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ABSTRACT

RNA secondary structure prediction is widely used to analyze RNA sequences. In an RNA partition function calculation, free
energy nearest neighbor parameters are used in a dynamic programming algorithm to estimate statistical properties of the
secondary structure ensemble. Previously, partition functions have largely been used to estimate the probability that a given
pair of nucleotides form a base pair, the conditional stacking probability, the accessibility to binding of a continuous stretch of
nucleotides, or a representative sample of RNA structures. Here it is demonstrated that an RNA partition function can also be
used to calculate the exact probability of formation of hairpin loops, internal loops, bulge loops, or multibranch loops at a
given position. This calculation can also be used to estimate the probability of formation of specific helices. Benchmarking on
a set of RNA sequences with known secondary structures indicated that loops that were calculated to be more probable were
more likely to be present in the known structure than less probable loops. Furthermore, highly probable loops are more likely
to be in the known structure than the set of loops predicted in the lowest free energy structures.
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INTRODUCTION

RNA, like other biopolymers, folds into distinct structures
that are crucial for function. Structured RNAs have numer-
ous functions in a cell, including catalyzing the elongation
of the amino acid chain in protein synthesis by rRNA
(Noller et al. 1992; Ban et al. 2000), catalyzing pre-mRNA
splicing by self-splicing introns (Kruger et al. 1982; Fica
et al. 2013), regulating gene expression by siRNA (Fire
et al. 1998), and regulating gene expression in response to li-
gands using riboswitches (Nahvi et al. 2002; Winkler et al.
2004; Serganov and Nudler 2013). RNA secondary structure,
defined as the set of A-T, C-G, and G-U canonical pairs in an
RNA structure, is a resolution that has proven useful for
studying RNA. Secondary structures have been used to find
functional RNA in genomes (Macke et al. 2001; Klein and
Eddy 2003; Torarinsson et al. 2006; Uzilov et al. 2006; Yao
et al. 2006; Nawrocki et al. 2009; Gorodkin et al. 2010;
Gruber et al. 2010; Fu et al. 2015), to find regions of an
RNA that are accessible for binding by siRNAs (Heale et al.
2005; Lu and Mathews 2007; Tafer et al. 2008), and for de-
signing RNAs with desired structures or functions
(Hofacker et al. 1994; Zadeh et al. 2010; Garcia-Martin
et al. 2013; Lee et al. 2014). Secondary structure prediction

can also be used to search for motifs of interest, such as bind-
ing sites for small molecules (Velagapudi et al. 2014) or pro-
teins (Re et al. 2014). For example, Velagapudi et al. (2014)
identified potential RNA drug targets by searching for natural
RNAs with structures that contain motifs that were expected
to bind small molecules.
Secondary structure can be computationally predicted.

The most popular structure prediction algorithms, imple-
mented in Mfold/UNAFold (Zuker 2003), the ViennaRNA
Package (Lorenz et al. 2011), and RNAstructure (Reuter
and Mathews 2010; Bellaousov et al. 2013), use a nearest
neighbor model that can estimate the Gibbs free energy of
folding for an RNA molecule. A search using dynamic pro-
gramming can find the structure with the lowest (i.e., most
negative) free energy, which is the most probable structure
at equilibrium (Nussinov and Jacobson 1980; Zuker and
Stiegler 1981). In one benchmark, 61.2% of pairs in predicted
structures are present in accepted structures, and 68.9% of
accepted pairs are in the predicted structure (Bellaousov
and Mathews 2010), which is sufficient accuracy to develop
testable hypotheses about the structure. Incorporation of
sequence comparison information by using multiple
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homologous sequences (Seetin and Mathews 2012; Schirmer
et al. 2014) or information from experimental data (Deigan
et al. 2009; Cordero et al. 2012; Sloma and Mathews 2015)
into the structure prediction results in excellent accuracy,
with up to 90% of predicted pairs being correct.
While studies of the minimum free energy structure have

proven useful, many functional RNAs, such as mRNA, are
probably not frozen in a single minimum free energy struc-
ture; rather, they exist in ensembles of secondary structures.
Further, in many functional RNAs, the secondary structure
changes as part of the function. One example of this is ribo-
switches, in which presence of a ligand causes a secondary
structure change to modulate transcription, translation, or
splicing (Serganov and Nudler 2013). Accurate estimates of
RNA switching could also be highly useful in synthetic biol-
ogy applications, where circuits can be made entirely of RNA,
which serves as both a messenger and an effector (Davidson
and Ellington 2007).
Another calculation, the partition function, accounts for

