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Abstract

Sequential sampling models assume that people make speeded decisions by gradually 

accumulating noisy information until a threshold of evidence is reached. In cognitive science, one 

such model—the diffusion decision model—is now regularly used to decompose task performance 

into underlying processes such as the quality of information processing, response caution, and a 

priori bias. In the cognitive neurosciences, the diffusion decision model has recently been adopted 

as a quantitative tool to study the neural basis of decision making under time pressure. We present 

a selective overview of several recent applications and extensions of the diffusion decision model 

in the cognitive neurosciences.
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INTRODUCTION

Every day, people make thousands of small decisions. Many of these decisions are trivial 

(e.g., what pair of socks to wear or what TV series to watch), many are to some degree 

automatic (e.g., how to greet your colleague in the morning or what word to type next in an 

email), but all of them are made under time pressure. One simply cannot take hours to 

ponder over what pair of socks to wear or how to greet a colleague: After some deliberation, 

a decision needs to be made based on the data at hand. Consequently, most real-life 

decisions are composed of two separate decisions: first the decision to stop deliberating and 

act, and then the decision or act itself.

The decision to stop deliberating and act is not straightforward, because it involves a balance 

between two opposing forces. On the one hand, the quality of decision making improves 
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when it is based on more information; on the other hand, decisions are only acceptable when 

they are timely. In psychology, this balance is known as the speed-accuracy trade-off, a 

trade-off that affects basketball players, honeybees, and even acellular organisms such as 

slime molds (Latty & Beekman 2011).

Several models have been developed to account for the speed-accuracy trade-off and explain 

how people and animals make decisions under time pressure. The most popular class of 

models assumes that the decision maker accumulates noisy samples of information from the 

environment until a threshold of evidence is reached. Such accumulation-to-threshold 

models are known as sequential sampling models.

Sequential sampling models have been developed in mathematical psychology ever since the 

1960s (e.g., Stone 1960). Over the course of several decades, researchers began to 

understand the benchmark phenomena that underlie decision making under speed stress, and 

the models became increasingly sophisticated to account for these findings (Luce 1986, 

Townsend & Ashby 1983). In the early 1990s, it became clear that one particular sequential 

sampling model—the diffusion decision model (DDM)—stood out as the effective standard 

model (see sidebar Fitting the Diffusion Decision Model to Data) in the field.

FITTING THE DIFFUSION DECISION MODEL TO DATA

In recent years, three dedicated software packages for fitting the full DDM have become 

publicly available: DMAT (Vandekerckhove & Tuerlinckx 2007, 2008), fast-dm (Voss & 

Voss 2007, 2008), and the nonhierarchical HDDM (Wiecki et al. 2013). A reduced 

diffusion model, EZ, can be fit using code provided by Wagenmakers et al. (2007). 

Wabersich & Vandekerckhove (2014) added a DDM distribution routine to the Bayesian 

Markov chain Monte Carlo software JAGS. These packages have been implemented in 

different systems, namely DMAT in MATLAB, fast-dm as a stand-alone C program 

(precompiled for Windows but running on Linux), and HDDM in Python. Ratcliff & 

Childers (2015) performed an extensive comparison of the methods. The public 

availability of software to fit the DDM to data has greatly contributed to the model’s 

popularity and use in practical research settings.

Even though the DDM had been successful as a mathematical process model that accounted 

for the speed and accuracy of decision making under a wide variety of circumstances, 

initially its domain of application remained relatively limited. Around the turn of the 

century, this state of affairs changed radically when it became apparent that the DDM not 

only accounted for observed behavior but also provided an explanation for some of the 

general dynamics of single-cell firing rates in monkeys. In the following years, 

neuroscientists have applied and extended the DDM, and presently it provides a point of 

departure for many modeling attempts in both low-level and high-level cognitive 

neuroscience.

As we intend to demonstrate, the ever-increasing interest in applying and extending the 

DDM in the domain of speeded decision making is motivated by the growing realization that 
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a quantitative approach can greatly help guide empirical work and deepen our understanding 

of cognition (Forstmann & Wagenmakers 2015).

The outline of this article is as follows. The first section provides historical context and 

outlines the current standard form of the DDM; the second section lists the advantages of 

using the DDM for both experimental psychology and cognitive neuroscience; the third 

section provides an overview of DDM applications in cognitive neuroscience, focusing on 

low-level neural firing rates in monkeys and on high-level brain imaging techniques in 

humans; and the fourth section outlines recent extensions and exciting new developments. A 

brief summary of the most important points concludes the article.

SEQUENTIAL SAMPLING MODELS

People often need to make decisions based on information that unfolds over time. An 

example of this is the idealized work process of a police detective solving a homicide: 

Following a state of confusion and uncertainty, informative cues become available over time 

that allow the detective to reduce the uncertainty and hopefully solve the case. However, the 

decision-making process can be sequential even when all of the information is immediately 

available. For instance, a chess player contemplating a particular move has all the 

information available, in the sense that the environment will not offer any more cues as time 

progresses: All the information is contained in the configuration of the pieces on the board, 

which can be perceptually encoded at a glance. The problem for the chess player is that 

mental capacity is limited, and the relevant information can only be extracted and processed 

piecemeal. Hence, the sequential nature of decision making is a fundamental property of the 

human nervous system, reflecting its inability to process information instantaneously.

To understand the dynamics of decision making, most studies focus on simple, repeatable 

choice problems with just two alternatives. For instance, participants in lexical decision are 

confronted with letter strings that have to be classified as a word (e.g., mango) or a nonword 

(e.g., drapa); participants in the moving dots task are confronted with a random dot 

kinematogram (RDK) and have to judge whether a subset of dots move to the left or to the 

right. The elementary nature of these tasks makes it possible to collect thousands of 

decisions for a single participant in a single session, providing rich data for modeling. 

Traditionally, the measures of interest are the response times (RTs) for correct responses and 

for error responses, the distributions of RTs, and the proportion of correct responses. Note 

that the simplicity of the tasks does not preclude errors; when participants are instructed to 

respond quickly, errors inevitably arise, and a participant may well classify drapa as a word.

The data from these elementary decision-making tasks reveal several law-like patterns that 

any model of decision making should try to account for. Some of these law-like patterns are 

trivial (e.g., mean RT is shorter for easy stimuli than it is for hard stimuli; increasing speed 

stress shortens mean RT but increases the proportion of errors), but others are not. For 

instance, (a) mean RT is proportional to RT standard deviation (Wagenmakers & Brown 

2007); (b) manipulations that increase the speed of correct responses also increase the speed 

of error responses; (c) RT distributions are right-skewed, and this skew increases with task 

difficulty; and (d) for difficult tasks, mean error RT is often slower than mean correct RT, but 
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this pattern can be reversed by speed stress (e.g., Wagenmakers et al. 2008; for a description 

of these and other law-like patterns see Brown & Heathcote 2008, Carpenter 2004, Luce 

1986, Mulder et al. 2012, Ratcliff 2002, Ratcliff & McKoon 2008, Van Ravenzwaaij et al. 

