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Inhibiting HMGB1 Reduces Cerebral Ischemia Reperfusion
Injury in Diabetic Mice

Chong Wang,1,2 Jie Jiang,2 Xiuping Zhang,3 Linjie Song,3 Kai Sun,4 and Ruxiang Xu1,5,6

Abstract—High mobility group box1 (HMGB1) promotes inflammatory injury, and accumulating
evidence suggests that it plays a key role in brain ischemia reperfusion (I/R), as well as the development
of diabetes mellitus (DM). The purpose of this study was to investigate whether HMGB1 plays a role in
brain I/R in a DMmouse model. Diabetes mellitus was induced by a high-calorie diet and streptozotocin
treatment, and cerebral ischemia was induced by middle cerebral artery occlusion. We examined
HMGB1 levels following cerebral I/R injury in DM and non-DM mice and evaluated the influence of
altered HMGB1 levels on the severity of cerebral injury. Serum HMGB1 levels and the inflammatory
factors IL-1β, IL-6, and inflammation-related enzyme iNOS were significantly elevated in DM mice
with brain I/R compared with non-DM mice with brain I/R. Blocking HMGB1 function by intraperi-
toneal injection of anti-HMGB1 neutralizing antibodies reversed the inflammatory response and the
extent of brain damage, suggesting that HMGB1 plays an important role in cerebral ischemic stroke in
diabetic mice.
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INTRODUCTION

Cerebral ischemia reperfusion (I/R), causes 60–70 %
of strokes [1] and leads to cerebral injury through a com-
plex series of pathophysiological events, characterized by

neuronal death and subsequent neurological dysfunction
[2]. Despite intensive study, the mechanisms underlying
brain inflammation remain poorly understood. Existing
evidence suggests that HMGB1 plays a pivotal role in the
pathogenesis of inflammation, which is a critical compo-
nent of the cascade of events leading to the development of
cerebral I/R [2–4].

High mobility group box1 (HMGB1) is a highly
conserved non-histone DNA-binding nuclear protein that
is ubiquitously expressed in eukaryotic cells and regulates
transcription [5]. HMGB1 promotes inflammatory injury
[6, 7] by inducing the expression of cytokines such as IL-
1β, IL-6, and inflammation-related enzyme inducible nitric
oxide synthase (iNOS) [4, 8–10], which are known to play
key roles in the development of brain I/R [11–14]. The
expression of HMGB1 is increased in diabetic rat models
and diabetic patients [15–17] and evidence suggests that
hyperglycemia may activate inflammatory signaling path-
ways [18, 19].

We investigated whether diabetes mellitus (DM) in-
creases the severity of cerebral I/R by enhancing elevated
HMGB1 expression after cerebral I/R injury. We
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established a mouse model of type 1 and type 2 DM that
mimicked the physiological characteristics of DM in
humans. Ischemia reperfusion injury was induced in our
model by middle cerebral artery occlusion (MCAO) with
minor modifications to the classic mouse model of diabetic
stroke. By combining the diabetes and brain I/R models,
the inflammatory reaction and relevant factors could be
investigated. We examined the role of HMGB1 in the
inflammatory response and severity of brain injury by
blocking HMGB1 function with anti-HMGB1 neutralizing
antibodies in diabetic stroke mice.

MATERIALS AND METHODS

Animals

Male C57BL/6 mice, 5–6 weeks of age, were housed
in the Neurosurgical Research Center of Beijing Military
Animal Center. All mice used in this study were handled
according to the Center’s Health Guide for the Care and
Use of Laboratory Animals.

Treatment with HMGB1 Neutralizing Antibodies

The anti-HMGB1 polyclonal antibody (neutralizing
antibody) and chicken IgY (isotype negative control anti-
body) were obtained from Tecan (Shanghai) Trading
Co.,Ltd (Shanghai, China) [20]. Mice were injected intra-
peritoneally with 600 ug per mouse anti-HMGB1 poly-
clonal antibody or control IgY 1 h before ischemia as
previously described [21].

Mouse DM Model

Type 2 diabetes were induced in mice by a 3-week
high-fat diet (DIO Rodent Purified Diet; TestDiet, Rich-
mond, IN, USA, containing 61.6 % fat, 3140 Kcal),
followed by an intraperitoneal (i.p.) injection with 20 mg/
kg body weight streptozotocin (Sigma Aldrich, St. Louis,
MO, USA) dissolved in saline [22, 23], then one additional
week of high-fat feeding. Vehicle i.p. injections were ad-
ministered to control mice in combination with a normal
diet (LabDiet 5010, 5.5 % fat). Plasma glucose concentra-
tions were measured using a blood glucose test meter in
blood samples collected from the tail vein of mice at
different time points (0, 2, 4, 6, and 8 weeks) after the
induction of diabetes.

