Skip to main content
. 2016 Nov 16;11(11):e0166675. doi: 10.1371/journal.pone.0166675

Table 2. Model fits. Mean ± SEM.

Model -LLE AIC Pseudo-R2 α αApproach αAvoid β
Working memory
Random choice 240.76±22.860 240.767±45.720 - - - - -
Canonical 182.068±23.126 186.068±46.252 0.291±0.028 0.152±0.024 - - 0.286±0.043
Approach/avoidance 174.586±22.641 180.586±45.282 0.320±0.029 - 0.282±0.045 0.077±0.019 0.258±0.027
Habitual
Random choice 79.467±0.581 79.467±1.162 - - - - -
Canonical 55.801±2.398 59.801±4.796 0.297±0.030 0.223±0.056 - - 0.229±0.037
Approach/avoidance 51.384±2.696 57.384±5.392 0.354±0.036 - 0.175±0.043 0.221±0.054 0.161±0.032

LLE is the log-likelihood estimate. AIC is the Akaike Information Criterion. α denotes learning rates and β the trade-off between exploration and exploitation. Working memory and Habitual refer to two different learning systems which can be assessed by fitting model parameters to behavioural data during the training and testing phase, respectively [12].