2011).

Sequential sampling models come in various forms. The general idea is that evidence is 

gradually accumulated and each response (e.g., word/nonword, left/right) is represented by a 

separate decision boundary. However, the models differ according to whether there are one 

or two counters and whether the counters are independent; whether they are assumed to be 

leaky; or whether they exert a top-down influence on the accumulation process. Responses 

can be determined by an absolute evidence rule (i.e., two fixed thresholds, one for each 

counter) or a relative evidence rule (one threshold on the difference in accumulated 

activation; e.g., Bogacz et al. 2006, Ratcliff & Smith 2004, Teodorescu & Usher 2013).

One famous class of sequential sampling models consists of accumulator models (e.g., Van 

Zandt et al. 2000, Vickers & Lee 1998). A prototypical accumulator model has independent 

counters and an absolute evidence response rule. Here we focus on a different class of 

sequential sampling models, which assumes a relative evidence rule: A response is initiated 

as soon as the difference in evidence accumulated exceeds a prespecified criterion. For 

discrete evidence accumulation, this account is known as a random walk model; for 

continuous evidence accumulation, the process is known as a diffusion process.

Interdisciplinary History

The history of random walk models dates back to the early days of probability theory, when 

much effort was devoted to problems related to gambling. In a famous problem known as the 

gambler’s ruin, two gamblers, A and B, play a sequence of independent games against each 

other. Each gambler has a (possibly different) starting capital, and every game has a fixed 

chance p of being won by gambler A. Every time one of the gamblers wins a game, the 

winner obtains one unit of the other player’s capital; the process continues until one of the 

gamblers is bankrupt (Carazza 1977, Feller 1968). Provided the two starting capitals and the 

chance p, what is the probability that A goes bankrupt? And what is the expected number of 

games until this happens? (For answers, readers are referred to Feller 1968.)

The temporal flow of capital in the gambler’s ruin process can be represented as a random 

walk with two absorbing boundaries; whenever a boundary is reached, this signifies that one 

of the gamblers is bankrupt. Parameter p represents the drift of the process; when p > 1/2, 

the noisy process will tend to drift toward the bound associated with gambler B’s 

bankruptcy.

In the continuous limit of small stakes and with p close to 1/2, the process is known as 

Brownian motion or Wiener diffusion process. This process was proposed to explain the 

movement of physical particles influenced by many molecular collisions (e.g., Einstein 

1905; for a visual demonstration, see http://en.wikipedia.org/wiki/Brownian_motion). 

The experimental verification of this explanation helped confirm the existence of molecules 

and atoms, and it earned Jean Perrin the 1926 Nobel Prize in Physics. In mathematics, the 
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Wiener diffusion process is a prototypical example of a stochastic differential equation (e.g., 

Smith 2000) with applications in finance, heat flow, and fluid dynamics.

The random walk process is also of considerable interest to statisticians, partly because it is 

related to sequential analysis; data come in over time and the statistician has to determine 

when to stop collecting data and make a decision. The sequential analyses initiated by Alan 

Turing famously helped break the German enigma code, expediting the end of World War II 

(Good 1979). At about the same time, Abraham Wald proposed the sequential probability 

ratio test (SPRT; e.g., Wald & Wolfowitz 1948). In the SPRT, each incoming datum is 

transformed into a log likelihood ratio that quantifies the relative evidence for one 

hypothesis versus another; the likelihood ratios are added as the data flow in, and the process 

halts as soon as a predetermined level of evidence is reached. The appeal of this procedure is 

that it is optimal in the sense that it achieves the fastest mean decision time for a given 

accuracy (Bogacz et al. 2006). For applications in neuroscience, the optimality of the SPRT 

is an attractive property, because evolutionary pressures and reinforcement learning 

mechanisms may have shaped neurons to process information near-optimally, given their 

innate limitations (Ma et al. 2006).

In psychology, the interest in random walk models started with Stone (1960) and was 

followed by major contributions from Laming (1968) and Link & Heath (1975). The early 

models, however, did not account for the relative speed of error RTs across all experimental 

scenarios. To account for all of the data, the early models needed to be expanded, and this 

resulted in the model that is the current standard: the DDM.

Current Standard Form: The Diffusion Decision Model

The DDM (e.g., Ratcliff 1978, Ratcliff & McKoon 2008, Voss et al. 2013) assumes that 

dichotomous decisions are based on the accumulation of noisy evidence, commencing at the 

starting point and terminating at a decision threshold that is associated with a particular 

decision or choice. Figure 1 represents an application of the model to the RDK task. The 

figure demonstrates that the diffusion process is inherently noisy, causing the choices to be 

error prone and the RTs to be variable.

The model structure shown in Figure 1 provides a unified account of the psychological 

mechanisms that underlie both RTs and the probabilities with which responses are chosen. 

The model has four key parameters. First, drift rate represents the average amount of 

evidence accumulated per unit time, and it is an index of task difficulty or subject ability. 

Second, boundary separation represents the level of caution; increasing boundary separation 

results in fewer errors (because of the reduced impact of the within-trial diffusion noise) but 

at the cost of slower responding. Hence, boundary separation implements the speed-

accuracy trade-off. Third, the starting point reflects the a priori bias or preference for one or 

the other choice alternative. Fourth, nondecision time is an additive lag parameter that 

measures the time for peripheral processes such as encoding a stimulus, transforming the 

stimulus representation into a decision-related representation, and executing a response. 

Consequently, the total time for a response is the time to diffuse from starting point to 

boundary, plus the nondecision time.
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In addition to the four key parameters, the DDM features three across-trial variabilities in 

drift rate, starting point, and nondecision time. Without across-trial variability in any of 

these, and with boundaries equidistant from the starting point, the model would predict the 

distributions of RTs for correct and error responses to be identical. However, with across-

trial variability in drift rate, the model predicts errors to be slower than correct responses 

because of probability mixtures of processes with different times and accuracies. For 

example, for a larger drift rate in the mixture, accuracy will be higher and RT slower for 

both correct and error responses; for a lower drift rate, accuracy will be lower and RTs 

longer. Therefore, there will be a smaller number of fast errors and a higher number of slow 

errors from this mixture (relative to correct responses), leading to slower errors relative to 

correct responses (for further explanation, see Ratcliff 1978; Ratcliff & McKoon 2008, 

figure 4). With across-trial variability in the starting point, the model predicts errors to be 

faster than correct responses (e.g., Ratcliff & Rouder 1998, figure 2; Wagenmakers et al. 

2008). When a process starts near the correct response boundary there will be few errors and 

they will be slow, because the process has to travel a long distance to reach the error 

boundary. When a process starts near the error boundary there will be more errors and they 

will be fast, because the process only has to travel a short distance to reach the error 

boundary. Both patterns are found in the data (with a crossover sometimes so that fast errors 

occur in easy conditions and slow errors in difficult conditions), and the model explains why 

these patterns occur. A mixture of starting points gives fast errors overall.

