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Abstract

The side population (SP) assay, a technique used in cancer and stem cell research,
assesses the activity of ABC transporters on Hoechst staining in the presence and absence
of transporter inhibition, identifying SP and non-SP cell (NSP) subpopulations by differential
staining intensity. The interpretation of the assay is complicated because the transporter-
mediated mechanisms fail to account for cell-to-cell variability within a population or ade-
quately control the direct role of transporter activity on staining intensity. We hypothesized
that differences in dye kinetics at the single-cell level, such as ABCG2 transporter-mediated
efflux and DNA binding, are responsible for the differential cell staining that demarcates
SP/NSP identity. We report changes in A549 phenotype during time in culture and with
TGFp treatment that correlate with SP size. Clonal expansion of individually sorted cells re-
established both SP and NSPs, indicating that SP membership is dynamic. To assess the
validity of a purely kinetics-based interpretation of SP/NSP identity, we developed a compu-
tational approach that simulated cell staining within a heterogeneous cell population; this
exercise allowed for the direct inference of the role of transporter activity and inhibition on
cell staining. Our simulated SP assay yielded appropriate SP responses for kinetic scenar-
ios in which high transporter activity existed in a portion of the cells and little differential
staining occurred in the majority of the population. With our approach for single-cell analy-
sis, we observed SP and NSP cells at both ends of a transporter activity continuum, demon-
strating that features of transporter activity as well as DNA content are determinants of SP/
NSP identity.

Author Summary

A common method of evaluating stemness among pluripotent cells or cancer cells is the
side population assay, a flow cytometry technique which identifies a subgroup of cells that
exhibit differences in dye fluorescence upon blocking of a membrane transporter. A tech-
nical limitation of this assay is that it relies on two independent experimental conditions,
with and without a transporter inhibitor, preventing evaluation of single cell
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characteristics that generate population-level shifts in fluorescence. Here, the computa-
tional implementation of various forms of cellular heterogeneity allows for ensemble sin-
gle-cell simulations to be performed in order to assess the underlying properties that give
rise to the population-level behavior. We simulated staining in 10,000 kinetic ensembles
consisting of 1,000-cell populations with and without inhibitor to determine which cells
respond in the assay. We quantitatively establish that a small, responsive subgroup of cells
with nonlinear activities associated with transporter number are most likely to recapitulate
observed behavior in the side population assay; however, a continuum of phenotypes at
different stages of the cell cycle and with a range transporter expression levels will shift
fluorescence. We present a new perspective on the phenotype of SP cells at the single-cell
level that is determined by biological and experimental kinetic processes, and is not equiv-
alent to a cancer stem cell phenotype.

Introduction

The side population (SP) assay is used to identify stem cells by flow cytometry through the
characteristic of enhanced dye efflux mediated via ATP-binding cassette (ABC) transporters
[1]. The SP was first identified by Goodell et al. as hematopoietic stem cells in samples of
murine bone marrow aspirate [2]. The role of the SP has since expanded to serve as a means to
identify stem cell populations based, primarily, on ABCG2 activity 3], though additional ABC
transporters, such as P-glycoprotein/ABCB1, can also mediate formation of a SP [4]. ABCG2,
also known as breast cancer resistance protein (BRCP), can mediate multidrug resistance
(MDR) in breast [5-9] and other cell lines [10-14]. The SP has been implicated in numerous
cancers as a harbinger of MDR-mediated chemoresistance [15-18] and cancer stem cells
(CSCs) [19-22] in in vitro cancer cell lines; thus the presence of a SP is understood as an unde-
sirable indicator.

SPs are identified by splitting samples into conditions with and without an ABC transporter
inhibitor followed by Hoechst staining, which enables population-level comparison of differ-
ences in cell staining due to ABC transporter activity between the two conditions (Fig 1A).
Blocking of transporter mediated Hoechst efflux by the inhibitor serves as a basis for compari-
son of cell staining in the condition without the transporter inhibitor (Fig 1B). When compar-
ing the two conditions, SP cells are observed as a population with decreased staining in the
lower left of the Hoechst Red and Blue staining plot (Fig 1A).

The basis of differential staining is thought to be driven by impaired dye efflux in the pres-
ence of ABC transporter inhibitor, with SP cells exhibiting high-ABC transporter activity and
decreased staining compared to low-ABC transporter-activity NSP cells with uninhibited
transporter activity [3,23,24]. Although the kinetic, ABC transporter-mediated mechanism is
universally accepted as the basis for differential staining of cell populations in the +inhibitor
and -inhibitor conditions of the SP assay, differences in cell staining due to transporter activity
have not been demonstrated from a kinetic perspective nor at the single-cell level. This gap in
knowledge persists due to a technical limitation that precludes an individual cell from Hoechst
staining in both +inhibitor and -inhibitor conditions, thereby preventing any measurement of
shifts of individual cells within the population distribution. Therefore, it is unclear how the het-
erogeneity of ABC transporter activity within a population influences staining characteristics
in the +inhibitor and -inhibitor conditions of the SP assay and unclear how the heterogeneity
in transporter activity is reflected in individual cells of the SP and NSP. We hypothesize that

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005188 November 16, 2016 2/35



BIOLOGY

®'PLOS

COMPUTATIONAL

Kinetic Modeling of ABCG2 Transporter Heterogeneity

A SP Assay Workflow

@ Sample

B Hoechst Transport Schematic

ABC Transporter

C Single-Cell Kinetic Model Schematic
k

5
®|nhlblt0r Extracellular o @ Extracellular
Incubat|on +ABC Inhibitor - ABC Inhibitor Space Transporter- Transporter Space
i o e R &
+ Inhibitor - Inhibitor Inhibition Transporter 4
Efflux Hoechst
@ Passive e DNA
@Hoechst Staining LSe Extracellular TN\oiusion Binding
TN / Hoechst k, Passive £ Nuclear Sltes
Inhibitor . Passive Diffusion Hoechs!
Diffusion
@Flow Cytometry ONA . Cytosolic Hoechst/DNA
Bindi
el g DNA Binding . K, Rt
/ SP Gate Si Gate Intracellular Kinetics
.......... Nuclear
.®\ f@ Space k Tlansporter
DNA-Bound DNA Bound
@ Hoechst Hoechst
+ Inhibitor § |£ - Inhibitor
Condition '- Condition

Measure %SP

Fig 1. Hoechst Staining Overview and SP Assay Conceptual Model. (A) Experimental workflow of sample preparation and processing in a SP assay.
Each sample (1) is split into two conditions, with (+inhibitor) and without (-inhibitor) the ABC transporter inhibitor (2). Both conditions are then stained with
Hoechst 33342 (3) and the resultant fluorescence measured via flow cytometry (4). The +inhibitor condition is used to define a gate for the non-side
population (NSP) region (5), which is then applied to the -inhibitor condition (6) to identify the SP region (green box), which is measured as percent of the
parent population (7). (B) Schematic of the Hoechst transport processes presumed to underlie the SP assay. Hoechst 33342 passively diffuses into the cell,
where it is transported out of the cell via transporter (-inhibitor condition) or binds to DNA. For the +inhibitor condition, a small molecule compound inhibits
the transporter, preventing transporter-mediated efflux. (C) Hoechst staining dynamics were simulated at the single-cell level with each cell represented by a
set of ODEs governed by mass-action kinetics in a well-mixed three-compartment system. The species, compartments, and reactions are depicted. Each
cell differs from the rest of the population in terms of volumes, surface areas, transporter properties, and DNA content. Within a given population, all the cells
share a common set of kinetic parameters (k).

doi:10.1371/journal.pcbi.1005188.g001

specific distributions of ABC transporter activity in a population, representing the heterogene-
ity of transporter activity at the single-cell level, will exhibit differential cell staining as is
observed in the SP assay.

In this study, we employ experimental and computational approaches to demonstrate the
kinetic nature of the SP assay and the dynamic nature of the SP/NSP phenotype. Experimen-
tally, we investigated SP formation in the A549 lung carcinoma cell line with Hoechst 33342
staining and inhibition of ABCG2 with the inhibitor Fumitremorgin C (FTC) [25,26]. We pres-
ent a novel computational approach for simulating heterogeneity in transport kinetics, using
mass-action kinetic reactions inspired by the conceptual model of Hoechst staining the SP (Fig
1B and 1C), at the single-cell level across a population. The population-level model is used to
demonstrate the validity of the transporter-mediated kinetic interpretation of the SP assay. The
approach enables in silico staining of an identical cell population in both inhibitor-free (-FTC)
and inhibitor-containing (+FTC) conditions with subsequent single-cell analysis of the role of
transporter variability on cell staining. In this manner, we investigated the role of heterogeneity
in transporter expression, activity, and kinetics at the single-cell level on the formation of the
side population.

Results
SP Phenotype is Dynamic & Correlates with ABCG2 Expression

A549 lung carcinoma cells were expanded in culture for 4 days prior to measurement of the SP
by the Hoechst staining assay (Fig 1A). We observed an initial 18% SP in A549 cells (S1A Fig),
which was eliminated by treatment with TGFp (S1B and S1C Fig). TGEp treatment for 4 days
resulted in epithelial-mesenchymal transition (EMT), indicated by down-regulation of E-cad-
herin and up-regulation of N-cadherin (Fig 2A and S2 Fig), as well as down-regulation of
ABCG?2 (Fig 2B and S2 Fig). SP percentage was correlated with ABCG2 expression (Fig 2C).
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Fig 2. Surface Marker Staining & SP Size Following TGFB-Mediated EMT. Surface marker expression measured via
flow cytometry after staining with anti-PE-CF594/E-Cadherin, PE/N-Cadherin (A), and APC/ABCG2 (B) antibodies on
live A549 cells following 4-day treatment with 0, 1, 10, and 100 pM TGFp. Surface marker staining data were obtained
from 3-color staining, with compensation, from 3 biological replicates. Values are plotted as the geometric mean + 95%
confidence interval of the sample geometric mean fluorescence intensities (GMFI). A significant difference from the 0 pM
TGFB condition was determined with a two-way ANOVA, p<0.05, and are indicated by asterisks (*). (C) Mean %SP
versus ABCG2 expression for the Day 4 condition from the SP time course experiment, along with a best-fit line from a
linear regression, R% shown, and 95% confidence interval. (D) SP size measured by projection gating with increasing
time in culture (up to 6 days) and TGFp. Performed in triplicate and plotted as mean + SEM.

doi:10.1371/journal.pcbi.1005188.9002

We developed an algorithmic approach for objective quantification of SP size using a
Hoechst staining threshold to define the gate that delineates SP and NSP regions (S3 Fig).
Although suggestions have been made for standardizing the reporting of SP assay results [1],
gating protocols vary considerable in the literature. Here, we defined Hoechst staining intensity
as the x-y projection of z-score transformed Hoechst Red and Blue raw signals with a threshold
set at the 1** percentile in the +FTC condition. This projection gating approach demonstrated a
strong correlation (R* = 0.98, S4B Fig) between manual and automated algorithmic measure-
ment of percentage SP.