the statistical properties of the secondary structure ensemble.
The partition function allows the calculation of base-pairing
probabilities for each pair of nucleotides in the molecule, and
also the probability that each nucleotide is unpaired. In effect,
this allows all possible secondary structures to be considered
simultaneously with their exact weighting in the Boltzmann
ensemble. This is useful for estimating confidence in predict-
ed base pairs (Mathews 2004), predicting accessibility to
base-pairing of an RNA sequence (Lu and Mathews 2007;
Tafer et al. 2008), and stochastically sampling from the equi-
librium ensemble of structures (Ding and Lawrence 2003).
Further work extended the partition function to calculate
the probability of base pair stacks instead of individual base
pairs (Bompfunewerer et al. 2008).
This work develops a newmethod to use an RNA partition

function to calculate the probability of hairpin loops, internal
loops, bulge loops, and multibranch loops in an RNA struc-
ture, as well as the probability of base pair stacks and helices
of any length. Calculating the probability of a hairpin loop,
internal loop, or helix is analogous to calculating the proba-
bility of a base pair in that the calculation uses intermediate
values saved from the dynamic programming tables used in
the partition function calculation, and therefore requires
no additional computation. Calculating the probability of a
multibranch loop requires additional computation because
the equilibrium constant for a multibranch loop is not tabu-
lated in the energy model and must be calculated. In this
work, an algorithm is presented to calculate the equilibrium
constant for a multibranch loop using dynamic program-
ming. This algorithm has complexity O(P + U), where P is
the number of helices in the multibranch loop and U is the
number of unpaired nucleotides.
It is important to note that, although a loop or helix con-

tains multiple pairs, its probability is distinct from the prob-
abilities of the constituent pairs and unpaired nucleotides.
This is because base pair formation probabilities are not in-

dependent events. Knowledge of the presence of a base pair
at one position affects the conditional probability of other
pairs in the ensemble. In the loop probability calculation,
loop or helix formation is treated as a single event. Like the
pair probabilities, these loop probabilities are the sum of
the probabilities of all of the structures that contain the
loop in the ensemble of all structures. This gives the probabil-
ity of only a single loop; joint probabilities for non-mutually
exclusive loops would require additional computation.
Using this method, loop and helix probabilities were calcu-

lated for a set of RNAs with known secondary structures. As
shown in Results, below, loops and helices with high proba-
bility were more likely to be found in the true structure, and
this method was more accurate at finding loops than mini-
mum free energy structure prediction.

RESULTS

Calculation of loop and helix probabilities from the parti-
tion function was implemented in a stand-alone pro-
gram, ProbScan, which has been incorporated into the
RNAstructure software package. ProbScan runs in twomodes:
search mode and calculation mode. In search mode, the pro-
gram takes a nucleotide sequence, identifies all of the possible
loops or helices of a user-specified type (i.e., hairpin loops,
bulge loops, internal loops, or helices of a specified length),
and calculates the probability of each. The output is a list of
loops, specified by the position of their closing base pairs,
and a corresponding probability. Search is not implemented
for multibranch loops because the large space of possible
multibranch loops makes the computational expense of this
calculation prohibitive. In calculation mode, the program
takes a list of closing base pairs and either an RNA sequence
or the output of a partition function calculation. ProbScan
identifies the type of loop that these pairs describe, performs
the probability calculation for this loop, and outputs its prob-
ability. Source code and executable binaries are provided at
http://rna.urmc.rochester.edu as part of the RNAstructure
package (Reuter and Mathews 2010). Additionally, the web-
site provides a C++ class and Python scripting interface for
convenient incorporation of loop probability calculations
into other software.

Benchmarking the exact calculation of loop
probabilities

To assess the accuracy of loop probability estimates, loops
with predicted probability above specific thresholds were
compared against accepted RNA secondary structures. A set
of 3847 RNA sequences with known secondary structures
was used as a benchmarking data set (see Materials and
Methods, below, for a description of the benchmarking
data set). The set includes small subunit ribosomal RNA
(22 sequences), large subunit ribosomal RNA (six sequenc-
es), 5S ribosomal RNA (1283 sequences), group I self-
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splicing introns (98 sequences), signal recognition particle
RNA (928 sequences), RNase P (454 sequences), tRNA
(557 sequences), tmRNA (462 sequences), and telomerase
RNA (37 sequences). The probability of all possible hairpin
loops and all internal or bulge loops in the test set with 30
or fewer unpaired nucleotides was tabulated, and loops
whose calculated probability were above a probability thresh-
old were compared to the known structure. The limit on
bulge/internal loop size was used because secondary structure
prediction software typically disallows internal loops larger
than 30 unpaired nucleotides (Zuker 1989; Reuter and
Mathews 2010; Lorenz et al. 2011).

