cell culture

Murine BV-2 microglial cells were kindly provided by Professor 
Jau-Shyong Hong (Neurobiology Laboratory/Neuropharmacol-
ogy group, NIEHS/NIH, NC, USA).  BV-2 microglial cells were 
cultured in Dulbecco’s modified Eagle medium (DMEM) supple-
mented with 10% FBS, 100 units/ml penicillin, and 100 mg/ml 
streptomycin, and kept at 37°C in a humidified incubator with 5% 
CO2 and 95% air.

2.10. MTT assay

The BV-2 microglial cells were used to explore the effects of 
GFW on LPS-induced inflammation.  The cells were cultured in 
a 96-well plate at the density of 5 × 104 cells/well.  BV-2 micro-
glia cell cultures were administered with GFW and LPS for 24 h.  
MTT was added to each well, and the cells were incubated for 1 h.  
After culture media were discarded, DMSO was added to dissolve 
the formazan dye and the optical density was measured at 570 
nm.

2.11. Nitrite quantification

NO generation was measured by the accumulation of nitrite in the 
culture medium.  The colorimetric assay was used to determine 
nitrite with Griess reagent.  BV-2 cells (5 × 104 cells per well) in 
96-well plates in 200 ml culture medium were treated with LPS 
(0.5 μg/ml) for 24 hours.  100 μl of the isolated supernatant was 
added with an equal volume of Griess reagent in the 96-well 
plates for 10 min at room temperature and light avoidance.  Stan-
dard solution of sodium nitrite prepared in the cell-culture medi-
um was used to determine nitrite concentrations.  The absorbance 
at 570 nm was read using an Elisa reader (Triad LT, DYNEX 
Technologies Inc, VA).  Each experiment was duplicated three 
times.

2.12. Western Blot analysis of iNOS and COX-2

Cell lysates were prepared in lysis buffer, and the protein concen-
trations were determined by Bio-Rad protein assay kit (Richmond, 
CA, U.S.A.).  Samples of protein (50 μg) were electrophoresed 
using 10% sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE) and then transferred to nitrocellulose 
membrane.  The iNOS, COX-2 were assayed by specific antibod-
ies (Santa Cruz Biotech, Santa Cruz, CA, U.S.A. Cell Signaling 
Technology).  An enhanced chemiluminescence detection kit was 
used in immunodetection (Amersham, Piscataway, NJ).

2.13. Statistical analysis

Data were expressed as the mean ± standard error.  For single 
variable comparisons, Student’s t-test was used.  For multiple 
variable comparisons, data were analyzed by one-way ANOVA 
followed by Dunnett’s test.  P < 0.05 was considered significant.

3. Results

3.1. Effects of GFW on cerebral infarct volume and neuro-
logical function in STZ-induced hyperglycemic rats with I/R 
brain injury

After blocking blood flow of both common carotid arteries and 
right cerebral artery for 90 min, all rats developed cerebral infarc-
tion after 24 h reperfusion: visibly white and non-infarction areas 
red-purple by TTC staining (Fig. 2A).  GFW decreased infarct 
volume in a dose-dependent manner (Fig. 2B).  The average per-
centage of infarct area in STZ-induced hyperglycemic rats was 
15.96 ± 0.76 %.  The average percentages of infarct area treated 
with different dosages of GFW (1, 2, 4 g/kg) in hyperglycemic 
rats with I/R brain injury were inhibited by 15.06 ± 0.88 %, 9.89 
± 1.21% (P < 0.01) and 7.59 ± 0.69 % (P < 0.001), respectively.  
The effects of GFW (1, 2, and 4 g/kg, p.o.) on neurological defi-
cit score were assessed.  Results showed that GFW significantly 
reduced neurological deficit score in hyperglycemic rats with I/
R injury (Fig. 2C).  GFW (1, 2, and 4 g/kg, p.o.) improved neu-
rological deficit in the STZ-induced hyperglycemic rats with I/R 
brain injury by 3.18 ± 0.23 (1. g/kg), 2.64 ± 0.31 (2 g/kg) and 1.82 
± 0.23 (4 g/kg), respectively.

3.2. Effects of GFW on brain apoptosis in hyperglycemic 
rats with I/R brain injury by TUNEL stain and on caspase-3 
expression in immunohistochemical staining

We used TUNEL to assay nucleosomal DNA fragmentation and 
on caspase-3 expression in immunohistochemical staining in 
the ischemic penumbra.  Fig. 3 plots representative histological 
view of TUNEL stains and immunohistochemical staining in hy-
perglycemic rats.  Treating with GFW (2 and 4 g/kg) observably 
decreased TUNEL-positive cells (Fig. 3B) and caspase-3 positive 
cells (Fig. 3C) in the hyperglycemic rats with I/R brain injury.