To further elucidate the role of TGF on SP size, we made serial measurements of SP size
using our projection gating method. A549 cells were expanded in culture for 4 days without
TGEF treatment and then passaged. On the subsequent day (Day 0), treatment with 0, 1, 10,
and 100 pM TGEFp was started and SP size was measured at 2 day intervals (S4A Fig). On the
day of passage, Day 4, the SP constituted 20% of the cell population; however, following cell
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passage, the SP consisted of 2% of the population (Fig 2D). In the following days, SP size
increased and plateaued near 20% in the control condition. With increasing amounts of TGF
exposure, the repopulation of the SP attenuated in a dose-dependent manner (Fig 2D).

We derived clonal populations of A549 cells by expanding individual low- and high-
ABCG?2 expressing cells to determine whether subclones within the A549 cell line define either
the SP or NSP subpopulations. Cells were labeled with anti-ABCG2 antibody and 96 high-
ABCG2 expressing and 96 low-ABCG2 expressing cells were sorted into individual wells of a
96 well-plate (S5A Fig). Most cells failed to form colonies; however, following expansion of
individual cells for 30 days, all surviving cells demonstrated both SP and NSP cells (S5B Fig).

Collectively, these results indicate that the SP within the A549 cell line is dynamic with
respect to cell phenotype (Fig 2A), cyclically variable in culture (Fig 2D), and is not genetically
distinct from the NSP (S5 Fig).

SP & NSP Are Not Distinct Subpopulations

The study of side populations has been limited by the approach to define the SP, which relied
on manually defined gates to define a boundary between SP and NSP regions within the
Hoechst Red and Hoechst Blue plot. In the development of our automated projection gating
approach to measure SP size, we closely examined numerous aspects associated with SP data.
A key observation was that the SP and NSP are not clearly separated within the-FTC condi-
tion. We observed a continuous staining distribution in both Hoechst Red and Blue channels
of the-FTC condition, which is redistributed towards lower signal intensities compared to the
+FTC condition (S6A and S6B Fig). The decrease of mean Hoechst signal intensity in the-FTC
condition, compared to the +FTC condition, correlated with increased SP size (S6C Fig).

The intensity of both Hoechst Red and Blue staining is greatly reduced in the conventional
binary assignment of cells into SP or NSP subpopulations. We sought to develop analytical
methods to enable characterization of staining data from the SP assay with greater preservation
of staining information. We processed the Hoechst Red and Blue flow cytometry signals into
2-dimensional population density functions (PDF) for both the +FTC (PDF, grc) and-FTC
(PDF _grc) conditions, which converted raw data into normalized data sets (S3 Fig). This
allowed us to directly compare spatial differences in staining intensity in the +FTC and-FTC
conditions by subtracting the PDF, g1 from the PDF gr¢ to define the AFTC density for a
given sample (Fig 3A). Conversion of the raw data into PDFs was critical because it allowed for
direct comparison of flow cytometry samples of un-equal event counts. An increased cell popu-
lation density in the-FTC condition compared to the +FTC condition is visualized as a red sig-
nal whereas blue indicates decreased population density. By converting raw data into PDFs
and thereby normalizing, we able to make quantitative comparisons in spatial staining intensi-
ties between +FTC and-FTC conditions of a particular sample. Furthermore, we are also able
to compare the differences in staining redistribution (AFTC) between different samples by tak-
ing the difference between respective AFTC densities to compute the ASP density (Fig 3B).
These methods enable visualization of the influence of ABCG2 inhibition on staining while
preserving the quantitative aspects of staining intensity and density.

We analyzed the influence of tert-butylhydroquinone (tBHQ) on ABCG2 activity and SP
size using an imaging cytometer using these data analysis steps. Following 48 hours of 50 uM
tBHQ treatment, A549 cells (4 days post-passage) were found to have and increased SP size
from 6% to 9% (S7 Fig). The red signal within the AFTC plots reflected the presence of the SP
in each sample; similarly, the red signal within the ASP plot reflected the increased SP size in
the tBHQ-treated sample compared to the control (Fig 3C). Comparing differences in the
TGEFpB-treated samples shown in Fig 2 (S8 Fig), we observe decreased staining present in the-
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Fig 3. Visualizing Differences in Distributions with AFTC & ASP Plots. Differences in Hoechst Score PDFs are used to compare differences between
+FTC and -FTC conditions as well as between samples. (A) The difference between PDF_grc and PDF_g1¢ for the control sample is represented by the
AFTCcontrol plot. (B) Differences between AFTCcqonirol and AFTCrgrp are represented in the ASPrggg plot. (C) Differences in PDF density between PDF_gr¢
and PDF, k¢ are displayed as AFTC distribution plots for control and tBHQ-treated conditions plotted against Hoechst Red and Blue Scores. Differences in
AFTC distributions from the control sample AFTC distribution are displayed as ASP distributions for the control and tBHQ-treated samples. AFTC and ASP
distributions are averaged from three replicates.

doi:10.1371/journal.pcbi.1005188.9003

FTC condition without arbitrary segregation SP and NSP subpopulations from a continuous
staining distribution.

Modeling Transporter Heterogeneity in an In Silico Population

We developed an approach for modeling of the SP assay to investigate the role of transporter
heterogeneity within the cell population on the generation of SP and NSP responses of individ-
ual cells. At the cellular scale, we considered the influence of transporter activity in a mass-
action kinetic model to simulate Hoechst transport dynamics and cell staining. At the popula-
tion scale, we considered the role of heterogeneity in the cell population, defined by variation
in transporter properties and cell morphology. We defined an ensemble as the pairing of a par-
ticular set of kinetic constraints with all of the staining simulations for an in silico population.
Having sampled M = 10,000 sets of kinetic rate constants (K), we have then had 10,000 ensem-
bles with in silico staining results that we then compared to our experimental data to assess the
ensemble for a SP response at the population level. We then analyzed the influence of trans-
porter properties on staining results at the single-cell level for ensembles demonstrating a SP
response.

Each of the cells in the N = 1,000 cell in silico population was uniquely defined by parame-
ters for cell volume, cell membrane surface area, nuclear volume, nuclear membrane surface
area, DNA content, and transporter heterogeneity (Fig 4A). Morphological parameters for
each cell were sampled from corresponding experimental distributions using Latin hypercube
sampling (LHCS), which ensured that the resulting in silico population faithfully represented
the experimental distributions (S9 Fig and S10 Fig). Staining of the in silico population was car-
ried out for each individual cell under 4 different levels of transporter expression, T;-Tj, corre-
sponding to distributions derived from 0, 1, 10, and 100 pM TGEFp-treated cells (S10 Fig),
under +FTC and-FTC conditions. Single-cell staining simulations consisted of a compartmen-
tal mass-action kinetic model of intracellular dye transport processes, governed by kinetic rate
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Fig 4. Multiscale Ensemble Approach to Modeling SP Responses. (A) First, a heterogeneous in silico cell
population was generated from experimental distributions, which was then paired with each of the kinetic
parameter sets that were derived from Latin hypercube sampling of parameter space. The cell population was
implemented in 4 different transporter-variant versions, where relative transporter expression was derived from
experimental data. An ensemble is defined as a pairing of a particular parameter set with the variety of populations
for which it is simulated. Three different models of transporter activity heterogeneity were implemented. (B) For
each ensemble, each of the 4 transporter-variant populations were underwent simulated Hoechst staining at the
single-cell level both with (+FTC) and without (-FTC) transporter inhibition. Using in silico flow cytometry, the
Hoechst concentrations following kinetic staining simulation were converted into Hoechst Red and Blue signals
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using a linear transformation that incorporates spectral excitation and emission properties of simulated Hoechst
dye and flow cytometers. (C) In silico flow cytometry signals were converted into Hoechst Scores and Hoechst
Score PDFs. Projection gating objectively assess SP size. Hoechst Score PDFs were used to measure AFTC and
ASP distributions. (D) Hoechst staining metrics of Scores, PDFs, AFTC, and ASP were used to identify models
exhibiting SP responses by comparison to corresponding experimental metrics. Ensembles meeting qualitative
selection criteria are then scored according to their similarity in %SP to experimental data. Ensembles
demonstrating SP responses were then analyzed on a single-cell level and the distribution of single-cell SP
responses analyzed.

doi:10.1371/journal.pchi.1005188.9g004

constants for the given ensemble and the morphologic parameters associated with the cell (Fig
4A and Fig 1C). Following simulation of each of the cells in a population, the final dye concen-
trations of the samples were processed via in silico flow cytometry to determine Hoechst Red
and Blue signals (Fig 4B and S11B, S11C and S11D Fig). Simulated +FTC and-FTC conditions
were used to measure SP size, PDF, grc, PDF_gre, AFTC, and ASP distributions for each of the
4 transporter expression levels (T;-T,; Fig 4C), which were then compared to corresponding
values from the experimental data (Fig 4D). Ensembles were determined to have an SP
response if each of the following criteria were met: 1) the change in mean Hoechst Red Signal
(AHRS,;an) and Hoechst Blue Signal (AHBS,,,...,,) were negative when comparing the-FTC to
the +FTC condition (indicating decreased staining in the-FT'C condition); 2) PDF, grc, PDF.
rrc distributions overlapped (indicating the presence of a NSP); 3) the cross-correlation
between experimental and in silico AFTC and ASP distributions was positive (indicating simi-
larity in spatial response distributions); and 4) in silico SP sizes correlated with experimental
SP sizes for the 4 transporter expression levels (indicating a consistent decrease in SP size with
decreasing transporter expression levels). Ensembles producing a SP response were further
analyzed at the single-cell level to investigate the influence of transporter properties on SP/NSP
status and differential staining the +FTC and-FTC conditions.

We independently implemented 3 different modes of transporter heterogeneity within the
in silico cell population to assess the role of transporter heterogeneity in the formation of SP
responses in the SP assay. In the first mode of transporter heterogeneity (I), the concentrations
of transporter across the population is uniform, which due to the heterogeneity in cell size,
leads to a distribution of transporter numbers within the population. In the second mode of
heterogeneity (II), the number of transporters per cell across the population is uniform, gener-
ating a distribution of transporter densities within the population. For the first two modes, uni-
form number and densities of transporters for the T;-T, expression levels were determined by
mean values of ABCG2 expression from flow cytometry data (Fig 2B). We explicitly designed
the third mode of heterogeneity (III) to be more expansive than the first two modes. In this
mode, transporter expression within the populations were sampled from experimental distri-
butions of ABCG2 expression (S10A Fig) as part of the LHCS approach in generating the in sil-
ico population. Further, we enabled a non-linear relationship between transporter expression
levels and transporter activity levels at the single cell-level. This mimics cooperativity in which
higher transporter levels led to greater transporter activity than would be accounted for by a
simple 1-to-1 correspondence between expression and activity. We implemented this modeling
approach to assess the relationship between transporter heterogeneity and SP responses for the
3 modes of transporter heterogeneity.