Equipped with these parameters, the DDM provides an excellent account of the law-like 

patterns observed across virtually all speeded RT tasks. For instance, the DDM accounts for 

the relationship between mean RTs and the probabilities of the choices (errors and correct 

responses), including how these covary with stimulus difficulty. In addition, the DDM 

accounts for the shapes of RT distributions and for how these change as a function of 

experimental conditions.

Based on a superficial analysis, a skeptic may argue that the excellent fit of the DDM is 

achieved partly because its parameters make it highly flexible; in other words, the model 

may be overparameterized and immune to empirical falsification. A deeper analysis, 

however, shows this concern to be without merit (Wagenmakers 2009). First, experimental 

designs usually feature multiple conditions, and this allows the model parameters to be 

constrained in meaningful ways; for instance, only the drift rate parameter is allowed to vary 

with stimulus difficulty, and only the boundary separation parameter is allowed to vary 

across conditions with different levels of speed stress. Such constraints severely limit the 

model’s flexibility. Second, Ratcliff (2002) has demonstrated by simulations how the DDM 

fails to account for fake but plausible data patterns. Third, typical experimental designs 

allow the model parameters to be adequately recovered. Finally, tests of specific influence 

show that manipulations of psychological processes affect the associated parameters; for 

instance, a manipulation of task difficulty mostly affects the drift rate parameter, and a 

manipulation of speed stress mostly affects the boundary separation parameter (e.g., Voss et 

al. 2004).
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ADVANTAGES OF THE DIFFUSION DECISION MODEL

The DDM can be considered a dynamic version of signal-detection theory (SDT; Gold & 

Shadlen 2007, Ratcliff 1978, Wagenmakers et al. 2007). In SDT, the decision maker is 

assumed to assess the diagnosticity of a single sample of information; in the DDM, the 

decision maker draws a sequence of samples, adding their diagnostic values until a threshold 

amount of evidence is reached. Thus, like SDT, the DDM allows one to disentangle 

estimates of ability (i.e., that which is not under strategic control: d’ in SDT versus drift rate 

in DDM) from estimates of criteria settings (i.e., that which is under strategic control: c in 

SDT versus boundary separation and starting point in DDM). Unlike SDT, however, the 

DDM considers not only response proportion but also the shapes of RT distributions, both 

for errors and correct responses. This has the advantage of finding invariance in evidence 

used in a decision when speed or accuracy settings are manipulated; in contrast, SDT 

analyses find that evidence changes when accuracy is stressed.

Below we discuss the advantages that the DDM has to offer, both for the analysis of choice 

behavior and for cognitive neuroscience.

Advantages for the Analysis of Choice Behavior

At its core, a DDM analysis allows researchers to decompose observed choice behavior into 

its constituent cognitive processes. By simultaneously taking into account both response 

accuracy and response latency, the model addresses the speed-accuracy trade-off and allows 

an assessment of individual ability that is not contaminated by differences in threshold 

settings or in the speed of peripheral processes unrelated to the decision-making process 

itself (Wagenmakers et al. 2007). This decomposition makes it possible to evaluate the 

adequacy of verbal theories such as the global slowing hypothesis of aging, which 

effectively states that the effect of aging is to decrease drift rate. The decomposition also 

facilitates the use of the DDM as a cognitive psychometric tool (Riefer et al. 2002, 

Vandekerckhove et al. 2011) to pinpoint the cognitive processes that are dysfunctional in 

clinical populations, for instance, in patients with aphasia, hypoglycemia, dysphoria, 

attention deficit hyperactivity disorder (ADHD), dyslexia, and anxiety disorders.

One criterion for a model’s usefulness is whether it does more than simply reiterate what can 

be obtained from traditional analyses. Below we describe a number of recent DDM 

applications and highlight how some of these have provided new insights into cognition, 

individual differences, and differences among subject groups. In other cases, however, the 

model only provides obvious results. But even in this case, the model still integrates the 

three dependent variables—accuracy and the shapes of correct and error RT distributions—

into a common theoretical framework that provides a mechanistic explanation for the 

observed data. This stands in contrast to the commonly used hypothesis-testing approaches 

that are mute on the psychological processes that produce behavior, usually focusing only on 

accuracy or mean correct RT as the dependent variable. In some cases, separate statistical 

analyses of each variable tell the same empirical story, but in other cases they are 

inconsistent. A model-based approach helps resolve such inconsistencies.
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Aging—The application of the diffusion model to studies of aging has been especially 

successful, producing a novel view of the effects of aging on cognition. The general finding 

in the literature was that older adults are slower than young adults (but not necessarily less 

accurate) on most tasks, and this has been interpreted as a decline with age in all or almost 

all cognitive processes. However, application of the DDM showed that this interpretation is 

generally not correct (Ratcliff et al. 2007b, and references therein). For example, Ratcliff et 

al. (2010) tested old and young adults on numerosity discrimination, lexical decision, and 

recognition memory. What they found is that older adults had slower nondecision times and 

set wider boundaries, but their drift rates were not lower than those of young adults. In 

contrast, large age-related declines in drift rate have been found in other tasks, such as 

associative recognition and letter discrimination (Ratcliff et al. 2011, Thapar et al. 2003).

Working memory and IQ—Schmiedek et al. (2007) analyzed data from eight choice RT 

tasks (including verbal, numerical, and spatial tasks) from Oberauer et al. (2003). They 

found that drift rates in the diffusion model mapped onto working memory, speed of 

processing, and reasoning ability measures (all measured by aggregated performance on 

several tasks).

Similarly, the DDM analyses from Ratcliff et al. (2010, 2011) showed that drift rate varied 

with IQ (by as much as 2:1 for higher versus lower IQ participants), but boundary separation 

and nondecision time did not. Note that this is the opposite of the pattern for aging.

Clinical populations—Research on psychopathology and clinical populations commonly 

uses two-choice tasks to investigate processing differences between patients and healthy 

controls. For instance, highly anxious individuals show enhanced processing of threat-

provoking materials, a pattern that is found reliably only when two or more stimuli are 

competing for processing resources. White et al. (2010) recently challenged this resource 

competition account. They conducted a lexical decision experiment with single words (i.e., 

without resource competition) that included threatening and control words; using a DDM 

decomposition, they found a consistent processing advantage for threatening words in highly 

anxious individuals, whereas traditional comparisons showed no significant differences. 

Because the diffusion model makes use of both RT and accuracy data, it can better detect 

differences among subject populations than RT or accuracy alone.