Mouse Stroke Model

To achieve transient focal cerebral ischemia, we per-
formed MCAO according to a modified intraluminal fila-
ment method as previously described [24]. In brief, mice
were anesthetized by i.p. injection of ketamine and xylene,
and a homeothermal blanket was used to maintain a rectal
temperature of 36–37 °C. A vertical incision was made in
the middle of the neck to expose the left common carotid
artery, left internal carotid artery (ICA), left external carotid
artery (ECA), and left pterygopalatine artery. The left ECA
and the left pterygopalatine artery were ligated with a 5.0
silk suture and a small clip was used to occlude the left ICA
at the bifurcation of the ICA and the pterygopalatine artery.
A 6.0 nylon monofilament (0.2–0.22 mm) was inserted
into the left ECA immediately after cutting with ophthal-
mic scissors. After removing the clip, the nylon monofila-
ment was slowly pushed into the distal end of the middle
cerebral artery. After 1 h of occlusion, the nylon thread was
removed to initiate reperfusion. The arteries were surgical-
ly exposed but not occluded in the sham group. After 1 h of
reperfusion, mice were sacrificed and brains were removed
and processed for hematoxylin and eosin (H&E) staining
and real-time PCR analysis.

Blood Sample Collection

Blood samples were collected from the mice after
experiments using the heart puncture procedure (without
anticoagulants). Serum samples were collected by centri-
fugation of blood samples at 3000 rpm for 10 min.

Fixation and Staining of Brain Tissue

Brain tissue was fixed in formaldehyde and embed-
ded in paraffin wax. Five-micrometer slices were prepared
and H&E staining was performed in the pathology lab at
St. Michael’s hospital.

Enzyme-Linked Immunosorbent Assay

Serum HMGB1 levels were measured using an
enzyme-linked immunosorbent assay (ELISA) kit (R&D
Systems). Briefly, 96-well ELISA plates were coated with
HMGB1 mAbs (Cat. NO. ab12029; Abcam, Cambridge,
MA, USA) and serum and standard protein samples were
diluted 2–3 times in succession. Biotinylated antibodies
were added followed by avidin-conjugated horseradish
peroxidase. Tetramethylbenzadine substrate solution
was added and the plate was read at 450 nm after 30 min.
Serum HMGB1 concentrations were calculated from the
standard curve.
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Evans Blue Extravasation

To determine changes in vascular permeability, a 4 %
solution of Evans blue dye (Urchem, Shanghai, China) was
injected intravenously into the tail vein of mice after reper-
fusion. Three hours later, mice were perfused with 150 ml
of saline solution into the left ventricle of the heart and the
brain was immediately removed and dissected into hemi-
spheres. The weight of the left hemisphere was recorded.
Fifty percent trichloroacetic acid was added to centrifuged
brain tissues to extract the Evans blue dye. After centrifu-
gation, the supernatant solution was diluted 1:3 in ethanol
and the absorbance was determined at 620 nm. The con-
centration of Evans blue was calculated from a standard
curve and the data were expressed as nanograms per gram
of Evans blue.

RNA Extraction and Real-Time PCR

Total RNA was extracted using Trizol reagent
(Invitrogen Canada, Burlington, Canada) according to the
manufacturer’s instructions. SuperScript II reverse tran-
scriptase (Invitrogen Canada) was used to reverse tran-
scribe the RNA and the PCR reaction was performed using
the SYBR® green system (Applied Biosystems, Foster
City, CA, USA). Reactions were monitored on an ABI
Prism SDS 7000 (Thermo Scientific, Waltham, MA,
USA) machine and results were analyzed with SDS 2.0
software.

The housekeeping gene HPRT (hypoxanthine-guanine
phosphoribosyl transferase) was used as an internal control.
Primers (Sigma-Aldrich) used were as follows:HPRT (acces-
sion number: NM_ J00423): left: 5′-caagcttgctggtgaaaagga-
3′, right: 5′-tgaagtactcattatagtcaagggcatatc-3′; IL-1β (acces-
sion number: NM_ M15131): left: 5′-gtggaacttgaggccacatt-
3′, right: 5′-tgtgacaaaaatgcctggaa-3′; iNOS (accession num-
ber: NM_ BC062378): left: 5′-caccttggagttcacccagt-3′, right:
5′-accactcgtacttgggatgc-3′, and IL-6 (accession number: NM_
M24221): left: 5′-ccggagaggagacttcacag-3′, right: 5′-
tccacgatttcccagagaac-3′, with the following primer cycling
conditions: 95 °C for 15 s, 58 °C for 50 s, and 72 °C for
15 s (40 cycles).