Heterogeneity of Kinetic Transport Processes Generate SP Responses

In our modeling approach, the primary aim was to identify the ensembles in which an SP
response resulted. Again, an ensemble consisted of the simulated staining of the in silico cell
population using a specific set of governing kinetic rate constants (K;) for a particular mode of
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transporter heterogeneity in both +FTC and-FT'C conditions for each of the T;-T, transporter
expression levels. For each mode of heterogeneity, we assessed M = 10,000 kinetic rate constant
sets (K) for an SP response with less than 5% of the simulation ensembles aborted due to time-
out for long simulation time and with SP responses only identified in a small subset, ~5%, of
successfully completed ensemble simulations (S15 Fig). In addition, the range of SP responses
for each of the modes exhibited a similar quality of fit to experimental SP size (S16 Fig) and a
wide range of kinetic rate constants were permissive of SP responses (517 Fig). An increased
frequency of ensembles with SP responses was observed in the concentration (I) and number
(II) modes of heterogeneity with larger transporter expression slopes (kg; S17A and S17B Fig),
in which a larger kg value corresponds to greater discrepancy in expression between T;-T, con-
ditions. Similarly, in the experimental distribution mode of heterogeneity (III), an increased
frequency of SP responses resulted in ensembles with greater non-linearity (kg, ko; S17C Fig).
Having met the selection criteria, ensembles exhibiting an SP response were analyzed at the
single-cell level for features.

Experimentally, SP responses are apparent when a subpopulation of cells stains less intensely
in the-FTC condition compared to the +FTC condition. Using our ensemble modeling approach,
we were able to simulate SP responses in heterogeneous in silico cell populations. The simulated
flow cytometry data generated during the simulations was analyzed using the same approaches
for experimental SP data, yielding outputs of SP size, PDF, grc, PDF prc, AFTC, and ASP distribu-
tion data for the T;-T, conditions (Fig 5A). We observed subtle differences in the staining patterns
of SP. cells, in which some responses exhibit relatively fewer SP cells with a more significant
decrease in cell staining (subsequently defined as a Subpopulation Response). In contrast, other
responses had more SP cells with a less significant decrease in cell staining (subsequently defined
as a Full Response) between +FT'C and-FTC conditions. Experimentally, such differences could
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Fig 5. Simulated Staining Population Distributions and Single-Cell Responses. Output from ensembles producing a Subpopulation (above) and
Full (below) response are shown. (A) Population densities and differences in staining between simulated +FTC and—FTC conditions demonstrate SP
responses and can be compared to corresponding experimental conditions for the untreated control (S1 Fig & S2 Fig). (B) Histograms of the change in
staining between +FTC and—FTC conditions for single cells. (C) Plot of the change in staining between +FTC and—FTC conditions for single cells (y-axis)
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relative frequencies of single-cell -AH,,; distributions for Subpopulation and Full response types.

doi:10.1371/journal.pcbi.1005188.9005

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005188 November 16, 2016 9/35



®'PLOS

COMPUTATIONAL

BIOLOGY

Kinetic Modeling of ABCG2 Transporter Heterogeneity

only be investigated at the population level due to technical limitations; however, we designed our
modeling approach to circumvent these limitations.

A key advantage to our modeling approach was in the consistency of the cell population for
staining simulations, in which an identical cell population could be seeded for both +FTC and-
FTC conditions. Furthermore, the same in silico population was consistent within an ensemble,
with the exception of transporter expression by T;-T, conditions, and from ensemble to ensem-
ble, differing only by the respective set of governing kinetic rate constant sets. This permitted a
level of comparison that would be impossible in an experimental setting. For example, we were
able to reduce Hoechst Red and Blue scores onto an x-y projection, as is done in the projection
gating method, to obtain a single staining metric for each cell. Because the same in silico cell pop-
ulation was used for both +FTC and-FTC conditions, we were then able to compute the differ-
ence in Hoechst staining projection scores (-AHp,.;) on a cell-by-cell basis. A larger -AH,,,;
corresponds to a greater decrease in staining in the-FTC condition compared to the +FTC condi-
tion, thus indicating a greater influence of transporter activity on staining intensity.

Next, we investigated the relationship between the distribution of single-cell -AH,,.; responses
with a population and the staining pattern of SP cells for a given ensemble. In plotting histograms
of -AH,,; values we were able to appreciate patterns in responses (Fig 5B). In one pattern, we
observed a -AH,,;
increasing -AH,,,; values (Fig 5B top). This indicates that transporter inhibition had little to no
effect on staining in a majority of the cells but greatly influenced staining in a portion of the cells.
We described such a scenario as a Subpopulation Response. Contrastingly, in the Full Response,
the entire population exhibits non-zero -AH,,,; values and a more normal-like distribution (Fig
5B bottom), indicating that staining of each cell in the population was affected by inhibition of
transporter activity as well as consistency in the magnitude of this effect.

The nature of our modeling approach enabled us to characterize a great number of relation-
ships not possible experimentally. We compared the influence of transporter inhibition on
proj) against staining intensity in the-FTC condition (H,;-FTC; Fig
5C). In the Subpopulation Response, we observed SP cells with little influence of transporter
inhibition on staining as well as NSP cells with significant influence of transporter inhibition

distribution with the greatest number of -AH,; values near zero and a tail of

staining intensity (-AH

(Fig 5C top). In the Full Response, we observed NSP cells with greater influence of transporter
inhibition on staining (Fig 5C bottom). Similar comparisons were made to +FT'C conditions
and by transporter numbers (S19 Fig).

While both were capable of generating SP sizes consistent with experimental data, the Sub-
population Responses (S13 Fig) and Full Responses (S14 Fig) differed. In the Subpopulation
Response, the range of staining differences, apparent in the AFTC distribution, varied across
transporter expression levels (S13D Fig), which was similar to experimental observations
(AFTC; S8D Fig). However, in the Full Response, the range of staining in the (514 Fig) AFTC
distributions was consistent across the range of transporter expression levels, varying in inten-
sity (S14 Fig). From a kinetic perspective, decreasing transporter levels in the Subpopulation
Response was associated with a reduction in the portion of cells influenced by transporter inhi-
bition (S18A Fig) while in the Full Response it was associated with a decrease in the magnitude
and variability of the -AH,,,,; magnitude within the population (S18B Fig).

For most ensembles, the -AH,,,; response distributions were not clearly Subpopulation or
Full Response in nature, rather most exhibited aspects of both. To more objectively characterize
the -AH,,,; responses, the distributions were evaluated by standardized skewness and bimodal-
ity coefficient (Fig 6). Standard skewness is a metric that quantifies asymmetry of the distribu-
tion while the bimodality coefficient quantifies the similarity between the distribution and a
purely bimodal distribution (520 Fig). Both transporter number (I) and concentration (II)
modes of heterogeneity had a greater tendency to generate -AH,,; distributions more closely
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Single-Cell SP Response Distribution Map
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Fig 6. Characterization of Single-Cell SP Response Distributions. The distribution of single-cell SP responses
(-AHpro)) of each ensemble exhibiting a SP is depicted by its standard skewness and bimodality coefficient.
Distributions from each model are plotted according to their asymmetry along the x-axis (standardized skewness)
and similarity towards bimodality along the y-axis. Subpopulation responses had both relatively high bimodality
coefficients and standardized skewness while Full responses had low bimodality coefficients and standardized
skewness. A qualitative interpretation of the response distribution map is shown in S20 Fig.

doi:10.1371/journal.pcbi.1005188.9006

resembling the Full Response with greater distribution symmetry and bimodality coefficients
similar to a normal distribution (blue and red; Fig 6). Ensembles with SP responses generated
in the experimental distribution of transporter heterogeneity (III) were more varied, ranging
trom Full Responses to Subpopulation Responses (green; Fig 6). The overall spread of distribu-
tion mappings in this plot demonstrates a consistency of SP responses arising from -AH,,,; dis-
tributions that are roughly normal and have a right-sided tail of variable magnitude.

proj

Discussion
Kinetic Determination of SP Response

SP cells arise through ABC transporter activity; however, the technical limitations that prevent
staining of specific cells in both inhibitor-free and inhibitor-containing conditions have
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prevented direct measurement of the influence of transporter activity on Hoechst staining a the
single-cell level. Our novel computational approach to in silico staining of a cell population in
numerous conditions, differing only by transporter activity, revealed that specific distributions
of kinetic transport heterogeneity within a population can alone account for the formation of a
SP, independent of genetic or other phenotypic traits, such as CSC. This biological insight was
obtained by the pairing of flow cytometry distribution data with a novel computational
approach for modeling dye kinetics at the single-cell level. This builds on similar approaches
by You et al that demonstrated cell-to-cell variability and heterogeneity in gene expression can
govern biphasic responses to extracellular cues [27] and that variability of bacterial uptake by
hosts are governed in a probabilistic manner determined by host receptor expression levels
[28]. It is increasingly understood, even within clonal/isogenic populations, that noisy or vari-
able gene expression leads to heterogeneity within a population and can contribute to differ-
ences in phenotype [29-32]. A role for noisy gene expression in generating diverse phenotypic
responses in clonal population has been supported both experimentally and computationally;
further, it has been postulated as a mechanism of “bet hedging”, thereby conferring survival
advantages in stressful or alternate environments [33-37].

The kinetic aspects involved in the SP assay caused us to more carefully consider the signifi-
cance of SP/NSP discrimination. SP/NSP phenotype are not strictly defined by inheritance or
genetic factors, as is indicated by the fact that SP and NSP cells emerge in clonal populations
derived from single-cell sorting (S5 Fig) and by reports that describe the interconversion
between SP and NSP phenotypes from isolated cell populations [20,38,39]. Further, in our
modeling, we observed a range of transporter activities in SP and NSP cells (Fig 5C), suggesting
that not all SP cells have high transporter activities and not all NSP cells have low transporter
activities. This can be attributed to the interplay between heterogeneity in transporter activity
within the population as well as relative differences in DNA content across the population,
which alters that staining potential in the SP assay [40]. Thus, the SP phenotype of a specific
cell is not discretely defined by membership in a homogenous subpopulation; rather it is a
kinetically defined property, inextricably defined by the specific experimental conditions.

Variability in SP Size

We observed SP sizes ranging from 2% to 20% in the A549 cell line (Fig 2D), which is consis-
tent with reported SP sizes of 2.5% to 30% for A549 cells in the literature [21,38,41-45]. We
observed consistent measures of SP size with reproducible trends with increasing time/passage
in culture and decreasing exposure to TGF (Fig 2D). It should be noted that SP size is deter-
mined by the specific experimental conditions in the SP assay, the analytic technique employed
by the investigators [1,46-48], and the conditions in which samples are maintained in culture
[39,45]. Additional variability may arise from discrepancies in gating SP/NSP regions in
cytometry data [21,38,41-45], which is highly subjective and inconsistent and complicated by
the fact that SP and NSP staining regions are continuous with no self-evident border of separa-
tion (S6A and S6B Fig).

Proper gating to exclude erroneous events is key to accurate SP measurement as cellular
debris or dead cells may be mistaken as SP cells. Apoptotic cells, for instance, lie near the SP
staining region with greater decreased Hoechst red signal than Hoechst blue signal [1]. Failure
to properly exclude these events could result in misclassification of this population as SP when
using manual gating methods thereby falsely elevating SP size. The automated SP measurement
we described provides an objective measure of the SP without user bias; however, the reliability
of the output, %SP, is highly dependent on the input, Hoechst red and Hoechst blue intensities
of cytometry events. To ensure the quality of our input we sequentially excluded cellular debris,
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multiple events, and dead cells in the gating tree to define the final Hoechst Red and Hoechst
Blue stained cells as recommended by Golebiewska et al. [1]. Further method development
may be necessary to consider scenarios with large apoptotic populations in order to properly
exclude such events from the final analysis.