A predicted loop was scored as correct if the loop precisely
matched a loop present in the accepted structure. That is, the
closing pairs must be identical between the predicted and ac-
cepted structures, and all nucleotides that are unpaired in the
predicted loop must also be unpaired in the accepted loop.
Single-nucleotide bulges that are part of a run of identical nu-
cleotides can migrate position, as shown by optical melting
experiments and NMR (Woodson and Crothers 1987;
Znosko et al. 2002;Mathews et al. 2004). Therefore, these sin-
gle-nucleotide bulge loops were excluded from the bench-
mark because they cannot be precisely localized. In the
database of known structures, there were 2255 loops of this
type that were excluded, out of a total of 6477 single-nucleo-
tide bulges.

Because the space of all possible multibranch loops is too
large to be explicitly enumerated, candidate multibranch
loops were found by enumerating all low free energy struc-
tures within RT (at 37°C, taken as 0.6 kcal/mol) of the min-
imum free energy structure (Wuchty et al. 1999). This energy
increment is small enough that these loops are expected to be
well populated at equilibrium. Probabilities were calculated
for this set of multibranch loops and compared to the true
structure.

The results of the benchmark were quantified in terms of
the positive predictive value (PPV), which is the fraction of
predicted loops that are present in the accepted structure,
and the sensitivity, which is the fraction of accepted loops
that were predicted (Supplemental Table S1). Families can
have a large difference in the number of accepted loops.
Therefore, sensitivity and PPV were reported as a mean for
each family to avoid the introduction of bias by families
with a large number of loops. Furthermore, the average by
family provides an expectation of performance on new fam-
ilies with unknown structure. Hairpin loops, internal loops,
and bulge loops that were estimated to be highly probable
were more likely to be present in the true structure, i.e.,
they had higher average PPVs (Fig. 1). A large fraction of
loops in the accepted structures was predicted with low prob-
ability, resulting in an excellent sensitivity at low probability
thresholds, although the sensitivity rapidly decreases as the
threshold becomes more stringent. Substantial variation in
the quality of loop prediction was observed across families
of RNA sequences (Fig. 2), which is unsurprising because
pair prediction accuracy likewise varies between families of
sequences (Mathews et al. 1999, 2004; Lorenz et al. 2011).
As a control, loops found in the predicted minimum free

energy (MFE) structure of each RNA sequence were com-
pared to the known structure (Fig. 1). The statistical signifi-
cance in the difference between prediction of loops using
thresholded loop probabilities as opposed to using the mini-
mum free energy structure was tested using a paired, two-
tailed t-test, where each paired sample was the PPV or sensi-
tivity for a family of sequences. For all loop types, setting the
PPV at a sufficiently high threshold, or the sensitivity at a suf-
ficiently low threshold, results in a significant improvement
overMFEprediction.Notably, for all of the loop types, a prob-
ability threshold can be chosen such that the sensitivity is not
significantly different than forMFE prediction, but the PPV is

FIGURE 1. Accuracy of loop probability estimation using the exact calculation. The probabilities of all possible hairpin loops ( far left), internal loops
(middle left), and bulge loops (middle right), and all multibranch loops found in low free energy structures ( far right) were calculated. Loops with
probabilities greater than the specified threshold were compared to the true structure. In each panel, the PPV (top plot) and sensitivity (bottom
plot) are plotted as a function of threshold value. The dotted line in each plot gives the PPV or sensitivity of a minimum free energy structure pre-
diction, i.e., the accuracy of loops that are present in the predicted minimum free energy structure.
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higher, and for bulge loops, thresholds can be chosen such
that both the PPV and the sensitivity are higher (Table 1).

Estimation of loop probabilities by stochastic sampling

Stochastic sampling (Ding and Lawrence 2003) provides an-
other method to estimate the probability of loops in the sec-

ondary structure. Stochastically sampled
structures are drawn from the ensemble
of possible structures with probability
equal to their weight in the ensemble.
Therefore, the frequency that a particular
loop appears in the sample approximates
its probability in the ensemble.

Loop probabilities were calculated
from stochastic samples of 1000 struc-
tures for each sequence in the bench-
marking data set, and compared to the
accepted structures in the same manner
as the exact probability calculation
(Supplemental Table S2). The resulting
plots of PPV and sensitivity against pre-
dicted probability are nearly identical to
those from the exact calculation (Fig.
3). In general, the PPV for the exact cal-
culation is slightly higher and the sensi-
tivity for the exact calculation is slightly
lower at low threshold probabilities, 0.1
or lower. The absolute differences in
PPV and sensitivity, however, are small
(<5%), and a paired, two-tailed t-test
across families at each threshold proba-
bility revealed only a few statistically sig-
nificant differences (Table 2).

Estimation of helix probabilities

The probability of helix formation can be calculated in a sim-
ilar manner to the probability of internal loop formation. In
this calculation, the probability of a helix is the probability of
having a helix of at least the specified length, i.e., the helix
might continue in either direction and these longer helices
contribute to the probability that is calculated. Probabilities

FIGURE 2. Variation in the accuracy of the probability calculation by family of structured RNA.
For each family, PPV (top) and sensitivity (bottom) are shown for loops with calculated probabil-
ities >40%. The 40% threshold is chosen arbitrarily, and variation is similar at other thresholds
(Supplemental Table S1).