In a similar vein, studies of depression have sometimes found mixed patterns of results. In 

general, depressive symptoms are closely linked with abnormal emotional processing: 

Whereas nondepressed people have a positive emotional bias, clinical depression is 

accompanied by a negative emotional bias, and dysphoria is accompanied by 

evenhandedness (i.e., no emotional bias). However, studies using item recognition and 

lexical decision tasks often fail to produce significant results. White et al. (2009) used the 

DDM to examine emotional processing in dysphoric and nondysphoric college students to 

examine differences in memory and lexical processing of positive and negative emotional 

words, which were presented among many neutral filler words. They found positive 

emotional bias in drift rates for nondysphoric subjects and evenhandedness for dysphoric 

subjects. As before, this pattern was not apparent with comparisons of RTs or accuracy, 

consistent with previous null findings.
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Another study examined the effects of aphasia in a lexical decision task for which the 

neurolinguistic patients showed exaggerated RTs. A DDM decomposition revealed that both 

decision and nondecision processes were compromised, but the quality of information 

processing (i.e., drift rate) did not differ much between patients and controls (Ratcliff et al. 

2004a). It is unclear how a traditional statistical analysis could have arrived at a similar 

insight.

Miscellaneous—Ratcliff & Van Dongen (2009) looked at effects of sleep deprivation 

using a numerosity discrimination task; Van Ravenzwaaij et al. (2012) looked at the effects 

of alcohol consumption using a lexical decision task; and Geddes et al. (2010) looked at the 

effects of reduced blood sugar using a numerosity discrimination task. The main result of all 

of these studies was a reduced drift rate but with either small or no effect on boundary 

separation and nondecision time.

By way of contrast, in studies of cognitive development, younger children show larger 

boundary separation and longer nondecision times than do older children (Ratcliff et al. 

2012). Other experiments have found drift rates to be lower for ADHD and dyslexic children 

relative to normal controls (for ADHD, see Mulder et al. 2010; for dyslexia, see Zeguers et 

al. 2011). The above applications demonstrate how a comprehensive DDM decomposition of 

observed choice behavior yields deeper conclusions and insights than traditional methods of 

analysis.

Advantages for Cognitive Neuroscience

The DDM advantages are particularly acute for the field of model-based cognitive 

neuroscience, a nascent discipline that combines insights and measurement tools from 

experimental psychology, mathematical psychology, and neuroscience (Forstmann et al. 

2011, Forstmann & Wagenmakers 2015). Figure 2 shows each discipline’s primary concern 

with the cognitive process and how formal models can act as a hub that connects the 

contributions of the separate disciplines.

A DDM decomposition allows cognitive neuroscientists to associate brain measurements 

with specific cognitive processes instead of behavioral data. This comes with a number of 

advantages. First, the DDM decomposition can confirm that a particular manipulation is 

selective or processpure; for instance, a manipulation of task difficulty is process-pure when 

it selectively affects drift rate. When task difficulty is manipulated across blocks, however, 

other processes such as boundary separation could also be affected. Second, even when a 

manipulation is not process-pure, a DDM decomposition allows the researcher to isolate and 

focus on the contribution of the process of interest. In the example above, brain 

measurements (e.g., fMRI contrasts) may reflect the impact of changes in both drift rate and 

boundary separation; yet, the DDM parameter estimates can be used to disentangle the joint 

impact of the two processes and to associate the brain measurements with the process of 

interest (e.g., drift rate). Finally, the DDM decomposition facilitates an individual 

differences analysis; for instance, people with relatively large changes in drift rate may show 

more pronounced activation in frontoparietal network areas, suggesting that these areas are 

important for stimulus processing.
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In addition, as we will outline below in more detail, the DDM has stimulated the 

development of quantitative models for neural processes. This work suggests that the 

processes that drive observed choice behavior are qualitatively similar to those that describe 

the behavior of individual neurons.

THE DIFFUSION DECISION MODEL IN COGNITIVE NEUROSCIENCE: 

APPLICATION

To bridge the gap between neural process and observed choice behavior, it is helpful to 

model and estimate the intermediate latent psychological processes. The DDM constitutes 

an important general framework to understand how neurons process information and how 

brain activation gives rise to choice and action. Nevertheless, there remains a vast divide 

between neurons and choice, and one of the main unsolved challenges is to provide a unified 

account of both low-level and high-level brain processes and of how these determine choice 

behavior.

Below we first discuss the application of the DDM in low-level neuroscience and single-cell 

recordings in monkeys, and then turn to the application of the DDM in high-level 

neuroscience and brain measurements in humans. Due to space limitations, our review is 

necessarily selective.

Application in Low-Level Cognitive Neuroscience: Neural Firing Rates and Single-Cell 
Recordings in Monkeys

One of the main reasons for the current popularity of diffusion models in neuroscience is the 

possibility to observe the behavior of single neurons of monkeys (and occasionally rats) 

performing simple decision-making tasks such as the RDK. Hanes & Schall (1996) made 

one of the first connections between theory and single-cell recording data, which was 

subsequently taken up in work by Shadlen and colleagues (e.g., Gold & Shadlen 2001). As 

shown in Figure 3, the key finding is that the firing rates of single cells in decision-related 

areas increase to a maximum that is independent of both the speed and the difficulty of the 

decision. These decision-related areas include the lateral intraparietal cortex (LIP; see 

Roitman & Shadlen 2002, Shadlen & Newsome 1996), the frontal eye field (FEF; see 

Ferrera et al. 2009, Hanes & Schall 1996), and other parts of the prefrontal cortex and the 

superior colliculus (SC; Ding & Gold 2012; Horwitz & Newsome 1999; Ratcliff et al. 

2003a, 2007a). These results dovetail nicely with models that assume gradual accumulation 

of evidence up to a fixed decision criterion.

There is debate about where exactly the accumulation takes place, but it is clear that (at 

least) LIP, FEF, and SC form part of a circuit that is involved in implementing oculomotor 

decisions in monkeys performing simple decision-making tasks. The above studies generally 

support the notion that decision-related information flows from LIP to FEF and then to SC 

just prior to a decision.

This domain benefits from an abundance of recent high-quality reviews (Ding & Gold 2012; 

Glimcher 2003; Gold & Shadlen 2001, 2007; Schall 2001, 2013; Shadlen & Kiani 2013) that 

show a variety of approaches but mainly focus on the accumulation of evidence up to a 

Forstmann et al. Page 10

Annu Rev Psychol. Author manuscript; available in PMC 2017 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



decision criterion. In addition, a number of articles present explicit neurobiological models 

that assume that evidence is gradually accumulated over time; here, evidence is 

conceptualized as activity in populations of neurons associated with a specific choice 

alternative (Boucher et al. 2007; Ditterich 2006; Gold & Shadlen 2001, 2007; Hanes & 

Schall 1996; Platt & Glimcher 1999; Purcell et al. 2010; Ratcliff et al. 2003a; Roitman & 

Shadlen 2002; Shadlen & Newsome 2001).