Encouragingly, the automated methods we have described may have potential to measure
SP size despite the presence of apoptotic cells as these cells would be expected to stain similarly
in -inhibitor and +inhibitor conditions. While an apoptotic population may underestimate SP
size by falsely lowering the 1 percentile level in the projection gating method, the staining dif-
ferences between +inhibitor and -inhibitor conditions would be negated in the AFTC distribu-
tion. Therefore, the Hoechst staining density distributions may be further developed for SP
measurements. While automated methods hold promise for objective measurement of SP size,
we empbhasize that additional studies will be necessary to establish validity of such measure-
ments in the presence of errant populations.

Variability in biological, experimental, and analytical conditions likely account for the
much of the variability in literature-reported SP sizes for the A549 cell line, which highlights
the importance of reporting detailed experimental conditions and calls to question the utility
of comparing SP size in different experimental and analytical conditions. For example, SP size
in untreated A549 cells 4 days after passage had SP sizes of 20% (Fig 2D) and 6% (S7C Fig)
when measured using a BD LSR II flow cytometer or Amnis FlowSight imaging cytometer,
respectively, despite having identical Hoechst staining conditions and SP data analysis. Instru-
ment settings such as excitation, emission, Hoechst Red and Blue channel windows, detector
sensitivity, and detector scaling all greatly influence the recorded Hoechst signals.

Caveats to the Kinetic Interpretation of SP/NSP |dentity

The kinetic interpretation of the SP may be applied to some immortalized cell lines, such as the
one used in this study; however, SP may not arise strictly from kinetic properties in all situa-
tions, especially in samples of multicellular composition in situ. For example, in the original
description of the SP, the SP corresponded to hematopoietic stem cells within bone marrow
aspirate [2] and the SP in glioblastoma-derived samples were tumor stromal cells while the
glioblastoma cells, including glioblastoma CSCs, did not contribute to the SP [49]. Our investi-
gation adds to this body of evidence as it validates an ABCG2-dependent kinetic basis for the
formation of the SP and provides a novel perspective on the distribution of single-cell ABCG2
activity across a population as well as within the SP itself.

Independent of cell line, SP size is also a function of passage frequency, Hoechst staining
conditions, fluorescence excitation/emission settings, and SP/NSP gating strategies. Therefore,
to focus our investigation on the kinetic aspects of the SP assay, we performed the SP assay
with attention to consistency of the culture conditions, Hoechst staining conditions, cytometry
settings, and unbiased SP analysis. While this approach enabled investigation of assay kinetics
based on differences in ABCG2 expression, other kinetic factors, such as Hoechst staining con-
centration and duration [46,48], influence SP measurement. A more refined and comprehen-
sive modeling approach would be necessary to determine precise kinetic rate parameters to
more definitively characterize the transport phenomena generating the SP.

The SP Phenotype: Heterogeneity in Therapeutic Targeting

The SP has been the subject of many investigations, many with conflicting results. Some studies
claim the SP to be a population of CSCs [20,50], or that ABCG2 is necessary to maintain a
stem cell phenotype [51]. In contrast, other studies have identified stem cells lacking a SP phe-
notype or ABCG2 expression [49,52-54] or identified SP lacking stem cell phenotypes [55-58].
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In A549 cells, TGFf simultaneously leads to enhanced expression of CSC properties [38,43,59]
and decreased SP size (Fig 2B) [38]. These findings suggest that SP and CSC phenotypes are
nonequivalent; however, the phenotypes appear to be frequently co-expressed.

The co-expression of SP and CSC phenotypes may have a significant role in tumorigenesis
as ABCG2 expression can confer a MDR phenotype to CSCs [60]. Additional cellular pro-
cesses, related to ABCG2 transporter activity, may contribute to resistance in the MDR pheno-
type. For instance, activity of Nrf2, a master regulator of the cellular redox environment is also
a key regulator of ABCG2 expression [61-64]. ABCG2 has been implicated in antioxidant pro-
cesses [65-71] and TGFp signaling, down-regulates ABCG2 expression (Fig 2B) in addition to
down-regulating multiple antioxidants [38,72-76]. Furthermore, population-level studies have
demonstrated increased antioxidant expression in SP cells compared to NSP cells. [77] There-
fore, the intracellular redox processes may act in concert with ABCG2-mediated drug efflux to
promote the MDR phenotype. Targeting functional properties specific to high ABCG2-expres-
sing cells may be a promising approach to overcome a MDR phenotype. For instance, addition
of the tyrosine kinase inhibitor axitinib to topotecan enhanced topotecan-mediated apoptosis
in A549 cells through inhibition of ABCG2-mediated transport, independent of ABCG2
expression. [78] Despite the fact that numerous chemotherapeutics are substrates of ABC
transporters, evaluation of ABC transporter inhibitors in clinical trials has failed to demon-
strate added benefit due to drug toxicities and the inability to achieve sufficient concentrations
to effectively inhibit transporters [79]. Further investigation of the kinetic processes involving
ABCG?2 will refine our understanding of the functional consequences of ABCG2 activity in
cancer cells and potentially inspire novel chemotherapeutic approaches.

Conclusion

This investigation is the first to demonstrate the kinetic mechanisms that form the basis of the
SP assay. We validated the ABCG2 transporter-mediated differential staining between +FTC
and-FTC conditions across multiple transporter concentrations in a heterogeneous cell popu-
lation, accounting for differences in responses for SP and NSP cells. Our modeling approach
leveraged these experimentally determined dynamic distributions of ABCG2 expression levels
as a function of TGF-p treatment and culture time. The computational model tested influences
of transporter properties on cell staining across a heterogeneous population, which would oth-
erwise be impossible to achieve due to the technical limitations of the SP assay. Our results sug-
gest that in particular distributions of transporter kinetics within a population, a subset of cells
within the population exhibit marked enhancement of transporter activity compared to the
main cell population. Analysis of thousands of single cell simulations provided unique insight
that NSP and SP cells both lie along a spectrum of ABCG2 activity. Collectively, these results
support our hypothesis that specific single-cell distributions of ABC transporter activity yield
differential staining and serve as a kinetic basis in forming side populations.

Materials & Methods
Cell Culture & Treatment

A549 lung carcinoma cells were obtained from American Type Culture Collection (ATCC;
CCL-185) and maintained in growth media, consisting of high glucose DMEM with L-gluta-
mine (Sigma D5796), 10% FBS (Sigma F4135) and penicillin (50 IU/ml)-streptomycin (50 pg/
ml) (Cellgro 30-001-CI). Cells were plated in flasks at density of 3,000 cells per well in growth
media (15 ml per T-75/35 ml per T-175) and maintained at 37°C and supplemented with 5%
CO2. TGFp (Millipore, GF111) and tBHQ (ACROS Organics, tert-butylhydroquinone,
AC15082) treatment took place in culture media.
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Side Population Assay

Hoechst staining and flow cytometry to measure the SP in A549 cells closely followed the pro-
tocol described in [23,48]. Cells were trypsinized and resuspended in CO2 conditioned DMEM
+, consisting of high-glucose DMEM without phenol red, 10 mM HEPES, 2% FBS, and 2 mM
EDTA, at a concentration of 1x106 cells/ml. Samples were split into +FTC and -FTC condi-
tions, supplemented with DMSO-mobilized FTC (EMD Millipore) at a final concentration of
10 uM or DMSO alone, respectively. The solutions were incubated in a 37°C water bath for 30
minutes, after which they were supplemented with Hoechst 33342 (Life Technologies) at a
final concentration of 5 uM for 90 minutes, with mixing at 30-minute intervals. The staining
solutions were then centrifuged at 1,000 RCF for 10 minutes and resuspended in HBSS+, con-
sisting of HBSS without phenol red, 10 mM HEPES, 2% FBS, and 10 mM EDTA. Cells were
incubated with the viability stain SYTOX Blue (Life Technologies, 1:1000) for 5 minutes prior
to fluorescence measurement via flow cytometry. Positive controls for dead cell staining were
obtained by incubating cells at 56°C for 45 minutes followed by SYTOX Blue staining. The BD
LSR II flow cytometer was monitored using fluorescent beads to ensure optimization of system
optics and detectors for quality control in polychromatic settings. Samples were excited with a
355 nm UV laser and the Hoechst Red signal was measured in a Aem = 675/50 nm channel
with linear scaling and the Hoechst Blue signal measured in a Aem = 450/50 nm channel with
linear scaling, collecting 100,000 events per flow sample. The Hoechst stained -FT'C condition
was initially used to tune Hoechst Red and Hoechst Blue photomultiplier tube settings, which
were held constant for all subsequent studies. Additionally, samples were excited with a 445
nm violet laser with SYTOX blue emission measured in a Aem = 473/10 nm channel with loga-
rithmic scaling. Sample gating proceeded as follows: 1) Debris exclusion with FSC-area/SSC-
area (Aex = 488 nm) gating; 2) Single-cell selection with FSC-height/FSC-area; 3) Live cell
selection with the violet-Aem = 473/10 nm channel. Events retained through all 3 gates were
used for subsequent SP analysis in the Hoechst Red and Blue channels. Manual selection of SP
gates was determined using the +FTC conditions where a quadrant gate was placed as tight as
possible such that greater than 99% of the cells in the +FTC condition were located in the
upper right quadrant. The same gates were then applied to the -FT'C condition where the two
left gates were considered to be SP gates and the right two gates considered to be NSP gates.
The measured %SP in the manual gating approach is the sum of the percent of parent popula-
tion in the SP gates. For a given sample, the %SP was determined using the specific +FTC and
-FTC conditions for that sample.

Surface Marker Analysis

Following 4 days of TGFp treatment, surface marker expression of A549 cells was analyzed by
flow cytometry following dissociation from culture flasks using non-enzymatic means. Follow-
ing treatment, cells were dissociated with Enzyme Free Dissociation Solution (Millipore S-
004-B) and resuspended in DMEM without phenol red supplemented with 2% fetal bovine
serum, 10 mM EDTA, and 10 mM EGTA. The cells were then pelleted (1000 RCE, 10 minutes)
and resuspended at a concentration of 1x107 cells per ml in HBSS without phenol red, Ca2+, &
Mg2+ supplemented with 1 mM HEPES, 2% fetal bovine serum, 1 mM EDTA, and 1 mM
EGTA. The cell solution was added to an equal volume of antibody staining solution and incu-
bated for 30 minutes on ice with gentle rotation. Antibody solutions (mouse IgG; anti-E-cad-
herin/PE-CF594, BD Biosciences, Clone 67A4, 2x dilution; mouse IgG, anti-N-cadherin/PE,
BD Biosciences, Clone 8C11, 2x dilution; mouse IgG, anti-ABCG2/APC, BioLegend, Clone
5D3, 2x dilution) were prepared in the aforementioned HBSS solution. Following incubation,
cells were washed and resuspended in the HBSS solution. Next the solutions were stained with
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SYTOX Blue to select for live cells. A BD LSR II flow cytometer was used to analyze fluores-
cence of the stained cells with the following settings: FSC/SSC (kex = 488 nm), PE (Aex = 488
nm, Aem = 575/26 nm), PE-C594 (Aex = 488 nm, Aem = 610/20 nm), APC (Aex = 633 nm,
Aem = 660/20 nm), SYTOX Blue (Aex = 445 nm, Aem = 473/10 nm). Unstained and single-
stained control samples were prepared to determine compensation matrix corrections within
FlowJo for each replicate. Heat killed control cells were mixed with live cells to establish live-
dead discrimination with SYTOX Blue staining. We employed the following gating strategy:
debris exclusion (FSC/SSC), single events (FSC-H/FSC-A), and live cells (SYTOX Blue). Upon
gating for single, live-cell events, fluorescence intensities were measured as the geometric mean
fluorescence.