TABLE 1. Statistical significance of difference in accuracy of loop prediction using probabilities

Probability threshold

Data type Loop type 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

PPV Hairpin mfe mfe mfe – – prob prob prob prob prob prob prob
PPV Internal mfe mfe – prob prob prob prob prob prob prob prob prob
PPV Bulge mfe mfe – prob prob prob prob prob prob prob prob prob
PPV Multibranch mfe – prob prob prob prob prob prob prob – nan nan
Sensitivity Hairpin prob prob prob prob – – mfe mfe mfe mfe mfe mfe
Sensitivity Internal prob prob prob – mfe mfe mfe mfe mfe mfe mfe mfe
Sensitivity Bulge prob prob prob prob – mfe mfe mfe mfe mfe mfe mfe
Sensitivity Multibranch prob – – – mfe mfe mfe mfe mfe mfe mfe mfe

At each probability threshold, the significance of the difference in PPV and sensitivity between the probability calculation and prediction
using the minimum free energy structure was tested using a paired t-test, where each paired sample is the mean for a structured RNA family.
Thresholds at which the probability calculation more accurately predicts loops are marked “prob”, thresholds at which the minimum free
energy calculation is more accurate are marked “mfe”, and thresholds at which the null hypothesis cannot be rejected in either direction (P≥
0.05) are marked “–”. Thresholds where the significance could not be tested because the PPV or sensitivity was undefined are marked “nan”.
The tRNA family is excluded from the analysis of bulge loops because the set of known structures contained no bulges.
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of all possible helices containing up to 7 bp were calculated
for the sequences in the benchmarking data set, and loops
with probabilities greater than a threshold value were com-
pared to the true structure (Fig. 4). The limit of 7 bp was cho-
sen because not all families contained structures with helices
longer than 7 bp. Like the loop probabilities, highly probable
helices were more likely to be in the true structure. For some
helix lengths, there existed thresholds where both the sensi-
tivity and PPV were significantly improved compared to
the minimum free energy calculation (Table 3).

Testing coaxial stacking nearest neighbor parameters

The nearest neighbor energy model includes parameters for
coaxial stacking in multibranch loops (Walter et al. 1994;
Kim et al. 1996; Mathews et al. 2004). Partition function cal-
culations that consider coaxial stacking take approximately
fourfold more computer time (Mathews 2004) than those
that do not consider coaxial stacking, but coaxial stacking pro-
vides only amodest improvement in the accuracy of predicted
minimum free energy structures (Mathews et al. 2004; Lorenz
et al. 2011). To test whether the coaxial stacking parameters
improve the prediction of multibranch loop probabilities,
multibranch loop probability calculations were also bench-
marked without the coaxial stacking terms in the nearest
neighbor rules (Fig. 5; Supplemental Table S3). Partition
function calculations were performed without the use of the
coaxial stacking nearest neighbor parameters, and loop prob-
abilities were likewise calculatedwithout coaxial stacking. The
candidate multibranch loops for the benchmark were found
by enumerating low-energy structures without including co-
axial stacking in the energy model. Including coaxial stacking
resulted in higher sensitivity for all thresholds and higher PPV
for thresholds greater than 0.6. Given the size of the bench-
mark, the accuracy improvement was not statistically signifi-
cant for either sensitivity or PPV at any threshold tested.

DISCUSSION

In this work, a method was presented to calculate exact prob-
abilities for hairpin loops, internal loops, multibranch loops,
and helices in an RNA secondary structure, using the data
from previous calculations of partition functions. In general,
loops with higher probabilities are more likely to be present
in the true structure. The predictions have limitations, how-
ever. Inspection of the predicted loops for a small subunit ri-
bosomal RNA revealed that many of the high-probability
loops that were not in the true structure were near pseudo-
knotted regions (data not shown). This makes sense because
the partition function calculation used here does not consid-
er pseudoknotted structures, so prediction of pseudoknotted
regions is expected to be inaccurate. Other loops were closed
by base pairs one nucleotide away from the real closing pair,
which could reflect inaccuracies in the nearest neighbor pa-
rameters, the effect of tertiary structure, or imprecision in
the accepted structure, inferred by comparative analysis. It
is also possible that some apparent inaccuracies in the loop
probabilities reflect the real secondary structure ensemble,
where a loop that is not present in the accepted structure
(and is therefore scored as an incorrect prediction) may actu-
ally exist some fraction of the time.
Loop probabilities can also be closely approximated by sto-

chastic sampling. These methods have the same asymptotic
complexity of O(N3) in time, whereN is the sequence length,
although the stochastic sampling approach is faster by a cons-
tant factor when the probabilities of unknown loops are de-
sired because the partition function calculation for exterior
fragments, which takes roughly half the computation time,
does not need to be performed. The stochastic sampling ap-
proach has the additional advantage that it can find probable
multibranch loops without the use of another structure cal-
culation to find candidates. In contrast, the exact calculation
can query the probability for a loop at a specific position in