Statistical Analysis

Data analysis was performed using SPSS 13.0 (SPSS
In, Chicago, IL, USA). Values are presented as mean ±
standard deviation (SD). To compare between two different
groups, a Student 2-tailed unpaired t test was applied.
p values <0.05 were considered statistically significant
(*p < 0.05, **p < 0.01, ***p < 0. 001, ****p < 0.0001).

RESULTS

Plasma Glucose Concentrations at Different Time
Points

Plasma glucose concentrations were measured 2, 4, 6,
and 8 weeks after streptozotocin or vehicle injection in
C57BL/6 J mice (Fig. 1). Streptozotocin treatment signif-
icantly increased the plasma glucose concentration at every
investigated time point (p < 0.05).

Effect of Transient Focal Cerebral Ischemia on Serum
HMGB1 Levels

The serum HMGB1 concentration was measured in
normoglycemic sham (NGS), normoglycemic I/R (NG
I/R), hyperglycemic sham (HGS), and hyperglycemic I/R
(HG I/R) mice (Fig. 2). To test whether HMGB1 is in-
volved in the pathology of cerebral I/R, we measured the
HMGB1 concentrations 1 h after reperfusion in each group
(n = 5). Serum HMGB1 levels in NG I/R group were
significantly higher than the NGS group (p < 0.001) and
serum HMGB1 levels in the HG I/R were significantly
higher than the HGS group (p < 0.0001). Significantly
higher serum HMGB1 levels were measured in hypergly-
cemic mice (both HG I/R and HGS groups) compared with
sham mice (p < 0.01).

Diabetes Aggravated Brain I/R Injury and Increased
the Expression of IL-1β, IL-6, and iNOS

The increase of HMGB1 expression in diabetic stroke
mice had a detrimental effect, as expected. To examine the
severity of brain damage after diabetic stroke, we measured
the extravasation of Evans blue dye and the expression of
IL-1β, IL-6, and iNOSmessenger RNA (mRNA) in all four
groups (n = 5). Additionally, H&E staining was performed
on brain sections to evaluate morphological changes. IL-1β

Fig. 1. Blood glucose levels in the STZ group and control groups after
glucose (or vehicle) administration. *p < 0.05.
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and iNOS expression was significantly higher in the NG I/
R group compared with the NGS group, however there was

no difference in IL-6 expression between these two groups
(p > 0.05). IL-1β and iNOS expression was significantly
elevated in HG I/R mice compared with HGS mice.

Expression of IL-1β (p < 0.0001), IL-6 (p < 0.001),
and iNOS (p < 0.001) was significantly elevated in the
HG I/R group compared with the HGS group. Compared
with the NG I/R group, IL-1β, IL-6, and iNOS expression
was augmented in the HG I/R group (p < 0.01) (Fig. 3a–c).
Evans blue extravasation measures the permeability of the
blood–brain barrier (BBB) and revealed an increased
breakdown of the BBB in hyperglycemic mice compared
with normoglycemic mice (Fig. 3d). H&E showed more
morphological brain damage in diabetic I/R group mice
compared with non-diabetic I/R mice (Fig. 5a, c).

Anti-HMGB1 Antibody Treatment Reduces Cerebral
I/R Injury in Diabetic Mice

The augmented expression of HMGB1 after the onset
of I/R implicates HMGB1 in the process of brain injury
after I/R. To test the functional significance of HMGB1
release in our model, we injected anti-HMGB1 antibody to

Fig. 2. HMGB1 in serum of C57BL/6 J mice 1 h after reperfusion. Values
were presented as mean ± SD, n = 5 for each group. **p < 0.01, ***p <
0.001, ****p < 0.0001. NGS normoglycemia sham, NG I/R normoglyce-
mia ischemia/reperfusion, HGS hyperglycemia sham, HG I/R hyperglyce-
mia ischemia/reperfusion.