Hoechst Staining Signal Processing

Hoechst Score Transformations. Side population flow cytometry data for a particular
sample consists of individual events with associated Hoechst Red and Blue signals for both
+FTC and -FTC conditions. The Hoechst Red and Blue signals are expressed in independent
arbitrary units. To generalize the interpretation of side populations from Hoechst signals, inde-
pendent of raw signal units, Hoechst signals were converted into Hoechst Scores. Hoechst
Scores are based upon the standard score, or z-score, in which a distribution is mean-centered
and normalized to the standard deviation. To compute the Hoechst Score for the Hoechst Red
channel, the mean and standard deviation of the Hoechst Red signal from the +FTC condition
were calculated. Next, the +FTC Hoechst Red mean was subtracted from the Hoechst Red sig-
nals from each of the events in the +FT'C and -FTC conditions. Similarly, each event in the
+FTC and -FTC conditions were divided by the standard deviation from the +FTC condition.
The resulting event data, +FTC mean centered and +FTC standard deviation normalized, con-
stituted the Hoechst Red Scores for the two conditions. Hoechst Blue Scores were derived in an
analogous fashion. Hoechst Scores were calculated at a per sample basis between each pairing
of +FTC and -FTC condition data.

Projection Gating for %SP Measurement. Hoechst Scores Projections were derived from
Hoechst Red and Blue Scores. Projections were derived from Score data and not signal data
due to the arbitrariness of signal magnitude in the signal data. Score data from Hoechst Red
(HRS) and Blue (HBS) channels have common units and relative magnitudes. Projection values
were derived for each event within a sample, in which the Hoechst Score Projection (H,.;) was
defined:

HRS + HBS

1 2
= O [ (HRS + HBS
% |HRS + HBS| 5 (FRS + HES)

Hoechst Projections were used to set a threshold, or gate, intensity at the lower limit of the
NSP. The 1% percentile mark of the Hoechst Projection data from the +FTC condition was
used define the threshold and applied to the -FTC condition. The percent of events falling
below the threshold in the -FTC condition was set as the %SP in this projection gating
approach.

Hoechst Scores PDF Distributions. For a given Hoechst condition (+FTC or -FTC),
Hoechst Red and Blue scores were provided transformed into a 2D probability density function
(PDF) on the Hoechst Red and Hoechst Blue plane with the frequency, or cell density, defined
at each paired Hoechst Red and Blue coordinate. Smoothed surfaces over the Hoechst Red and
Blue plane were derived by the method for smoothing scatter plot data described by Eilers and
Goeman [80]. Next, the area under the surface was calculated and normalized to one for each
condition.
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In its most basic form, flow cytometry data is a set of coordinate data/scatter, with each
event represented by an intensity value along each of the measured dimensions. Comparison of
data between two sets relies on the comparison of some sort of statistical transformation of the
data (i.e. mean or median). However, such transformations result in loss of spatial information.
Histograms allow for comparison of spatial information, but differences in event number com-
plicate interpretations. In order to permit more rigorous comparisons, we converted Hoechst
staining coordinate data into probability density functions along both Hoechst Red and Blue
Score dimensions. This was similar, in effect, to constructing a 2D histogram with smoothing
and normalization to account for differences in event number between data sets. In this format,
spatial differences in staining distributions were easily computed by taking the difference
between PDFs.

AFTC Distributions. For a given sample, a AFTC distribution was calculated by taking
the point-wise difference between the PDF of the -FTC condition (PDF gr¢c) and PDF, g1
across the Hoechst Red and Blue plane to calculate the difference in normalized cell density.

ASP Distributions. To compare the difference between AFTC distributions between two
samples we calculated a ASP distribution. To compare a test sample to a control sample the
ASP was derived as AFTC.;—AFTC_qpiro, Where the point-wise difference in AFTC intensities
was calculated at each Hoechst Red and Blue pair.

FlowSight Imaging Cytometer

We imaged samples at 20X magnification using a FlowSight imaging cytometer with the Quan-
titative Imaging Upgrade (Amnis, Seattle, WA). Single color controls were used to set-up com-
pensation matrices. For the SP assay, the compensation matrix was manually edited to allow
collection of the Hoescht Blue (470/35 nm) and Red (694/51 nm) signals using the 405 nm
laser. Images were analyzed with IDEAS analysis software (Amnis). Using the gradient root
mean square feature for the brightfield channel, “Focused cells” were selected according to the
manufacturer’s recommendation. Debris was eliminated by gating single cells using the area
and aspect ratio features for the brightfield channel. Live cells were gated using the intensity
feature in the green channel (533/27 nm) for SYTOX Green staining. For ABCG2 analysis, the
intensity feature of the APC channel (694/51 nm; 642 nm excitation laser) was used to quantify
the expression of ABCG2. For the side population assay, double positive cells from were
selected by gating in the Hoechst Red and Hoechst Blue channels.

Ensemble Modeling of Side Population Responses

General Overviewof Approach. Heterogeneous cell populations were simulated in an
array of experimental conditions across a wide range of kinetic conditions to investigate the
influence of transporter function on Hoechst staining kinetics that give rise to SP phenotypes.
Three models were generated describing numerical (Model 1), concentration (Model 2), and
experimentally derived (Model 3) transporter distributions. Individual cells (P;) within a popu-
lation (P) of size N = 1,000 are described by a set of morphological parameters (volumes, sur-
face areas, & DNA content, Table 1). The parameter values for the population were assigned
via LHCS of PDFs derived from experimental distributions of cell radii, nuclear radii, and
DNA content. Kinetic parameter sets (M = 10,000) were obtained from LHCS of uniform dis-
tributions in log space (Fig 4A). For each parameter set, Hoechst staining is simulated in the
cell population across multiple transporter conditions and with and without transporter inhibi-
tion, simulating +FTC and -FTC conditions. Each population simulation consists of N single-
cell mass-action ODE simulations of Hoechst staining (Fig 4B). Following the kinetic simula-
tions, Hoechst concentrations within individual cells were converted to Hoechst Red and Blue
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Table 1. Single-Cell ODE Model Morphology & Expression Variables. The variables listed below were
assigned by LHCS of experimental distributions for each cell within an in silico cell population.

Parameter Symbol Units
Cytosolic Volume Ve pl
Plasma Membrane Surface Area Ac um?
Nuclear Volume Vn pl
Nuclear Surface Area An pm2
Relative DNA Level DNA, DNA | evel
Relative Transporter Level Trotal Trevel

doi:10.1371/journal.pchi.1005188.t001

signals via linear transformation with a signal matrix accounting for the spectral excitation and
emission properties of free and DNA-bound Hoechst dyes as well as an in silico flow cytometer
(Fig 4B). Simulated flow cytometry signals, in arbitrary units, were then converted to Hoechst
Score PDFs where projection gating was applied to measure the %SP (Fig 4C). Hoechst scores
PDFs were used to calculate AFTC and ASP distributions, allowing for visualization of differ-
ences in population simulations with and without transporter inhibition as well as across dif-
ferent transporter conditions (Fig 4C). Hoechst score metrics from in silico flow cytometry
populations were compared to metrics derived from experimental data to gauge the extent of
SP response in the populations. Parameter sets with in silico populations meeting the selection
criteria for identifying a SP were then accepted and ranked according to similarity to %SP mea-
sured experimentally according to the normalized root mean-squared error (RMSE, Fig 4D).
Accepted sets were then analyzed at the single-cell SP response. The distribution of responses
to inhibition were used to classify the homo/heterogeneity of response magnitudes and the uni-
formity/bimodality of response frequency (Fig 4D).

Whole Cell and Nuclear Radii Probability Density Functions. FlowSight imaging
cytometry was used to measure whole cell and nuclear radii of Hoechst stained cells in the pres-
ence of FTC as per the imaging cytometer instructions. Cells and nuclei had aspect ratios > 0.9
and were assumed to be spherical for the purposes of simplification. Whole cell and nuclear
areas, reported in micrometers, were then used to estimate cell and nuclear radii for the popu-
lation of A549 cells (S9A Fig). The size of the nucleus was partially correlated to the whole cell
size (S9B Fig); therefore, instead of treating each as in independent distribution, a 2D PDF was
constructed in a manner analogous to the used to calculate PDFs for Hoechst Red and Blue
Scores.

Different Transporter Expression & Distributions. Transporter Expression: Different
models of transporter distribution across a population were implemented; however, at the sin-
gle-cell level, the Hoechst staining kinetic model was identical. Therefore, what differed
between the models was how different cells within a given population were assigned trans-
porter expression. In each of the models, experimentally-derived expression levels were used to
inform model expression. In Models 1 & 2, the relative geometric mean expression of ABCG2
from TGEFp -treated A549 cells (Fig 2B) were used while in Model 3, the flow cytometry stain-
ing distribution served as a probability density function from which transporter expression fre-
quency was sampled (S10A Fig).

Model 1. Number Distribution/Equal Concentration:

Each population was associated with the geometric mean as the relative transporter level for
the population. This factor served as the scaling factor relative to the maximum geometric
mean intensity from the untreated control condition. The magnitude of the relative differences
between transporter levels of the samples was set by kg. The relative differences of transporter
levels were reconfigured for each kinetic parameter set. Once the relative transporter level was
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determined, it was set as the maximum transporter concentration in the cytosol or nucleus
where the relative intensities of cytosolic to nuclear transporter activities were expressed as:

Tery = kYTNTA

Each cell within the population was assigned total cytosolic and nuclear transporter activi-
ties of Tera & Tnra, respectiviely.

Model 2. Concentration Distribution/Equal Number:

Transporter activity for Model 2 proceeded in the same manner as Model 1; however, after
calculation of Tcry & Tna, the average number of molar equivalents in cells of the distribution
was calculated. Each of the cells in the population were then assigned the same number of
molar activity equivalents, which was then converted to concentration activity equivalents on a
cell-by-cell basis using the cytosolic and nuclear volumes.

Model 3. Experimental Distribution:

Flow cytometry ABCG2 surface marker staining data from TGFp -treated A549 cells were
exported from FlowJo as compensated fluorescence intensities. The distributions were then
loaded into MATLAB where they were converted to PDFs for each individual replicated. PDFs
were generated with the ksdensity function. For a particular sample, a final PDF was taken as
the unit normalized average PDF of three experimental replicates. The distributions were then
scaled to fall between 0 and 1 (S10A Fig). Therefore, values within the distribution reflect rela-
tive expression within the distribution.