A B C D

FIGURE 3. Accuracy of loop probability estimation using stochastic sampling. The frequencies of hairpin loops (A), internal loops (B), bulge loops
(C), and multibranch loops (D) found in 1000 structures provided probability estimates, and loops with probabilities greater than a specified thresh-
old were compared to the known structure. Here, the PPV (top) and sensitivity (bottom) are plotted as a function of threshold value. The dotted line in
each plot gives the PPV or sensitivity of a minimum free energy structure prediction.
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constant time when the position of the desired loop is known
(e.g., annotation of predicted structures), if the partition
function has already been calculated. Both methods are fast
in practice on actual sequences.
This calculation is useful for annotating predicted struc-

tures, as with base-pairing probabilities. Figure 6 shows
an example structure prediction, with annotation. Annota-
tion with predicted base-pairing probabilities is currently
used to identify pairs that are more likely to be correctly pre-
dicted than average (Mathews 2004), and annotation with
loop probabilities could provide further information to eval-
uate predictions. The structure drawing program from
RNAstructure (Reuter and Mathews 2010), draw, was ex-
tended to color-annotate predicted structures according to
loop and helix probabilities.
An important application of this method is the search for

structural motifs in the sequence of natural RNAs, such as the
search for loops that are known to bind to a small molecule.
The Inforna approach identifies small molecules that will
bind target RNAs (Velagapudi et al. 2014), and has been
used to find pre-miRNAs that can be targeted with small
molecules. It predicts minimum free energy structures and
then looks for small molecules that will potentially bind the
loops in the minimum free energy structure. The probabilis-
tic method described here could replace the use of the min-
imum free energy structure prediction in these searches.
Because the loop probability calculation can find more of
the true loops than the minimum free energy structure (high-
er sensitivity), or more reliably identify loops in the true
structure (higher PPV), loop probabilities would provide a
more flexible and robust method for motif search. This might
be especially true if the RNAs being searched have more com-
plicated secondary structures than the simple hairpin stem–

loop structure of a pre-miRNA.
Interestingly, coaxial stacking parameters did not signifi-

cantly improve the probability calculation for multibranch

loops in this benchmark. It is important to note, however,
that the coaxial stacking parameters might still improve mul-
tibranch loop prediction in spite of this lack of statistical sig-
nificance, as the PPV for multibranch loops with high

TABLE 2. Statistical comparison of loop prediction between exact calculation and stochastic sampling

Probability threshold

Data type Loop type 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

PPV Hairpin exact exact – – – – – – – exact – exact
PPV Internal exact – – – – – – – – – – –

PPV Bulge exact – – – – – – – – – – –

PPV Multibranch exact exact – – – – – – – – nan nan
Sensitivity Hairpin sample – – – – – – – – – sample sample
Sensitivity Internal sample – – – – – – – – – – –

Sensitivity Bulge – sample – – – – – – – – – –

Sensitivity Multibranch sample sample – – – – – – – – – –

At each probability threshold, the significance of the difference in PPV and sensitivity between the exact probability calculation and probabili-
ty estimation with stochastic sampling was tested using a paired t-test, where each paired sample is a structured RNA family. Thresholds at
which exact calculations were more accurate are marked “exact”, thresholds at which the stochastic sampling is more accurate are marked
“sample”, and thresholds at which the null hypothesis cannot be rejected in either direction (P≥ 0.05) are marked “–”. Thresholds where the
significance could not be tested because the PPV was undefined are marked “nan”. The tRNA family is excluded from the analysis of bulge
loops because the set of known structures contained no bulges.

FIGURE 4. Accuracy of helix probability estimation. The probabilities
of all possible helices containing 2–7 bp were calculated. Helices with
probabilities greater than some threshold were compared to the true
structure. Here, the PPV (top) and sensitivity (bottom) are plotted
against threshold values at each length. The dotted line in each plot gives
the PPV or sensitivity of a minimum free energy structure prediction.
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calculated probabilities (>0.8) was excellent (PPV >0.6). For
each probability threshold greater than 0.8, there is at least
one RNA family for which no multibranch loops were pre-
dicted, and for a threshold of 0.99, multibranch loops were
predicted for no families when coaxial stacking parameters
are not used (Supplemental Table S3). As a result, the PPV
for the multibranch loop prediction without coaxial stacking
is undefined for these families, and the overall significance of
the difference between multibranch loop predictions with
and without coaxial stacking parameters cannot be assessed
at these thresholds.