3.3. Effects of GFW on the expression of caspase-3, Bax and 
Bcl-2 in hyperglycemic rats with I/R brain injury

Fig. 4A showed the levels of protein expression as measured 
by Western blot.  GFW could suppress caspase-3 expression in 
hyperglycemic rats with I/R brain injury in a dose-dependent 
manner (Fig. 4B, P < 0.001).  GFW did not change Bax protein 
expression, but significantly enhanced Bcl-2 protein level.  The 
Bax/Bcl-2 ratio was showed in Fig. 4C.

3.4. Effects of GFW on microglial cell viability, and NO pro-
duction, iNOS, and COX-2 expression

Fig. 5 showed the effect of GFW (0.25, 0.5, 1 mg/ml) on micro-
glial cell viability, and NO production, iNOS and COX-2 expres-
sion by Western Blot analysis.  GFW (0.5, 1 mg/ml) significantly 
reduced NO production (Fig. 5B, P < 0.01, P < 0.001, respec-
tively) without affecting the BV-2 cell viability (Fig. 5A).  How-
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Fig. 2 - Effects of GFW on cerebral infarction area in hyperglycemic rats with cerebral I/R injury.  [A] Coronal section of 
the brain after ischemia for 90 min and following by reperfusion for 24 h by TTC staining.  Infarction areas appeared white 
and non-infarction areas appeared red-purple in color.  S1àS6: Slices from the frontal lobe.  GFW (1, 2, and 4 g/kg) was 
orally administered.  Scale bar = 1 cm.  [B] GFW quantitative data (1, 2, and 4 g/kg, p.o.) based on the infarction area.  [C] 
Neurological deficit score in hyperglycemic rats with cerebral I/R injury. Each bar represents mean ± S.E.  **P < 0.01 compared 
to the normoglycemic group with I/R injury.  ## P < 0.01 and ### P < 0.001 compared to hyperglycemic group with I/R injury. (n = 
6 per group).
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Fig. 3 - Effects of GFW on TUNEL positive cells and cleaved caspase-3 positive cells in hyperglycemic rats with I/R brain injury.  
GFW was orally administered and significantly inhibited TUNEL positive cells (3A: a, b, c, d) and cleaved caspase 3 positive cells 
(3A: e, f, g, h) in a dose-dependent manner, respectively.  A : [a] and [e] Control, [b] and [f] treated with GFW 1 g/kg, [c] and [g] 
treated with GFW 2 g/kg, and [d] and [h] treated with GFW 4 g/kg.  Bar charts of TUNEL positive cells [B] and cleaved caspase 
positive cells [C] were examined after ischemia for 90 min and followed by reperfusion for 24 h. in hyperglycemic rats. ** P < 0.01, 
***p < 0.001 compared to hyperglycemic rats with I/R brain injury. (n = 6 per group).  An arrow shows TUNEL positive cells. 
Scale bar = 50 μm.  Magnificance 200×.
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ever, GFW could attenuate the expression of iNOS (Fig. 5C) and 
COX-2 (Fig. 5D) in 0.5 μg/ml LPS-challenged BV-2 microglial 
cells.

4. Discussion and conclusion

Cerebral ischemia and infarction are commonly associated with 
atherosclerotic disease and stroke in carotid and vertebrobasilar 
circulations [1].  Ischemic lesions divide core zone (ischemic 
core) and penumbra (ischemic penumbra); the latter includes the 
area as a mild-to-moderate reduction of cerebral blood flow.  The 
core area is very low cerebral blood flow and produces irrevers-
ible neuronal damage [36].  Necrosis occurs mainly in the core 
area, apoptosis mainly distributed in the penumbra [37-39].  Cas-
es of ischemic stroke changed penumbra gradually.  The presence 
of high blood sugar is a significant increase in the degree of dam-
age to the ischemic brain penumbra [40, 41].  This study focused 
on penumbra and assessed GFW efficacy on apoptosis in STZ-
induced hyperglycemic rat brains after I/R injury, and determin-
ing apoptosis-related proteins in the penumbral area.  In previous 
studies, stress-induced hyperglycemia is a modifiable risk factor 
for brain damage and associated with high mortality after stroke 
[6, 42].  Through diverse biochemical mechanisms, increased 
blood glucose concomitant with cerebral vascular injury may fa-
cilitate ischemia/reperfusion damage [43].  From the experimental 
results, infarcted brain tissue and noninfarcted brain tissue could 
be clearly observed on boundaries.  Infarct area in STZ-induced 
hyperglycemia markedly increased.