Relative transporter levels within a distribution (T'p,,;) were randomly selected values (Pr;)
from ABCG2 expression PDF distributions where i = [1,4], corresponding to ABCG2 distribu-
tions from 0, 1, 10, & 100 pM TGEF treatments, respectively. T'p,,; levels are expressed in units
of Tt e Next, the relative transporter levels in cytosolic (T¢r) and nuclear (Tyr) compart-
ments were calculated under the assumption that the total transporter level is split into cyto-
solic and nuclear compartments at a fixed ratio, which remains constant during the simulation.

Total Transporter Level:

T = Ter + Ty

Cytosolic/Nuclear Transporter Levels:

Ter = k7 Tyr

Total transporter activity levels were then calculated from the Hill equation (0,), reflecting
the cooperative interactions of transporters within each compartment:
Total Cytosolic Transporter Cooperatively:

Ters = 0.(Teq)
Total Nuclear Transporter Cooperatively:

Tona = 0.(Tyr)
Transporter Cooperatively:

Tk

9c<T) = -k9k8 4 TkS

Transporter Activity Level Inhibition. Prior to kinetic modeling of Hoechst staining,
each cell was assigned a total cytosolic and nuclear transporter activities, Tcra & Tyra- The
absolute transporter activity in the kinetic simulation was then determined by the absolute
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scaling factor kg as well as the degree of transporter inhibition (i7), where i = 0.99 in the inhib-
ited condition (+FTC) while i = 0 in the uninhibited condition (-FTC).
Total Cytosolic Transporter Activity:

Teow = ke(1 —ip)Tepy
Total Nuclear Transporter Activity:
Ty = k(1 — i) T

Hoechst/DNA-Binding Site Expression Probability Density Function. DNA content
distributions within cell populations can be measured with Hoechst staining. [81] Therefore
we took the +FTC Hoechst stained samples to represent the relative distribution of DNA con-
tent within a population. Hoechst Blue signals for each of the +FTC conditions in the SP time
course study were loaded into MATLAB and converted into a PDF using the ksdensity func-
tion. An overall distribution was constructed from the average of the 39 individual PDFs (S10B
Fig). The distribution was then normalized to the mode so that the distribution represented a
distribution relative to the mode. The mode was assumed to represent a cell in the Go/G; phase
and have a relative DNA content of the size of 1 genome for an aneuploid A549 cell. We used
this distribution to estimate the number of Hoechst-binding sites in DNA (S10B Fig).

A549 Genome Size = 7.3x10® Base Pairs [82]
Base Pairs Per Hoechst Binding Site = 80 [83]
Binding Site Number per Mole (AvgN) = 6.022x10%®

doi:10.1371/journal.pchi.1005188.t002

For a given cell, the relative DNA level sampled as DNA| with units of DNA,,,.;.. Within the
population, each of the DNA intensities was identically scaled, though maintaining their rela-
tive distribution, to determine absolute binding sites and converted to molar binding sites.
Finally, binding site number was factored by nuclear volume to derive a molar concentration
of binding site number.

DNA,,,. = DNA, - (Genome Size) - (Base pairs per site) - k,/AvgN

Sampling PDFs to Construct In silico Cell Populations. To sample PDFs and produce in
silico populations, PDFs were converted, approximately, to cumulative distribution functions
(CDF) by taking the cumulative sum of a PDF. The CDFs were then normalized to a range of 0
to 1. To generate a population of N cells from the PDE, N random numbers were drawn from
the interval of 0 to 1 and mapped to the CDF to find the corresponding expression value. In
our observation, random sampling over the entire interval produced highly variable effects. To
circumvent this issue, we implemented Latin hypercube sampling (LHCS) of the CDE, which
more uniformly sampled the distribution. To sample the radii, Nx2 random numbers between
0 and 1 were generated. The whole cell PDF was sampled as an independent PDF. Next, the
nuclear PDF for the given whole cell radii was sampled to sample the conditional PDF for
nuclear radii size. Reconstructed cell populations of various sizes are shown in S9C Fig. After
the radii were sampled for a given cell, the radii were used to calculate cell and nuclear volumes
and surface areas, assuming spherical morphology. Cytosolic volumes were taken as the differ-
ence between whole cell and nuclear volumes. Notably, the same LHCS vector was used to sam-
ple the different CDFs of transporter expression. Therefore, the sampling of transporters
between populations is consistent.
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Table 2. Single-Cell ODE Model Kinetic Parameters. Sets of random kinetic parameters were assigned using LHCS to uniformly sample the parameter
range in Log4o-spaced intervals. The set of kinetic parameters is a uniformly applied across a population.

Parameter

Hoechst-DNA Association Rate
THoechst-DNA Dissociation Rate
DNA Binding Site Scaling Term
Hoechst Membrane Permeability
Hoechst-Transporter Association
Hoechst-Transporter Dissociation
Absolute Transporter Expression
Cyt./Nuc. Transporter Ratio

* Transporter Expression Slope
** Transporter Hill Coefficient

** Transporter Half-Maximal Level

* Model 1 &2
** Model 3

Symbol Range Units
ki 107'-10° L/ apemin
Korr ki - 1077 -
ko 1073108 N/A
ks 107°-10* amol / oum? - min
ks 107°-10"2 !/ aemin
ks 107°-10" Y/ i
ks 1076-10° /e
ks 1075-10° N/A
ks 1072-10? N/A
ks 10°-10' N/A
ke 0-1 Trever

T ko set according to the value reported by [83]

doi:10.1371/journal.pchi.1005188.t003

Latin Hypercube Sampling (LHCS) of Kinetic Parameter Space. M combinations of
kinetic parameters (k,; Table 2) were assigned via LHCS, which segments a dimension of
parameter space into uniform segments. Within each segment, a parameter value is selected
from a uniform random distribution. Thus, LHCS generates a collection of randomly chosen
parameter choices with nearly uniform sampling of the parameter space. Within MATLAB,
the LHCSdesign function was used to generate an MxQ LHCS matrix of M samples within the
interval (0,1) for each of the L parameters (Models 1 & 2, Q = 8; Model 3, Q = 9). The criterion
correlation and maxmin were enabled and 50 iterations were permitted to reduce correlation
and maximize point-to-point distance within the LHCS matrix.

To convert the LHCS of the parameter space ranges in Log; space for a given parameter k,,
the q™ column of the LHCS matrix was scaled by the Log; , of the range size and increased by
Log of the lower limit of the range. Finally, the parameter value k,,,; was obtained by taking
the antilog of the m,qth entry of the transformed LHCS matrix. In Model 3, the Hill Half-Maxi-
mal Level, ko, was sampled uniformly from 0 to 1.

Initial modeling included kg within the parameter search space; however, early interro-
gation of the system demonstrated insensitivity to variation in k.4 Therefore we maintain a
fixed kg relative to k; in all ensembles based on the reported K, of 1077, [83]

Kinetic Model of Hoechst Staining:

Simulation of Hoechst staining took place at the single-cell level. Within each population,
cells were assigned variable cell and nuclear sizes, DNA content, and, in Model 3, relative trans-
porter levels. Across the set of kinetic parameters were common across the entire population.
Hoechst staining within a single cell was modeled using mass-action kinetics to describe the
rates of reaction the transport across plasma and nuclear membranes (S11A Fig). Each single
cell system was modeled with three spatial compartments and was simulated with 90 minutes
of staining.

In each simulation, cells were initialized with no Hoechst species within the cell. The extra-
cellular compartment was assumed to be so large so as to not experience changes in Hoechst
concentration throughout the simulation. We assumed total DNA binding sites, cytosolic
transporter, and nuclear transporter levels were conserved during the time course of the stain-
ing and, using conservation of mass, we algebraically reduced the order of the system, setting
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the order of the system at 5 differential variables (Table 3). The set of kinetic reactions were
used to compose the set of differential equations, which governed the dynamics of Hoechst-
associated species within the kinetic model.

For each single-cell simulation, variables were assigned initial conditions and submitted
with system reaction equations to the odel5s solver in MATLAB. Constant variables remain
unchanged during the course of the simulation. Algebraic variables were derived from constant
and differential variables using algebraic conservation equations at each time point in the
solver. Differential variables were solved at each time point in the solver according to the set of
differential equations.

Mass Conservation Equations:

During a simulation of Hoechst staining in a single cell, the amount of transporter and
Hoechst/DNA-binding sites are assumed conserved and un-changed in total quantity. Alge-
braic terms accounting for this conservation are substituted into the model for simplification
and to reduce the order of the model.

Hoechst/DNA-Binding Sites:

DNA, = DNA + x,

Cytosolic Transporter:

Tea=Tc+x
Nuclear Transporter:

Ty = Ty + x4

Kinetic Reaction Equations
Plasma Membrane Diffusion:
e

A
= ksVC(H _'xl)
c

Hoechst-DNA Association:

r, = k,x,DNA

Table 3. Single-Cell ODE Model Mass-Action Variables. The variables listed below are the species involved in mass-action kinetic reactions to simulate
the staining of cells with extracellular Hoechst.

Species Symbol Initial Condition Variable Type
Extracellular Hoechst He 5uM Constant
Cytosolic Hoechst X4 0 Differential
DNA-Bound Hoechst Xo 0 Differential
Unbound DNA Binding Sites DNA DNA+ Algebraic
Total DNA Binding Sites DNAT DNA 112 Constant
Hoechst-Bound Cytosolic Transporter X3 0 Differential
Unbound Cytosolic Transporter Te Tea Algebraic
Total Cytosolic Transporter Tca KsTcra Constant
Nuclear Hoechst X4 0 Differential
Hoechst-Bound Nuclear Transporter Xs 0 Differential
Unbound Nuclear Transporter Tn Tna Algebraic
Total Nuclear Transporter Tna ks Tna Constant

doi:10.1371/journal.pchi.1005188.t004
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Hoechst-DNA Dissociation:
ry = kX,
Cytosolic Hoechst-Transporter Association:
r,=kwx, T,

Cytosolic Hoechst-Transporter Dissociation & Efflux:

rs = ksx,

Nuclear Membrane Diffusion:

re = kyAy(x, — x,)

Nuclear Hoechst-Transporter Association:

rr=kx,Ty

Nuclear Hoechst-Transporter Dissociation & Efflux:

ry = ksx;

Differential Equations:

Cytosolic Hoechst:
dx te V
—=nont —Vf’c + —V: s

DNA-Bound Hoechst:

dx,
T
Cytosolic Transporter-Bound Hoechst:
dx.,
Nuclear Hoechst:
dx, Tg
& T Ty
Nuclear Transporter-Bound Hoechst:
dx,
a1

In silico Flow Cytometry Simulation. Conversion of simulated Hoechst staining into
Hoechst Red and Blue signals was mediated by a linear transformation of DNA-bound Hoechst
and non-DNA-bound (free) Hoechst species within each cell in a process we refer to as in silico
flow cytometry. Following the kinetic simulation of Hoechst staining, the molar quantity of
total free Hoechst and DNA-bound Hoechst are determined for each cell. The quantities of
these dyes were used to calculate a corresponding Hoechst Red and Hoechst Blue signal.
Hoechst Red and Blue signals result from the combination of Hoechst Red and Blue emission
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from both DNA-bound and free Hoechst species (S11B Fig). DNA-bound and free Hoechst
dyes possess different spectral properties, including quantum yield, excitation maxima, and
emission maxima. [84] These differences manifest as differences in relative excitation efficiency
and emission strength in the Hoechst Red and Blue emission channels (S11C Fig). Accounting
for these factors, we are able to formulate a signal transformation matrix with which we can
transform quantities of DNA-bound and free Hoechst into relative Hoechst Red and Blue
signals.