MATERIALS AND METHODS

Pair probability calculation

The RNA partition function Q is given by

Q =
∑

s[S

e−DGs/RT ,

where s is a structure from the set, S, of possible pseudoknot-free
secondary structures, R is the universal gas constant, and T is the ab-
solute temperature (McCaskill 1990). In the dynamic programming
calculation of the partition function in RNAstructure, which was
previously described (Mathews 2004), intermediate values of Q
are calculated for subsequences and held in N ×N upper triangular
matrices, where N is the length of the full sequence. In this calcula-
tion, theVinterior andVexterior tables are used from the partition func-
tion calculation. Vinterior(i,j) holds the partition function for the
subsequence from i to j where i and j are required to form a base
pair. Vexterior(i,j) holds the partition function for nucleotides from
1 to i and j to N, where i and j are required to pair. The probability
for a base pair between nucleotides i and j is therefore given by

P(i, j) = Vinterior(i, j) × Vexterior(i, j)
Q

.

TABLE 3. Statistical significance of improvement in helix prediction using probabilities

Probability threshold

Data type Helix size (bp) 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99

PPV 2 mfe mfe mfe – prob prob prob prob prob prob prob prob
PPV 3 mfe mfe mfe – prob prob prob prob prob prob prob prob
PPV 4 mfe mfe mfe – prob prob prob prob prob prob prob prob
PPV 5 mfe mfe mfe – prob prob prob prob prob prob prob prob
PPV 6 mfe mfe mfe – – prob prob prob prob prob prob prob
PPV 7 mfe mfe – – – prob prob prob prob prob prob prob
Sensitivity 2 prob prob prob prob – – mfe mfe mfe mfe mfe mfe
Sensitivity 3 prob prob prob prob – – mfe mfe mfe mfe mfe mfe
Sensitivity 4 prob prob prob prob prob – mfe mfe mfe mfe mfe mfe
Sensitivity 5 prob prob prob prob prob – mfe mfe mfe mfe mfe mfe
Sensitivity 6 prob prob prob prob prob mfe mfe mfe mfe mfe mfe mfe
Sensitivity 7 prob prob prob prob – – mfe mfe mfe mfe mfe mfe

At each probability threshold, the significance of the difference in PPV and sensitivity between the probability calculation and prediction
using the minimum free energy structure was tested using a paired t-test, where each paired sample is a structured RNA family. Thresholds at
which the probability calculation more accurately predicts helices are marked “prob”, thresholds at which the minimum free energy calcula-
tion is more accurate are marked “mfe”, and thresholds at which the null hypothesis cannot be rejected in either direction (P≥ 0.05) are
marked “–”.

FIGURE 5. Accuracy of multibranch loop prediction without the use of
coaxial stacking nearest neighbor parameters. The probabilities of all
multibranch loops found in low free energy structures were calculated
with the use of coaxial stacking nearest neighbor parameters, and loops
with probabilities greater than the threshold were compared to the true
structure. Here, the PPV (top) and sensitivity (bottom) are plotted
against threshold value. The dotted line in each plot gives the PPV or
sensitivity of a minimum free energy structure prediction without coax-
ial stacking parameters.
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Loop probability calculation

The probability calculation for a loop extends naturally from the
probability of a pair. A diagram of each calculation is shown in
Figure 7. The probability for a hairpin loop closed by nucleotides
at i and j is given by

Phairpin(i, j) = Vexterior(i, j) × Khairpin(i, j)
Q

,

where the hairpin loop equilibrium constant, Khairpin(i,j), is tabulated
with nearest neighbor parameters (Turner and Mathews 2009).
The probability for an internal loop, bulge loop, or helix closed by

pairs i,j and k,l, where i < k < l < j, is given by

Pbulge/internal/helix(i, j, k, l)

= Vinterior(k, l) × Vexterior(i, j) × Kbulge/internal/helix(i, j, k, l)
Q

.

The equilibrium constant for an internal loop or bulge loop is tab-
ulated from the nearest neighbor parameters (Turner and Mathews
2009). The equilibrium constant for a helix is given by the product
of the equilibrium constants for each base pair stack in the helix
(and is tabulated directly for the case of a helix containing 2 bp,
and therefore the helix contains a single stack). The helix probability
calculated in this way is therefore the joint probability of its constit-
uent stacks, and it does not distinguish whether there are any fur-
ther, adjacent stacks. The helix probability, therefore, includes the
probability that the helix is part of another, longer helix.
The probability for a multibranch loop is similar to the internal

loop but there are multiple interior fragments. For aw-way junction

closed on the exterior by i, j and on the interior by a setm of pairs k,
l, the probability is

Pmulti(i, j) = Vexterior(i, j) ×
∏

m′[m(Vinterior(km′ , lm′ )) × Kmulti

Q
.