As mentioned earlier, neurological deficit caused by I/R brain 
injury was associated with cerebral infarction size [44].  This 
study assessed neurological function: brain infarct was signifi-
cantly reduced in hyperglycemic rats with I/R brain injury while 
treated with GFW.  Greater vulnerability of the central nervous 
system in carotid artery ligation-induced cerebral ischemia means 
volume reduction of perceptual information, with disordered ad-
aptation to environmental conditions and reproduction of condi-
tioned reflexes [45].

Hyperglycemia-induced myocardial apoptosis also led to dia-
betic cardiomyopathy via mitochondrial cytochrome c-mediated 
caspase-3 activation pathway [25].  Many studies have suggested 
apoptosis playing an important role in cerebral ischemic patho-
genesis.  Diabetes following middle cerebral artery occlusion may 
increase the development of cerebral infarct injury and enhance 
apoptotic activity [46].  TUNEL stain is a standard method of 
DNA fragmentation associated marker with caspase-3 as another 
marker of apoptosis.  In the Bcl-2 family, determination of anti-
apoptotic proteins like Bcl-2 and pro-apoptotic ones like Bax can 
expedite understanding of apoptotic mechanism.  Caspase-3 acti-
vation and alteration in the expression of Bax/Bcl-2 were evident 
in the hyperglycemic rats [47-49].  Induction of diabetes causes 
hippocampal neuronal cell death in which apoptosis is associated 
with an increasing Bax/Bcl-2 ratios as well as caspase-3 level [50].  
In our previous study, hyperglycemia-induced apoptosis corre-
lated with an increase in Bax/Bcl-2 ratio, and increased caspase-3 
activity [32].  In this study, TUNEL and immunohistochemical 
stains averred GFW was significantly reducing TUNEL positive 
cells and caspase-3 protein expression in hyperglycemic rats with 
cerebral ischemia/perfusion injury.  Western blot also showed 
GFW substantially attenuating caspase-3 expression and elevat-
ing Bcl-2 expression, with Bax expression unchanged.  A reduced 
Bax/Bcl-2 ratio in STZ-induced hyperglycemia with cerebral I/

R brain injury which portends GFW reducing cerebral ischemia, 
infarction, and neurological deficit, possibly via a decrease in 
apoptosis.  This result concurs with prior studies [47].

Traditional herbal remedies in use for thousands of years help 
to prevent and treat several diseases: e.g., diabetes, stroke.  For 
human health, they are still valuable and widely accepted due to 
various biological activity and low toxicity.  GFW significantly 
attenuated infarct volume, neurological deficit and numbers of 
TUNEL as well as cleaved caspase-3 positive cells.  This study is 
the first report to address the neuroprotective effects of GFW on 
apoptosis in the STZ-induced hyperglycemic rats with I/R injury.

Microglia and ischemic stroke is the double-edged sword [51].  
An inflammatory response initiates within a few minutes to hours 
after ischemic stroke.  Followed by microglia, astrocytes activa-
tion, and the production of chemoattractants, cytokines, chemok-
ines [52-54], and subsequent infiltration of leukocytes [55, 56].  
Microglial activation is the initial step of the inflammatory pro-
cess in minutes [53, 57].  Two to three days following ischemia, 
the activation, and amplification of microglia reach the peak and 
continue for several weeks [58, 59].  Activated microglia, changes 
shape, and phenotype have the potential to phagocytose the pre-
senting antigens, produce cytokines and matrix metalloproteinas-
es that disrupt the blood-brain barrier [56].  Peripheral leukocytes 
infiltrate into the brain, further exacerbate inflammation and brain 
damage [51].  This study revealed GFW attenuated the infarct 
area of ischemic brain damage in STZ-induced hyperglycemic 
rats and inhibited microglial activation in LPS-induced BV-2 
cells.

Based on our research data, we suggest that the neuroprotec-
tion of GFW in cerebral ischemia of STZ-induced hyperglycemic 
rats may be partly due to inhibition of Bax/Bcl2, caspase-3 signal-
ing pathway, and neuroinflammation.
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