The proposed neurobiological models fall into several classes: Some models assume 

accumulation of a single evidence quantity that can take on positive and negative values (as 

is consistent with the DDM; Gold & Shadlen 2000, 2001; Ratcliff 1978; Ratcliff et al. 1999, 

2003a; Smith 2000); others assume that evidence is accumulated in separate accumulators 

corresponding to separate choice alternatives (Churchland et al. 2008, Ditterich 2006, 

Ratcliff et al. 2007a, Usher & McClelland 2001). In this latter class of models, accumulation 

in separate accumulators can be independent or interactive—so that as evidence grows in 

one accumulator, it inhibits evidence accumulation in the other accumulator. These two 

classes of models largely mimic each other at a behavioral level (Ratcliff 2006, Ratcliff & 

Smith 2004).

In one innovative application, Purcell et al. (2010) used real neural firing rate data as the 

input for a range of different sequential sampling models of decision making in a visual 

search task. The models they examined involved independent accumulation models with 

decay, inhibition, and a gating mechanism (i.e., activity had to be greater than some base 

level to be involved in the decision). The modeling results revealed that models that included 

decay or gating provided an excellent account of the observed RT distributions. In the model 

proposed by Purcell et al. (2010), the stimulus is directly tied to the decision-making 

mechanism without the involvement of an intermediate short-term memory representation. 

For highly overtrained monkeys, this is likely appropriate.

E pluribus unum—The modeling efforts for single neurons raise an important question: If 

single neurons act as noisy evidence accumulators, how does this determine the behavior of 

a large pool of neurons? In other words, do the properties of an individual neuron scale up to 

determine the dynamics of the neural population?

This question was recently addressed by Zandbelt et al. (2014), who examined a number of 

models in which individual neurons act as single redundant accumulators that together 

constitute a neural ensemble. The decision rule is that when some proportion of neurons 

from the ensemble have reached their criterion, the decision is made. They found that, under 

general conditions, the behavior of such a system was relatively insensitive to ensemble size. 

This suggests that a single diffusion process (used in modeling at the behavioral level) might 

be implemented in hardware as a combination of multiple accumulators.

Another attempt to bridge the gap from neuron to ensemble comes from modeling efforts 

that relate diffusion models to models based on spiking neurons (e.g., Deco et al. 2013, 

Roxin & Ledberg 2008, Wong & Wang 2006). Roxin and Ledberg examined models in 

which separate populations of spiking neurons are assumed to represent the two choices. 

They show that such models can be reduced to a one-dimensional model that is similar but 
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not identical to the standard DDM (their model involves nonlinearity). Wong and Wang 

present a spiking neuron model and then reduce it to a two-variable model with self-

excitation and inhibition. Their approximation is similar to the leaky competing accumulator 

model (Usher & McClelland 2001). Wang’s modeling approach has had a wide range of 

applications (Wang 2008). Unfortunately, the Wang model is relatively complex, and at this 

point it is not possible to use it to fit data. However, its strength is that it takes seriously the 

relationship between neural processes, including synaptic currents, the behavior of 

neurotransmitters, membrane voltages, etc.

Smith (2010) suggested a different approach. He made an explicit connection between 

diffusion processes at a macro behavioral level and Poisson shot noise processes at a slightly 

abstract neural level. The shot noise process describes the cumulative effects of time-varying 

events (i.e., action potentials) that arrive according to a Poisson process. Smith showed that 

the time integral of such Poisson shot noise pairs follows an integrated Ornstein-Uhlenbeck 

process, whose long timescale statistics are very similar to those assumed in the standard 

DDM.

Single-cell recordings and bias effects—In a two-alternative task, bias toward one or 

the other alternative can be induced by instructions, by varying the relative proportions of 

occurrence, or by asymmetric rewards. Such bias can be modeled within the DDM 

framework in two ways. First, the starting point of the process can be moved nearer the 

boundary that represents the preferable alternative. Alternatively, the zero point of the drift 

rate (i.e., the drift criterion) can be altered by increasing drift rates toward the preferred 

boundary and decreasing drift rates to the nonpreferred boundary (Leite & Ratcliff 2011, 

Mulder et al. 2012, Ratcliff 1985, Ratcliff & McKoon 2008, Ratcliff & Smith 2004, Starns et 

al. 2012, Wagenmakers et al. 2007).

In human decision making it is clear that changing the relative proportion of occurrence 

brings about a change in the starting point of the decision process. This is evident from 

changes not only in accuracy and mean RT (Mulder et al. 2012), but also in the shape of RT 

distributions. If the starting point moves nearer one boundary, the RT distribution for that 

response shifts to lower values. In contrast, if the drift criterion changes, the leading edge of 

the RT distribution does not change very much (see Ratcliff & McKoon 2008 for a detailed 

discussion).

Hanks et al. (2011) presented single-cell recording data and human data from the motion 

discrimination task. They used their conclusions from the human data to support a drift 

criterion interpretation, but they did not examine RT distributions nor perform the critical 

test. Their results conflict with the conclusions from Ratcliff & McKoon (2008), who 

presented data from a bias manipulation in the motion discrimination task and found strong 

evidence for a change in starting point. For the monkey data, the initial firing rates differed 

as a function of bias, with an increase in firing rate for neurons corresponding to the more 

likely decision. Hanks et al. interpreted this as a change in drift rate, but it could also be the 

way the system changes the starting point of activity in the decision process. Again, explicit 

modeling of accuracy and RT distributions would make this finding clear.
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Single-cell recordings and sequential dependencies—Gold et al. (2008) examined 

sequential dependencies in a motion discrimination task and found evidence for changes in 

LIP neuron firing rates, which they interpreted as changes in the drift criterion. In human 

data, Ratcliff et al. (1999) found that sequential effects were best modeled as changes both in 

the starting point and in the drift criterion. Again, explicit modeling of the behavioral data 

would clarify the interpretation of this finding.

Single-cell recordings and trade-off effects—Two recent studies have attempted to 

manipulate speed-accuracy settings in monkeys (Hanks et al. 2014, Heitz & Schall 2012; see 

Cassey et al. 2014 for a critique). One immediate problem is that it is extremely difficult to 

get monkeys to exercise caution and to slow down responding based on rewards in the same 

way as humans do. This means that monkey must be trained to delay, something that Heitz 

& Schall accomplished using explicit deadline cutoffs. In the Hanks et al. study, the 

monkeys naturally produced fast responses; to make the total time of the trial the same for 

fast and slow responses, the monkeys had to be trained to respond more slowly by using 

time delays following the response. To move the monkeys back to a speed regime, one of 

them needed an additional manipulation in which stimulus presentation duration was 

reduced.

Perhaps the main lesson from this experiment is that it is difficult to get monkeys to adopt 

different speed-accuracy regimes (see also Cassey et al. 2014). This contrasts with humans: 

Young adults find it easy to adopt different regimes, whereas older adults require some 

training, but once reassured that fast responses are acceptable or even desirable, they are able 

to switch between regimes on a block-by-block basis (Ratcliff et al. 2001, 2003b, 2004).