Fig. 3. Brain I/R injurymice with DM aggravated brain injury and increased the expression of inflammation factors at the same time. a–dAnalysis of blood–
brain barrier damage and inflammation reaction in the process. a–c The expression of IL-1β, IL-6, and iNOS mRNA in four groups of brain tissues. d Evans
blue extravasation, which represents for the breakdown of blood–brain barrier in each group. n = 5 for each group. Data are presented as mean ± SD,
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. NGS normoglycemia sham, NG I/R normoglycemia ischemia/reperfusion, HGS hyperglycemia sham,
HG I/R hyperglycemia ischemia/reperfusion.
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block HMGB1 function after brain injury. We observed
that anti-HMGB1 antibody had a protective effect on ce-
rebral I/R injury in DM mice (Fig. 4a–d), by reversing the
negative impact of HMGB1 on cerebral I/R in diabetic
mice.

Anti-HMGB1 Antibodies Reduce the Expression of IL-1,
IL-6, and iNOS

It is well known that inflammatory cytokines, such as
IL-1, IL-6, and inflammation-related enzyme iNOS, medi-
ate I/R injury. To assess the anti-inflammatory effect of
anti-HMGB1 antibody, we measured the expression of IL-
1β, IL-6, and iNOS. Compared with the HGS group, IL-1β,
IL-6, and iNOS expression was significantly higher in the
HG I/R group (Fig. 4a–c). Treatment with anti-HMGB1
antibody markedly alleviated the inflammatory reaction by
reducing the elevated expression of IL-1β (p < 0.01) and
iNOS (p < 0.05) compared with the HG I/R group

(Fig. 4a, c). However, anti-HMGB1 antibody treatment did
not significantly affect IL-6 expression (p > 0.05) (Fig. 4b).

Anti-HMGB1 Antibody Treatment and BBB Permeability

The BBB is disrupted after cerebral I/R, which exac-
erbates brain injury. We used Evans blue extravasation to
investigate BBB permeability after brain I/R injury. In-
creased Evans blue extravasation was observed after cere-
bral I/R injury in the HGS group (p < 0.001) (Fig. 4d),
which was notably attenuated by anti-HMGB1 antibody
treatment (Fig. 5b, d).

DISCUSSION

In this study, we have shown that diabetes enhances
the increase in HMGB1 serum levels and expression of the
inflammatory cytokines IL-1β, IL-6, and inflammation-

Fig. 4. The protective role of anti-HMGB1 mAb in cerebral I/R injury with DM. a–d Analysis of blood–brain barrier damage and inflammation reaction in
the process. a–c The expression of IL-1β, IL-6 and iNOSmRNA in 4 groups of brain tissues. dEvans blue extravasation, which represents for the breakdown
of blood brain barrier in each group. n = 5 for each group. Data are presented as mean ± SD, *p < 0.05. HGS hyperglycemia sham, HG I/R hyperglycemia
ischemia/reperfusion.
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related enzyme after cerebral I/R injury in mice. We also
confirmed that ischemic stroke leads to more severe brain
injury in diabetic mice than non-diabetic mice, and that
inflammation and brain injury can be ameliorated by
blocking HMGB1 function with neutralizing antibodies.
I/R injury is initiated by cell necrosis after prolonged
ischemia and the inflammatory response is initiated by
the restoration of blood flow to hypoxic tissue [25]. It is
well-known that HMGB1 is passively released by necrotic
cells and is able to activate leukocytes, which in turn
secrete pro-inflammatory mediators, promoting further
HMGB1 production [26].

In the present study, we discovered that levels of
serum HMGB1 are significantly elevated after the onset
of transient focal cerebral ischemia, consistent with previ-
ous findings that HMGB1 is released from neurons during
the early stages of brain ischemic injury [25]. Kim et al.
(2006) [2] also showed that concentrations of HMGB1
decreased in ischemic brain tissues, but increased in the
serum. High levels of HMGB1 have been reported in the
serum of patients who had suffered from stroke 7 days
previously [27]. HMGB1 binds receptors, inducing signal-
ing cascades that lead to an over-expression of pro-

inflammatory molecules and cytokines [28]. In the current
study, we identified IL-1β, IL-6, and iNOS as indicators of
inflammation in the process of cerebral I/R, in agreement
with previous findings [2, 29–31]. Breakdown of the BBB
can induce brain edema and secondary brain injury in
ischemic stroke and animals subjected to MCAO [32,
33]. In the present study, we examined the permeability
of the BBB following cerebral I/R using Evans blue
extravasation.