The equilibrium constant for the multibranch loop, Kmulti, can be
calculated by summing the equilibrium constants of all configura-
tions of coaxial stacks, terminal mismatches, and dangling ends
(Tyagi and Mathews 2007). For the calculations without coaxial
stacking, only the parameters for dangling ends and terminal mis-
matches are used. An algorithm is presented below to calculate
this number efficiently.

A dynamic programming algorithm to calculate
the equilibrium constant of a multibranch loop

Consider a multibranch loop M composed of N′ elements, e1…N′,
where an element is either an unpaired nucleotide or a base pair
closing a helix. Element e1 represents the closing base pair of the
multibranch loop, i.e., the pair of the most 5′ and 3′ nucleotides
in the loop. The equilibrium constant, KM, is calculated from the
sum of the equilibrium constants for each possible arrangement
of dangling ends, terminal mismatches, and coaxial stacks. The
space of possible configurations is large, but the sum of the contri-
bution of each state can be calculated without actually enumerating
all of the configurations by storing intermediate results, representing
the sums of equilibrium constants for interactions that can occur in

Hairpin: 0.994

Hairpin: 0.930 (predicted), 0.069 (real)

Hairpin: 0.914

Multibranch loop:
    0.301 (predicted),
    0.321 (real)

Helix: 0.994

Helix: 0.616 (predicted)
          0.612 (real)

Helix: 0.970

Helix: 0.994

FIGURE 6. The predicted minimum free energy structure of tRNA-ar-
ginine fromHaloferax volcanii (Sprinzl et al. 1998), annotated with pre-
dicted probabilities for the loops and helices. An x across a base pair
indicates an incorrectly predicted base pair, and the dashed line repre-
sents a true pair that is not in the predicted structure. Note that in the
central multibranch loop, which is incorrectly predicted in the MFE
structure, the calculated probability of the true loop is higher than
that of the incorrectly predicted loop. In the structure calculations,
modified nucleotides that cannot fit in A-form helices were forced to
be unpaired (Mathews et al. 1999).
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FIGURE 7. A diagram depicting the loop probability calculation for (A)
hairpin loops; (B) helices, bulges, and internal loops; and (C) multi-
branch loops. For the region of the RNA containing the loop or helix,
shown in gray, the structure is known, and there is an equilibrium cons-
tant K for the region in the nearest neighbor parameters. For the regions
with unknown structure, shown in black, the partition function for the
region can be found in the V table from the partition function calcula-
tion. The known region is “frozen in place” while the rest of the struc-
ture varies, so all secondary structures containing the loop or helix are
implicitly accounted for.
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a particular subsequence in a set of arrays, here denoted A. This cal-
culation is performed as follows.

Let Ai′ be a one-dimensional array of length N′ where Ai′ (j
′) de-

notes the sum of possible nearest neighbor contributions of the el-
ements in the fragment of the multibranch loop from ei′ to ei′+j′,
inclusive. The multibranch loop is “circularized” such that ei′ is
the same element as ei′+N′. Multiple arrays are used because it is nec-
essary to consider interactions across the “ends” of the multibranch
loop, such as an unpaired nucleotide at position Nmaking a 5′ dan-
gle on a helix at position 1. Four Ai′ arrays are used, A1, A2, A3, and
A4. These each have the same length but different start and end po-
sitions, to account for the phases in which elements can interact to
stabilize the multibranch loop. They represent the sequences of ele-
ments from 1 toN′, 2 to N′ + 1, 3 toN′ + 2, and 4 to N′ + 3, respec-
tively. Four phases are necessary because the largest interaction that
can occur, a mismatch-mediated coaxial stack containing two heli-
ces and two unpaired nucleotides, contains four elements. A can be
filled using the recurrence equations:

Ai(1) = 1

if the element at position i + j is an unpaired nucleotide:

Ai′ ( j′) = Ai′ ( j′ − 1) + Ai′ ( j′ − 2) × K3′ dangle( j′ + i′ − 1, j′ + i′)
+ A(i′, j′ − 3) × Kterminal stack( j′ + i′ − 1, j′ + i′ − 2, j′

+ i′) + Ai′ ( j′ − 4) × Kmismatch coaxial( j′ + i′ − 3, j′ + i′

− 1, j′ + i′ − 2, j′ + i′).
Otherwise, i.e., the element at i′ + j′ is a base pair:

Ai′ ( j′) = Ai′ ( j′ − 1) + Ai′ ( j′ − 2)∗K5′dangle( j′ + i′ − 1, j′ + i′)
+ Ai′ ( j′ − 2) × Kflush coaxial( j′ + i′ − 1, j′ + i′) + Ai′ ( j′
− 4) × Kmismatch coaxial( j′ + i′ − 2, j′ + i′, j′ + i′ − 3, j′