Surprisingly, both the Hanks et al. (2014) and Heitz & Schall (2012) studies found that the 

firing rate threshold did not change with speed-accuracy instructions, a finding that seems to 

contradict the results of human studies that suggest a change in decision boundaries. 

However, the results for monkeys showed changes in the starting level of activity, with a 

higher level for the speed regime. This is consistent with a dual racing accumulator model in 

which changes in starting point are identical to changes in boundary settings (Forstmann et 

al. 2008, Ratcliff & Smith 2004).

Heitz & Schall (2012) also found a reduction of peak activity in the accuracy regime relative 

to the speed regime. Hanks et al. (2004) proposed a model in which a boost is added to the 

drift rate in a diffusion model in the speed regime. However, there is the question of whether 

monkeys and humans perform the tasks in the same way. This can be examined using RT 

distributions. In the Heitz & Schall study, the RT distributions for the speed and accuracy 

regimes hardly overlap. This is inconsistent with most human studies that use instructions 

(and not time deadlines or signals; e.g., Ratcliff 1988, 2006), in which RT distributions 

overlap to a great degree (Ratcliff et al. 2001, 2003b, 2004b). The relationship between 

speed and accuracy manipulations in humans and monkeys is not yet settled (Cassey et al. 

2014).

In general, much work in the animal area is limited by the lack of explicit modeling of 

behavioral data featuring a thorough quantitative analysis of accuracy as well as the shapes 
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of RT distributions for correct and error responses. If sequential sampling models such as the 

DDM were fit to the data, this would increase the confidence in the theoretical link between 

behavior and neural processes (e.g., Purcell et al. 2010, Ratcliff et al. 2007b).

In sum, the application of sequential sampling models in the arena of low-level cognitive 

neuro-science opens up exciting new prospects. Instead of considering only behavioral data, 

researchers could test the models on additional findings such as neural firing rates. These 

data add useful constraints and allow a deeper understanding of the computational 

mechanisms that ultimately produce overt decisions. The work in this new area can be 

improved further by rigorous modeling of the behavioral data to confirm the validity of more 

qualitative conclusions.

Application in High-Level Cognitive Neuroscience: Measuring Human Brain Activity

The application of sequential sampling models in low-level cognitive neuroscience comes 

with several challenges. For instance, it can be unclear whether monkeys and human carry 

out an experimental task in the same way (Hawkins et al. 2015), compromising the extent to 

which neural firing rate results in monkeys generalize to humans. Furthermore, neural firing 

rates are measured in a select subset of neural structures, making it difficult to assess the 

network dynamics among larger structures such as frontal cortex, premotor cortex, and the 

basal ganglia. These challenges can be addressed by using methods from high-level 

cognitive neuroscience.

Magnetic resonance imaging—In recent years, studies using functional magnetic 

resonance imaging (fMRI) have started to correlate parameter estimates from sequential 

sampling models to the blood-oxygen-level dependent signal obtained from fMRI 

experiments in perceptual decision making. Figure 4 summarizes the results of these efforts. 

The summary includes results from seven fMRI studies focusing on evidence accumulation, 

two studies on decision thresholds, five studies on starting point bias, one study on drift rate 

bias, and one study on nondecision time (Mulder et al. 2014).

Figure 4 shows the relevance of a large variety of brain areas. Several global patterns 

emerge. First, individual differences in the accumulation of evidence are mainly associated 

with regions belonging to the frontoparietal network (top row of Figure 4). Second, 

individual differences in adjusting response thresholds are associated with a frontobasal 

ganglia network. Third, a more complex pattern arises for choice bias, which is associated 

with individual differences in both the frontoparietal and the frontobasal ganglia networks. 

There is only weak evidence for the involvement of brain regions in individual differences in 

nondecision time.

Electroencephalography—A growing number of studies has started to use sequential 

sampling models in combination with human neurophysiology measurement techniques 

such as electroen-cephalography (EEG). The main advantage of these techniques is their 

high temporal resolution, an advantage that is particularly pronounced for the study of 

speeded RT tasks.
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Philiastides et al. (2006) used multivariate pattern analysis to derive spatiotemporal profiles 

of activity that could discriminate between relevant stimulus categories (i.e., face versus car) 

and between different levels of difficulty (i.e., image phase coherence). The results revealed 

an early (170 ms) and a late (300 ms) event-related potential (ERP) component that were 

predictive of decision accuracy. In a later study, Ratcliff et al. (2009) showed that within 

each stimulus coherence level, higher late-component amplitudes were associated with 

higher DDM drift rates. Hence, this study demonstrated that, for nominally identical stimuli, 

the amplitude of a single-trial EEG component can be used to measure and predict the 

quality of information processing.

Other model-based EEG work has tried to elucidate the temporal dynamics of decision 

making. Van Vugt et al. (2012) employed an EEG experiment to disentangle stimulus- and 

response-locked processes using an RDK task. They applied a general linear model 

comparable to event-related fMRI designs including a set of stimulus- and response-locked 

regressors. Their results revealed spectral changes primarily in the theta band (4–8 Hz), a 

frequency band associated with cognitive control processes (Cohen 2014). Importantly, 

changes in the theta band matched the dynamics (i.e., the ramping temporal profiles) of 

evidence accumulation during the decision process. These results are broadly consistent with 

recent work showing that weighting discrete stimuli presented in a series and as an input to 

the accumulation process fluctuated in accordance with delta band (1–3 Hz) oscillations 

(Wyart et al. 2012).

In another EEG study, Cavanagh et al. (2011) used theta power to quantify trial-to-trial 

fluctuations in activation of the medial prefrontal cortex (mPFC). They found that an 

increase in activation of the mPFC—a brain structure thought to be involved in effortful 

control over behavior—was associated with an increase in the DDM boundary separation 

parameter. They argued that mPFC signals response conflict and acts in concert with 

structures in the basal ganglia to increase the response threshold, slowing down response 

execution and hence creating more time for information accumulation.

Similarly, Boehm et al. (2014) had participants perform an RDK task either under speed 

stress or under accuracy stress. Trial-by-trial fluctuations in the adjustment of response 

thresholds under speed stress correlated with single-trial amplitudes of the contingent 

negative variation (CNV), a slow cortical potential that occurs whenever a stimulus prompts 

a participant to perform a task. Based on their results, Boehm et al. (2014) concluded that 

the CNV might reflect adjustments of response caution, which serve to prepare the system 

for action and facilitate quick decision making.