Most flow cytometry techniques aim to isolate the signal from an individual fluorophore to a
single detection channel. The SP assay, however, relies on spectral spillover of the Hoechst emis-
sion into two detectors, Hoechst Red and Hoechst Blue. Inherent spectral differences in DNA-
bound (H,) and non-DNA-bound/free (Hy) Hoechst dyes would indicate that the two forms of
Hoechst can influence the detected signal in each of these channels (S11C Fig). For example, the
quantum yield of DNA-bound Hoechst (0.38) is roughly 10-fold larger than that of free Hoechst
(0.034) [84], and more readily induced to emit fluorescent light upon excitation. Further, the
excitation/emission maxima of Hoechst in the DNA-bound form differs from the free form. [84]
The differences in emission spectra result in differential emission contributions to each of the
detection channels (S11D Fig). In this schema, a number of factors influence the magnitude of
the Hoechst Red and Blue emission signals. Nonetheless, it is a somewhat constrained system in
that the Hoechst Red signal is composed of emission from both DNA-bound and free Hoechst
and the Hoechst Blue signal is composed of emission from both.

Hoechst signals are calculated based upon the quantities of DNA-bound and free Hoechst
species within the cell, the spectral properties of the Hoechst species, and the spectral proper-
ties of the simulated flow cytometer used to excite and measure Hoechst fluorescence. Hoechst
Red signal (HR;,) is the sum of the emission from DNA-bound (H;) Hoechst in the Hoechst
Red channel and from free Hoechst (Hy) in the Red Channel. The emission from Hj in the
Hoechst Red channel is proportional to its excitability (quantum yield, Q), relative excitation
efficiency (Ey), the area of spectral emission overlap with the Hoechst Red channel (R,,), and
the amount of Hj,. Likewise, the emission from Hyin the Hoechst Red channel is proportional
to its corresponding Qs Es Rs and Hy(Table 4). Signal for the Hoechst Blue channel can be
similarly constructed.

HR,, = Q,E,R,H, + QER.H,

HB,, = Q,E,B,H, + QE,B,H,

We are then able to modify the representation of to obtain the linear transformation matrix
QE,R, QER:||H, HR,, s H, HR,,
QEB, QEB, ||H, HB,, H, HB,,

Q,E,R, QfEfRf _ Sttt Sip _3
Q,E,B, QfEfo Sy Son

S.

where

The Hoechst Red and Blue signals resulting from linear transformation with the signal
matrix are arbitrary in that the units do not have a specific meaning. Nonetheless, within a
range of Hoechst signals produced under the same circumstances, differences in magnitude
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Table 4. Spectral Quantities for In silico Flow Cytometry Signal Transformation

DNA-Bound Hoechst

Free Hoechst

doi:10.1371/journal.pcbi.1005188.t005

Description Symbol Value
Quantum Yield Qp 0.34
Excitation Efficiency E, 0.9902
Hoechst Red Emission Ry 29.86
Hoechst Blue Emission By 4650
Quantum Yield Qf 0.038
Excitation Efficiency Ep 0.6764
Hoechst Red Emission R; 464.2
Hoechst Blue Emission B: 1914

reflect differences in the quantities of Hoechst dyes used to generate them. Therefore, the
Hoechst signals can be compared for staining within populations. Similarly, with identical con-
ditions, comparisons can be made across populations. Conversion of Hoechst signals into
Scores is an approach to make measured changes in Hoechst staining more applicable in a
broader, less experimentally specific sense.

Hoechst Score & PDF Conversion of Flow Cytometry Signals. Following the calculation
of in silico flow cytometry values of Hoechst Red and Blue signals for each cell in a population,
Hoechst Scores data was derived from Hoechst signal data. Processing of data from the in silico
flow data was identical to that of data processed in real flow cytometry data. For a given in sil-
ico sample (inhibition and no inhibition pairing), PDF, grc, PDF g1, and AFTC distributions
were calculated. The SP size was measured using the projection gating approach. Finally, across
the four conditions, the AFTC distributions were compared to the AFTC distribution from the
highest transporter sample, corresponding to untreated control, to calculate ASP distributions.

Data-Driven Qualitative Selection of SP Responses. Simulation of each of the ensembles
produced the following data: differences in Hoechst Scores staining metrics, Hoechst Score
PDF+FTC, Hoechst Score PDE-FTC, AFTC, and ASP relative to the control, and %SP for each
in silico sample. In the analogous experimental conditions, Day 4 of the SP time course with 4
differing TGFp sample conditions, we possess equivalent experimental data (Fig 2D, S3 Fig and
S8C Fig). We used the experimental data to guide selection of models in terms of SP response.
A series of selection check points were setup, which each ensemble was required to meet all
selection criterion in order to be accepted as exhibiting a SP response.

First, the two highest transporter conditions were required to have negative AHRS,,,..,, and
AHBS,\can Values, reflecting an overall decrease in Hoechst staining. Next, the PDF, grc and
PDF prc were not allowed to share any less than 25% overlap, indicating that the entire range
of population did not shift without inhibition. The responses across all of the transporter con-
ditions were required to reflect that of the experimental data. Ensembles were required to dem-
onstrate a positive correlation for both the AHRS e, With experimentally observed AHRS ,can
values and AHBS,,., with experimentally observed AHBS, ., values. Experimental PDF, prc,
PDF prc, AFTC, and ASP distributions for all conditions were exported from the SP time
course study. The normalized, aligned 2D cross correlation was calculated for each simulation/
experimental pairing. Within each of the categories, PDF, prc, PDF prc, AFTC, and ASP, the
average cross correlation of all of the conditions was required to be positive. Finally, ensembles
were required possess a %SP of at least 5% for the control sample and a differential %SP of
2.5% between the control and lowest transporter expressing sample. Ensembles meeting the
selection criteria were then scored according to the normalized root mean-square error
(RMSE) of the %SP and differences in %SP with the experimental data using the MATLAB
function goodnessOfFit with a normalized root mean square error (NRMSE) cost function. Fit
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values using this approach range from 1, with a perfect fit of simulated data to experimental
data, to negative infinity with increasingly poor fit to experimental SP data.

Analysis of Single-Cell Side Population Response Distributions. Within an ensemble,
each of the cell populations is identical to one another, except for the relative amount of trans-
porter activity. Unlike experimental assays, cells within the in silico assay are indexed and dif-
ferences between samples perfectly controlled for. Therefore, we can examine how the exact
same cell will stain differently under very tightly controlled alternate scenarios. Because of this
feature, we can tabulate the difference in Hoechst Score projection in the inhibited and unin-
hibited Hoechst staining simulations. Thus, for each cell in a sample, we determine the differ-
proj» in Which a larger value corresponds to a larger
single-cell SP response. For each ensemble passing the qualitative selection process, the distri-
butions of -AH,;
“shape” of the distribution. For each sample distribution, the 3" standardized moment (skew-
ness) and 4" standardized moment (kurtosis) was calculated. The skewness and kurtosis were
used to calculate the bimodality coefficient:

ence between these two conditions as -AH

values for each of the samples was further analyzed to interrogate the

BC— skewnessQ‘—i— 1
kurtosis

Model Implementation. At the start of each simulation, an in silico population of N cells
was generated and M kinetic parameter sets constructed using LHCS. In parallel, kinetic
parameter sets were submitted with cell populations to conduct the simulations within an
ensemble. Many parameter sets were stiff to numerical solving. To prevent stalled simulation
of the overall model, populations or single-cells that failed to solve within and allotted time
window were aborted. Upon completion each ensemble was checked for a SP response. Upon
completion of all of the models, the single-cell SP response distributions were analyzed for
each of the passing ensembles in a model and aggregated for comparison.

Software

Flow cytometry and Flow Sight imaging cytometry data were processed and analyzed using
FlowJo for Mac OS X version 10.0.7, Tree Star, Inc. Statistical analyses of experimental data
were performed within Graphpad Prism for Mac OS X version 6.0e. Imaging Cytometry
images were segmented using Image]J and the SCIPY platform in python. Cytometry distribu-
tion analyses were performed using MATLAB version 2014a (64-bit), MathWorks Inc, in
64-bit Windows 8.1. Side population simulations were implemented in MATLAB version
2014a for Linux and run in parallel on the PACE cluster at Georgia Tech, which consisted of 64
single core 3.8 GHZ AMD processors with over 240 GB of total RAM available (10 GB per
node). The following MATLAB File Exchange entries (accessed on 11/5/14) were implemented
in MATLAB to analyze or display cytometry or simulation data: smoothhist2d (13352) [85],
tight_subplot (27991) [86], suplabel (7772) [87], redblue (25536) [88], progress monitor
(32101) [89], and distributionPlot (23661) [90].

Supporting Information

S1 Fig. Flow Cytometry Density Scatter Plots of a Side Population. Hoechst Red and Blue
channel emission in flow cytometry results from a representative sample from a SP assay in
A549 cells 4-days after passage. Plots are scatter plot densities with each condition normalized
to its respective maximum value. Cells were incubated with 10 uM FTC or DMSO vehicle for
30 minutes prior to 90 minutes of 5 uM Hoechst 33342 staining. The SP is visible as the
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population of cells in the left quadrant gates of the -FTC condition. The quantification of %SP
in this plot was calculated to be 20%. B) A representative sample of SP assay results for A549
cells treated with 100 pM TGE for 4 days. The quantification of %SP in this plot was calcu-
lated to be 0.12%. C) %SP quantification from control (A) and TGFf-treated (B) samples for 4
replicates. Plotted as mean + standard error of the mean. Significance was determined with a t-
test, p<0.05, and indicated by the asterisk (*).

(EPS)

S2 Fig. Multicolor Flow Cytometry Analysis of Surface Marker Staining Representative
density scatter plots of staining of A549 cells maintained in culture for 4 days with 0, 1, 10,
and 100 pM TGFp treatment (rows). Columns correspond to the pairwise plots of PE,
PE-Texas Red, and APC detection channels with compensated arbitrary fluorescence units.
Surface markers were stained with anti-PE-CF594/E-Cadherin (PE-Texas Red Channel), PE/
N-Cadherin (PE Channel), and APC/ABCG2 (APC Channel), antibodies and cells counter-
stained with SYTOX Blue to exclude dead cells. Density plots correspond to summary of geo-
metric means displayed in Fig 2A & 2B.

(EPS)

$3 Fig. Automated Measurement of %SP with Projection Gating. Hoechst staining data in
the SP assay, shown as (A) pseudocolored dot density plots and (B) smoothed pseudocolored
dot density plots, are transformed into (C) Hoechst Score probability density functions
(PDFs). Hoechst Red and Blue Scores transformations of the untreated control cell populations
for +FTC (PDF, grc) and -FTC (PDF grc) conditions are determined by the mean and stan-
dard deviation of the +FTC condition. Hoechst Scores are expressed as units of standard devia-
tions from the mean. Density colormap values are normalized to a common maximum
frequency across both conditions. SP gates (gray lines) were set at the 1** percentile level using
the Hoechst Scores projection gating approach.