Diabetes mellitus is a metabolic disease that affects
some vital organs, including the brain, in both microvas-
cular and macrovascular ways [34]. Diabetes mellitus has
been shown to increase the recurrence and adverse effects
of ischemic stroke [35]. Both type 1 and type 2 DM are
characterized by hyperglycemia, which induces inflamma-
tion and oxidative stress reactions [17, 36]. Therefore, the
combination of DM and cerebral I/R increases the risk of
more serious inflammation and brain injury. Hu et al.[37]
showed that diabetic patients are two to four times more
predisposed to stroke than patients without diabetes and are
at a high risk of poor prognosis and mortality after stroke.
This is supported by evidence from animal stroke models
that hyperglycemia not only exacerbates stroke-related

Fig. 5. Representative images for the hematoxylin and eosin (H&E) staining in the formalin-fixed brain tissues (×100 magnification). a Hyperglycemia
ischemia/reperfusion brain injury. b Hyperglycemia ischemia/reperfusion brain injury treated with anti-HMGB1 monoclonal antibody. c Normoglycemia
sham group. d Hyperglycemia ischemia/reperfusion brain injury I/R treated with IgG.
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injury but also adversely affects the overall functional
outcome [38].

In the current study, we have shown that HMGB1
levels were significantly higher in the DM cerebral I/R
group compared with the DM sham group. This is in
agreement with previous findings that diabetes promotes
both the elevation of HMGB1 expression and a poor
outcome after ischemic stroke in rats [39]. According to
Li et al. (2013), hyperglycemia-mediated damage follow-
ing ischemic stroke might include intracellular acidifica-
tion, accumulation of reactive oxygen species, disruption
of the BBB, and induction of the inflammatory response
and axonal degradation [40]. In this study, we focused on
the inflammatory response and BBB disruption following
diabetic stroke; we found that expression of IL-1β, IL-6,
and iNOSwas strongly augmented in hyperglycemic mice,
as was the permeability of the BBB. This is in agreement
with previous findings that HMGB1 induces morphologi-
cal and functional changes in the BBB, which can be
inhibited by anti-HMGB1 antibodies [40].

We have confirmed that neutralizing anti-HMGB1
antibodies have a protective effect on the brain following
MCAO in mice. Neutralizing HMGB1 antibodies have
been shown to be a more effective treatment for brain I/R
than the FK506 binding protein, matrix metalloproteinase
inhibitors and radical scavengers [3]. The therapeutic ef-
fects of anti-HMGB1 antibodies on brain edema and BBB
disruption induced by brain ischemia have been confirmed
by Zhang et al. (2011).

In this study, we have provided evidence that
treatment with neutralizing anti-HMGB1 antibodies
significantly attenuates BBB disruption and morpho-
logical alterations induced by brain I/R injury in com-
bination with DM; this suggests that anti-HMGB1 an-
tibodies exert a protective effect on diabetic stroke
injury. This is in agreement with previous findings that
HMGB1 induces morphological and functional chang-
es in the BBB, which can be inhibited by anti-HMGB1
antibodies [41].

Interestingly, we did not observe a decrease in
the expression of IL-6 after treatment with anti-
HMGB1 antibodies. This might reflect the undeter-
mined role of IL-6 in brain I/R. IL-6 was recently
shown to promote neurogenesis after ischemic stroke
[42] and Joo Eun Jung et al. (2011) have reported a
reduced brain infarct volume after injection of IL-6,
suggesting a protective role for IL-6 in brain injury.
However, over-expression of IL-6 may also induce the
production of pernicious factors and contribute to the
exacerbation of brain damage through inflammatory

signaling cascades [43]. Therefore, IL-6 can exert
both beneficial and detrimental effects on ischemic
brain tissue. We observed an upregulation of IL-6
expression in the I/R injury group, that was not
inhibited by HMGB1 neutralizing antibodies. This
suggests a HMGB1-independent effect of IL-6 on
the injured brain.

There are additional questions to be answered. First, it
is not clear whether the elevated levels of HMGB1 in the
serum are attributable to an increased inflammatory reac-
tion, or several, critical mediators propagating cerebral I/R
injury together with DM. Second, it is not known whether
neutralizing HMGB1 antibodies alleviative cerebral injury
by inhibiting inflammation activities or promoting protec-
tive effects. The mechanisms underlying the influence of
HMGB1 in cerebral I/R injury together with DM remain to
be determined.

In conclusion, we have provided evidence that the
pathogenesis of DM increases HMGB1 expression, which
aggravates cerebral I/R injury. The injection of neutralizing
anti-HMGB1 antibodies alleviated brain injury and may
represent a promising therapeutic approach for ischemic
stroke in DM patients.
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