Taking a different approach, Bode et al. (2012) examined how neural activity preceding the 

stimulus affects the later decision process. They used a multivariate pattern classification 

approach to decode choice outcomes in a perceptual decision task from spatially and 

temporally distributed patterns of brain signals. Interestingly, in addition to decoding choice 

outcomes based on pre- and poststimulus activity, the authors were able to show that the past 

history of choices primed the decision process on subsequent trials. More concretely, a 

DDM decomposition revealed that the starting point of the evidence accumulation process 

was shifted toward the previous choice, thereby biasing the choice process.
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In sum, recent work in high-level cognitive neuroscience has employed the DDM 

decomposition methodology and related the estimated parameters to brain measurements 

involving fMRI and EEG; these applications have been varied, concerning individual 

differences, theta power for specific brain structures, and more generally the construction of 

spatiotemporal profiles of brain activity. We expect this area of research to continue its 

ongoing expansion in the near future.

THE DIFFUSION DECISION MODEL IN COGNITIVE NEUROSCIENCE: 

EXTENSIONS

In this section, we show how the basic framework of the DDM has recently been extended to 

account for more complicated phenomena in decision making and their neural 

underpinnings.

Extension to Multi-Alternative Decisions

There is a developing interest in multi-alternative decision-making paradigms such as those 

concerning visual search (Basso & Wurtz 1998, Purcell et al. 2010), motion discrimination 

(Ditterich 2010, Niwa & Ditterich 2008), and other more behavioral tasks (Leite & Ratcliff 

2010, Ratcliff & Starns 2013). Also, confidence judgments in decision and memory involve 

multi-alternative decision making (Pleskac & Busemeyer 2010, Ratcliff & Starns 2013, Van 

Zandt 2002; see also the next section). Many of these approaches compare a variety of 

competing models, and conclusions about what architectures are most promising are just 

being reached.

Compared to the present volume of work on two-choice decision making, only a modest 

amount of research has aimed at modeling both RT and choice proportions in multi-

alternative decisions and confidence judgments. It is clear that the two-choice DDM cannot 

be simply extended to tasks with three or more choice alternatives. However, models with 

racing accumulators can be naturally extended by adding accumulators for each additional 

choice. Some models with racing accumulators become standard diffusion models when the 

number of choices is reduced to two.

Extension to Confidence Judgments

The psychological literature has a long tradition of using confidence judgments to better 

understand decision making and cognition. Probably the main domain of application of 

confidence judgments has been memory research (e.g., Egan 1958, Murdock 1974). In this 

line of research, subjects are often asked to respond on an ordinal many-point scale (e.g., a 

six-point scale ranging from “very sure” for one choice to “very sure” for the other choice).

In the past there have been several attempts to model the response confidence and response 

latency jointly (e.g., Murdock & Anderson 1975, Vickers 1979), but recently researchers 

have proposed more detailed models. Because the confidence choice is an explicit decision, 

the models have different decision boundaries for each choice.
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Sequential sampling models for confidence

In order to model confidence judgments in recognition memory tasks, Ratcliff & Starns 

(2013) proposed a multiple-choice diffusion decision process with separate accumulators of 

evidence for the different confidence choices. The accumulator that first reaches its decision 

boundary determines which choice is made. Five algorithms for accumulating evidence were 

compared and one of them was successful, in the sense that it produced proportions of 

responses for each of the choices and full RT distributions for each choice that closely 

matched empirical data. Within this algorithm, an increase in the evidence in one 

accumulator is accompanied by a decrease in the others, so that the total amount of evidence 

in the system is constant. This is one way in which the two-choice DDM can be generalized 

to multi-alternative decisions (see also Audley & Pike 1965).

Application of the model to experimental data uncovered a relationship between the shapes 

of z-transformed receiver operating characteristics (z-ROC) and the behavior of RT 

distributions. For low-proportion choices, the RT distributions were shifted by as much as 

several hundred milliseconds relative to high-proportion choices. This behavior and the 

shape of z-ROC functions were both explained in the model by the behavior of the decision 

boundaries.

Ditterich (2010) argued that behavioral data alone would not be sufficient to discriminate 

among a number of different multi-alternative models. However, Ratcliff & Starns (2013) 

applied the decision model to a three-choice motion discrimination task in which one of the 

alternatives was the correct choice on a low proportion of trials. Like the shifts for the 

confidence judgment data, the RT distribution for the low-probability alternative was shifted 

relative to the higher-probability alternatives. The diffusion model with constant evidence 

accounted for shifts in the RT distribution better than a competing class of models.

Confidence judgments in animals

The animal domain and the human domain have different definitions or measures of 

confidence. In the animal domain the definition seems to depend on the amount of 

accumulated evidence: the more the evidence accumulated, the more confident the response. 

By contrast, in the human domain the measure seems to depend on an explicit choice on a 

scale, usually among a relatively small number of alternatives. Thus, in the human case, a 

commitment to a level of confidence is made. Humans find it easy to make decisions on 

such scales, but it is likely very difficult to train animals to make such judgments. To assess 

confidence in animals a different kind of task is employed, in which the animals are 

rewarded for correct choices and are offered smaller rewards if they opt out of the task.

Kepecs et al. (2008) performed an odor discrimination task in which stimuli were mixtures 

of two odors. Confidence was identified based on distance from the decision boundary and 

modeling was based only on accuracy. In a delayed version of the task, rats were more likely 

to move to the next trial without waiting for a reward when the stimulus was more 

ambiguous. However, this study only reported and modeled accuracy, although there was 

some discussion of evidence accumulation models.
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Kiani et al. (2014) used a more explicit opt-out task in which, on some trials, monkeys could 

explicitly opt for a lower-value reward rather than risking zero reward. In the experiments, 

responses were given after a delay so that activity in the LIP neurons was maintained until 

the signal to respond, at which point a decision criterion was reached. When recordings were 

made in the area of LIP corresponding to the opt-out responses, there was no strong 

evidence of accumulation to a criterion for these decisions. This means that decisions can be 

made both when activity in a neural population reaches a decision criterion and when it does 

not.

Extension to Value-Based Decision Making

Recent work by Krajbich et al. (2010) set out to understand the role of visual fixation in 

value-based decision making. In an elegant design, they let people choose between options 

associated with different subjective values (e.g., a picture of a candy bar versus a picture of 

an apple) while tracking their eye movements. An extended version of the DDM linking 

choice preference to eye fixations was fit to the eye fixation data. The results show that this 

extended DDM in which fixations are involved in the value integration process could 

provide an excellent fit to the data, providing a new link between fixation and choice data. 

Interestingly, the duration of fixation was predictive of the choice as well as choice biases.

Extension to Changes of Mind

Resulaj et al. (2009) proposed another interesting extension of the DDM, trying to model 

how participants change their mind during decision making. Recall that the DDM proposes 

that a decision is initiated as soon as the accumulated evidence reaches a response boundary. 

Resulaj et al. challenged this assumption by showing that the simple formalism of the DDM 

fails to explain what happens when people change their mind. In their study, people had to 

make a decision about the directionality of a centrally positioned RDK stimulus by moving a 

handle to a leftward or right-ward response location. Changes in the movement trajectories 

of the handle revealed that people occasionally changed their mind. The DDM extension of 

Resulaj et al. allows information that is already in the perceptual processing pipeline to 

influence and possibly overrule the initial decision.