(EPS)

S4 Fig. TGFp Treatment Decreases SP Size. A)-FTC plots of TGFp-treated cells demonstrate
decreasing SP size. Flow cytometry density scatter plots Hoechst staining of -FTC conditions
from SP assays of a single replicate at Day 4 (Fig 2D) for 0, 1, 10, and 100 pM TGEFp-treated
samples. Shown with SP gates set by each sample’s respective +FT'C condition. B) The auto-
mated projection gating method correlates with manual gating approaches across the multiple
conditions of the TGFB-treatment time course (Fig 2D).

(EPS)

S5 Fig. Side and Non-Side Populations Arise from Individual Cells. A) A schematic of the
isolation and expansion of low- and high-ABCG2 expressing clonal cell lines from the parent
A549 cell line prior to SP analysis. B) Measurement of SP size in cell populations derived from
single-cells expanded in culture for 30 days. Projection gating was used to measure %SP in
low- and high-ABCG2 expressing clonal cell lines. Shown with line corresponding to mean.
(EPS)

$6 Fig. Hoechst Staining Histograms & PDFs of +FTC & -FTC Conditions.Histograms of
Hoechst Red (A) and Hoechst Blue (B) staining of +FTC and -FTC conditions for the control
sample in S1A Fig, consisting of 51200 cells and 50329 cells for the +FTC and -FTC conditions,
respectively. C) Changes in Hoechst Red and Blue Score statistics in -FTC vs +FTC conditions
plotted against their associated %SP. (AX = X prc—X,rrc; AHRSean = change in Hoechst Red
Score mean, AHBS .., = change in Hoechst Blue Score mean, AHRSgp, = change in Hoechst
Red Score standard deviation, AHBSsp, = change in Hoechst Red Score standard deviation,
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AHSC = change in Hoechst Red & Blue Score covariance). Lines of best fit from linear regres-
sion are shown along with the corresponding R* values for each Hoechst statistic.
(EPS)

S7 Fig. Measurement of SP Response in tBHQ-treated Cells with Imaging Cytometry A)
Hoechst Red and Blue Score coordinates for cells selected at random along the diagonal in the-
FTC condition of untreated control cells. Numbers correspond to event number ID values. B)
Imaging cytometry data channels used in the SP assay. B) The magnitude of the SP response in
control and tBHQ-treated samples are reported as the %SP,,.;. Values plotted as the

mean * standard error of the mean of three biological replicates.

(EPS)

S8 Fig. Overview of AFTC & ASP Calculations & Day 4 Plots. A) AFTC plots are generated
by subtracting the PDF, grc distribution from the PDF gy distribution. The example shown is
the formation of the Day 4 0 pM TGEF (control) condition (green box) from the difference of
the average PDF pyc and PDF, grc distributions from 3 experimental replicates. Red regions of
the AFTC plot correspond to regions that have higher density in the -FTC condition while blue
regions have density in the +FTC condition. B) The ASP plot for a given sample is generated by
subtracting the AFTC distribution of the control sample (AFTC_,, green box) from the AFTC
distribution for the sample, (AFTCp4.1pnm, purple box), which gives rise to the ASP (ASPp4.15m»
orange box). Red regions of the ASP plot correspond to regions with higher density in the sam-
ple condition while blue regions have higher density in the control condition. C) The AFTC
and ASP plots are displayed for the Day 4 samples in the SP time course experiment. The %
SP,oj is reported for each sample.

(EPS)

$9 Fig. Whole Cell & Nuclear Radii Distributions of A549 Cells A) 2D PDF of Flow Sight
imaging cytometry measurements of whole cell and nuclear radii using Hoechst stained cells
with FTC. B) 2D Distribution of nuclear radius to whole cell radius ratios plotted against whole
cell and nuclear radii. C) Sampling of N cells from a 2D PDF of whole cell and nuclear radii
(A) reconstructed as a 2D PDE

(EPS)

$10 Fig. ABCG2 and Hoechst Binding Site Distributions A) ABCG2 surface marker staining
data from flow-cytometry studies (Fig 2B, n = 3) converted into PDFs of ABCG2 expression in
A549 cells. Expression levels were normalized to the mode of the control condition. B) Distri-
bution of Hoechst binding sites available in each cell, estimated from the averaged Hoechst
Blue distribution from all of the +FTC conditions, the genomic DNA content of A549 cells,
and Hoechst binding site density in genomic DNA.

(EPS)

S11 Fig. Schematics of Kinetic Modeling & In silico Flow Cytometry A) Hoechst staining
dynamics were simulated at the single-cell level with each cell represented by a set of ODEs
governed by mass-action kinetics in a well-mixed three-compartment system. The species,
compartments, and reactions are depicted. Each cell differs from the rest of the population in
terms of volumes, surface areas, transporter properties, and DNA content. Within a given pop-
ulation, all of the cells share a set of kinetic parameters (k) in common. B) At the completion of
the kinetic simulations, the total quantity of free and DNA-bound Hoechst dye species are
added up within an individual cell. The free and DNA-bound dyes are converted to Hoechst
Red and Blue signals according to their spectral properties. C). Excitation and emission spectra
for free and DNA-bound Hoechst species displayed alongside Hoechst Red and Blue channels
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within our cytometer configuration and modeled in silico. Also shown is the excitation laser
wavelength (355 nm). D) Signals from the Hoechst Blue and Hoechst Red channels are prod-
ucts of emission from both free and DNA-bound Hoechst, though relative efficiency of emis-
sion in the two channels is discrepant.

(EPS)

$12 Fig. Estimating Hoechst Transport Kinetics Using a Cell Staining Time Course Simu-
lated Hoechst staining for a population of single-cells (left) were used to find a mean stain-
ing signal (center) for 5 and 10 pM Hoechst concentrations. The relative kinetics of the two
conditions to the 5 uM condition were compared to similarly normalized experimental data
(right). Staining took place in the presence of FTC to inhibit any transporter-mediated efflux.
(EPS)

S$13 Fig. In silico Flow Cytometry Results of Subpopulation Type Response. I silico flow
cytometry SP plots from an ensemble from Model 3, using an experimental derived distribu-
tion of transporter expression. A) Schematic representation of the distribution of single-cell SP
responses in a Subpopulation Type response. B) Hoechst Scores PDF, grc and PDF grc plots
for different transporter distribution samples drawn from 0, 1, 10, and 100 pM TGFp experi-
mental conditions. Projection gating (gray line) was used to measure the %SP. C) %SP from
the ensemble is compared to the means of experimental conditions. D) Differences in PDF gy
and PDF, prc distributions from A are shown as AFTC for each transporter sample. ASP distri-
butions are differences in AFTC distributions compared to the 0 pM sample.

(EPS)

S14 Fig. In silico Flow Cytometry Results of Full Population Type Response. It silico flow
cytometry SP plots from an ensemble from Model 2, in which cells within the population
express variable transporter concentrations. A) Schematic representation of the distribution of
single-cell SP responses in a Full Type response. B) Hoechst Scores PDF, grc and PDF grc
plots for different transporter samples whose means were drawn from 0, 1, 10, and 100 pM
TGFp experimental conditions. Projection gating (gray line) was used to measure the %SP. C)
%SP from the ensemble is compared to the means of experimental conditions. D) Differences
in PDF_grc and PDF, ¢ distributions from A are shown as AFTC for each transporter sample.
ASP distributions are differences in AFTC distributions compared to the 0 pM sample.

(EPS)

S$15 Fig. Simulation Outcomes by Transporter Condition. For each of the transporter condi-
tions (A-transporter number distribution (mode i); B-transporter concentration distribution
(mode ii); C-experimental transporter distribution (mode iii)), a total of M = 10,000 kinetic
parameter sets were generated by LHCS and cell staining simulated for the corresponding
ensembles. For each of the 10,000 parameter sets, started for each condition, >95% of the sets
successfully simulated the corresponding ensemble whereas <5% of the sets had to be aborted
while simulating the corresponding ensembles due to failure to meet simulation time-out
restrictions (left). Of the successfully simulated parameter sets, >95% failed to produce a SP
response as determined by passing the qualitative selection process (right).

(EPS)

S16 Fig. Fit of in silico SP Responses to Experimental %SP Values For each of the transporter
conditions (A-transporter number distribution (mode i); B-transporter concentration distri-
bution (mode ii); C-experimental transporter distribution (mode iii)), the in silico %SP
responses were compared to the experimental %SP values (Fig 2). For each of the parameter
sets having generated ensembles with SP response, the %SP fit RMSE was included in the
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histogram. RMSE was calculated as a normalized root mean square error using the MATLAB
function goodnessOfFit, which range from 1, perfect fit, to negative infinity with progressively
worse fit to experimental data.

(EPS)

S17 Fig. Sampled Parameters Compared to SP Response Parameters For each of the trans-
porter conditions (A-transporter number distribution (mode i); B-transporter concentration
distribution (mode ii); C-experimental transporter distribution (mode iii)), histograms of the
kinetic parameter sets were sampled using LHCS of Log;,-uniform distributions from the
lower to the upper limit of the sampled range (blue) are shown. Parameter sets with corre-
sponding ensembles generating SP responses (red) are a subset of the sampled distribution.
(EPS)

S18 Fig. Distributions of -AH,,,,; for Subpopulation and Full Response Types. The -AH,,.;
of cells in each transporter sample population of an ensemble is displayed in a histogram for a
Subpopulation Type (A) and a Full Type Response (B). The standard skewness (S), excess stan-
dard kurtosis (k), and bimodality coefficient (B) is listed in the upper right-hand corner for
each distribution.

(EPS)

$19 Fig. Single-Cell Analysis of Hoechst Projections & -AHp,;. It silico single-cell Hoechst
Projection plots for the 0 pM TGEFp sample for a Subpopulation Type and a Full Type response.
A) Hoechst Score Projections in the uninhibited condition (Hp,o;-FTC) are plotted against
Hoechst Score Projections in the inhibited condition (H,j+FTC). B) The change in Hoechst
Score Projection (-AH,,;) is plotted as a function of number of transporters per cell. C) -AH,,o;
is plotted as a function of Hoechst Score Projection in the inhibited condition (Hp,;+FTC). D)
-AHj,.; is plotted as a function of Hoechst Score Projection in the uninhibited condition
(Hproj-FTC).

(EPS)

$20 Fig. SP Response Distribution Landscape. Distributions of SP response (-AH,,c;) in indi-
vidual cells within the populations of ensembles meeting SP selection criteria were character-
ized by standardized skewness and bimodality. Simply put, skewness measures the degree of
asymmetry of a distribution around the mean with a value of 0 corresponding to symmetry
and positive values corresponding to distributions with larger ranges in the distribution above
the mean. Likewise, negative skew values correspond to distributions with a larger range in the
distribution below the mean than above it. The bimodality coefficient is calculated from the
standardized skewness and standardized kurtosis. It has a range from 0 to 1, in which a value
of 0 reflects a distribution with a single value while 1 corresponds to a distribution with exactly
two values. Distributions with two fairly distinct modes score closer to 1 while distributions
with a singular mode with a higher frequency score closer to 0. The mappings of a wide variety
of example distributions are depicted along with representations of the range single-cell SP
responses in an example cell population. Lower case letters correspond to positioning on the
Response Distribution Map.

(EPS)
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