Extension to Dynamic Thresholds

One of the most popular extensions of the DDM introduces the idea of thresholds or 

response boundaries that are collapsing instead of fixed (see Figure 5). The core idea of this 

extension is that decisions are based on less and less evidence as time passes; in other words, 

the decision maker grows increasingly impatient (Bowman et al. 2012, Ditterich 2006, 

Drugowitsch et al. 2012, Thura et al. 2012; but see Hawkins et al. 2015).

A different implementation of collapsing-bound models is through a rising urgency signal 

that is parameterized in a so-called gain parameter. This gain parameter increases with the 

duration of the decision (Churchland et al. 2008, Cisek et al. 2009, Ditterich 2006, Thura et 

al. 2012).

Importantly, the fixed- and collapsing-bound models make different predictions for the shape 

of RT distributions of correct and error responses (Figure 5b). Hawkins et al. (2015) 
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exploited these differential predictions by fitting data from both humans and nonhuman 

primates using different versions of the DDM. The results showed that whereas there is 

occasional evidence for a collapsing-bound DDM, this model outperformed the fixed-bound 

DDM only under certain circumstances, mostly for monkeys and after extensive practice.

CONCLUDING COMMENTS

The last 15 years have witnessed an explosion of interest in sequential sampling models such 

as the DDM. This interest was initially fueled by the realization that sequential sampling 

models provide a principled and plausible account of the macrolevel dynamics of the 

behavior of single cells. Currently this interest has shifted somewhat, and many applications 

in high-level cognitive neuroscience use models such as the DDM to decompose 

performance into its constituent psychological processes, such that brain measurements may 

be connected not to observed behavior, but to specific latent processes of interest.

Another recent shift in interest is evident from research efforts that aim to extend the DDM 

to novel tasks and new dependent variables, and to probe its adequacy under a set of 

circumstances that had not been originally considered. New applications and extensions of 

the DDM now appear on a regular basis, and they constitute one of the most exciting recent 

trends in the neuroscience of speeded decision making. The work described here is a 

testament to the symbiosis that is slowly arising between mathematical psychology and 

cognitive neuroscience; this symbiosis and the accelerated development of quantitative 

models for brain and behavior hold much promise for the future.
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Glossary

Speed-accuracy trade-off
the universal finding that response time can be shortened at the expense of a higher error rate

Diffusion decision model (DDM)
a model of speeded decision making in which noisy information is accumulated over time 

until a threshold of evidence is reached

RDK
random dot kinematogram

Response time (RT)
the time between stimulus onset and response execution in a decision-making task 

performed under substantial time pressure

SPRT
sequential probability ratio test
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Drift rate
parameter in the diffusion decision model that quantifies the information used in the 

accumulation process

Boundary separation
parameter in the diffusion decision model that quantifies response caution and accounts for 

the speed-accuracy trade-off

Model-based cognitive neuroscience
interdisciplinary field that studies cognition by combining insights and models from 

mathematical psychology with measurement tools from neuroscience

Single-cell recording
recordings of spiking activity for individual neurons as measured for instance in monkeys 

and rats

LIP
lateral intraparietal cortex

Functional magnetic resonance imaging (fMRI)
popular brain-imaging technique used to locate brain areas that are relatively active during 

task performance

Electroencephalography (EEG)
popular method for measuring electrical activity along the scalp, used to study the temporal 

aspects of information processing in the brain
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SUMMARY POINTS

1. The DDM provides an excellent account of the law-like patterns 

observed across virtually all speeded RT tasks.

2. The DDM accounts for the relationship between mean RTs and the 

probability of choices (errors and correct responses) in both healthy 

and diseased populations.

3. One of the main reasons for the current popularity of diffusion models 

in neuroscience is the behavior of single neurons of monkeys (and 

occasionally rats) performing simple decision-making tasks.

4. In addition, fMRI and EEG data show specific neural patterns related to 

DDM model parameters, thereby offering the promise of a mechanistic 

understanding of latent cognitive processes.

5. Extensions of the DDM include multiple-choice behavior, confidence 

judgments, value-based decision making, and dynamic decision 

thresholds.

6. A DDM decomposition of choice performance provides numerous 

benefits, both for a purely behavioral analysis and for a model-based 

cognitive neuroscience approach.
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FUTURE ISSUES

1. How do people set and adjust criteria for response caution? The speed 

with which people achieve relatively stable criteria suggests that they 

bring to bear substantial prior knowledge.

2. To what extent can the DDM prove useful in examining deficits in 

various neuropsychological disorders?

3. How can the DDM be extended to more complex and multistage 

decision making?

4. What exactly is the relation between latent processes in the DDM and 

key structures in the human brain (e.g., control structures in the basal 

ganglia and structures that support working memory processes in the 

frontal cortex)?

5. How can we build truly integrated models of decision making, that is, 

models that include knowledge of how motor processes are 

implemented in motor cortex and the oculomotor system?

6. To what extent can the DDM be applied to more deliberate economic 

decision making?

7. Will the DDM be able to quantitatively account for choice behavior in 

groups of animals?

8. To what extent can the DDM be used to jointly model behavioral and 

neuroscience data pertaining to clinical populations?
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Figure 1. 
Schematic representation of the diffusion decision model. Figure adapted with permission 

from Mulder et al. (2012).
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Figure 2. 
The model-in-the-middle approach unites the separate disciplines of experimental 

psychology, mathematical psychology, and cognitive neuroscience in the common goal of 

understanding human cognition. The red double-headed arrow indicates the reciprocal 

relation between measuring the brain and modeling behavioral data. Figure adapted with 

permission from Forstmann et al. (2011).
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Figure 3. 
Immediately before monkeys execute a saccade, all trials reach a stereotyped firing rate. 

This dynamic is consistent with that of a diffusion model with evidence accumulation to a 

fixed threshold. Abbreviation: RT, response time. Figure adapted with permission from Gold 

& Shadlen (2007).
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Figure 4. 
Summary of peak coordinates reported in functional magnetic resonance imaging (fMRI) 

studies that correlate blood-oxygen-level-dependent activation with parameter estimates 

from sequential sampling models. The size of each sphere is proportional to the number of 

studies that reported a specific region of interest. Only studies reporting whole-brain 

analyses were included. Figure adapted with permission from Mulder et al. (2014).
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Figure 5. 
A standard fixed-bound diffusion decision model (DDM) versus a collapsing-bound DDM. 

(a) The DDM with fixed (dashed ) or collapsing (solid ) response boundaries. Models with 

collapsing boundaries can terminate the evidence accumulation process earlier than models 

with fixed boundaries, resulting in faster decisions. (b) The ways in which the models lead to 

different predictions for response time distributions, particularly in the tails. Figure adapted 

with permission from Hawkins et al. (2015).
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