+ i′ − 1).
Each array Ai is filled starting with j′ = 1 up to N′. Here, K3′ dangle(e1,
e2) is the equilibrium constant for an unpaired nucleotide at e2 dan-
gling on a helix at e1, or 0 if e1 is an unpaired nucleotide or e2 is a
helix. K5′ dangle(e1,e2) is the equilibrium constant for an unpaired nu-
cleotide at e1 dangling on a helix at e2, or 0 if e1 is a helix or e2 is an
unpaired nucleotide. Kterminal stack(e1,e2,e3) is the equilibrium cons-
tant for a terminal stack where unpaired nucleotides at e2 and e3 both
stack on a helix at e1, or 0 if e1 is not a helix or e2 and e3 are not un-
paired nucleotides. Kflush coaxial(e1,e2) is the equilibrium constant for
a coaxial stack between helices at e1 and e2, or 0 if e1 or e2 is an un-
paired nucleotide. Kmismatch coaxial(e1,e2,e3,e4) is the equilibrium
constant for helices at e1 and e2 forming a coaxial stack mediated
by a mismatch between unpaired nucleotides at e3 and e4, or 0 if ei-
ther e1 or e2 are unpaired nucleotides or e3 or e4 are helices.

Once A is filled, the full equilibrium constant is given by

KM = Kloop initiation penalty×[A1(N ′)
+ A2(N ′ − 1)×K5′dangle(N ′, 1)
+ A3(N ′ − 1)×Kterminal stack(1, 2,N ′)
+ A2 N ′ − 1

( )×Kflush coaxial(1,N ′)
+ A2(N ′ − 2)×Kmismatch coaxial(1,N ′ − 1, 2,N ′)
+ A2(N ′ − 3)×Kmismatch coaxial(1,N ′ − 1,N ′ − 2,N ′)
+ A4(N ′ − 1)×Kmismatch coaxial(1, 3, 2,N ′)].

This final calculation accounts for the interactions that can occur be-
tween the two “ends” of a multibranch loop. The possible interac-

tions are limited because the first element of the multibranch loop
is the closing base pair. All equilibrium constants used are tabulated
in the nearest neighbor parameters. The time and memory perfor-
mance of the calculation is linear in the number of elements in
the multibranch loop.

Structure calculations

All structure calculations were performed using RNAstructure 5.7
(Reuter and Mathews 2010), using the default settings on all pro-
grams except as otherwise noted. The Fold program was used to
generate minimum free energy structures. The AllSub program
was used to exhaustively enumerate low free energy structures
(Wuchty et al. 1999; Duan et al. 2006). The stochastic program
was used to perform stochastic sampling (Ding and Lawrence
2003). The new ProbScan program was used to calculate loop and
helix probabilities.

Database of test structures

A database containing 10 families of reference structures determined
by comparative sequence analysis was assembled for use in bench-
marking secondary structure prediction. This database includes
small subunit ribosomal RNA (Gutell 1994), large subunit ribosom-
al RNA (Gutell et al. 1993; Schnare et al. 1996), 5S ribosomal RNA
(Szymanski et al. 1998; Daub et al. 2008), Group I self-splicing in-
trons (Waring and Davies 1984; Damberger and Gutell 1994),
RNase P RNA (Brown 1998), signal recognition particle RNA
(Larsen et al. 1998), tRNA (Sprinzl et al. 1998), and tmRNA
(Zwieb and Wower 2000).

This database is an expansion and update of a database of struc-
tures assembled previously for benchmarking secondary structure
prediction (Mathews et al. 1999; Bellaousov and Mathews 2010).
Many structures have been revised, and many new structures have
become available. Structures were obtained as follows: Structures
of small and large subunit ribosomal RNAs and group I introns
were obtained from RNA STRAND v2.0 (Andronescu et al. 2008).
Structures of 5S ribosomal RNAs were obtained from the 2005 up-
date of the 5S ribosomal RNA Database (Szymanski et al. 1998).
Vertebrate telomerase RNA secondary structure alignments were
obtained from the Rfam 9.1 database (Griffiths-Jones et al. 2003,
2005; Daub et al. 2008; Gardner et al. 2009). tmRNA secondary
structures were obtained from the tmRDB database (Zwieb et al.
2003). Structures with unknown nucleotides were omitted from
the full list of structures in each database. Small and large subunit
rRNA sequences were divided into domains of≤700 nt as previously
reported (Mathews et al. 1999). Where possible, every structure in
the database where the whole sequence was known was used for test-
ing. For the small and large subunit ribosomal RNAs, where manual
curation was necessary to break the structures into domains, struc-
tures were chosen to maximize taxonomic diversity (Mathews et al.
1999).

RNA molecules from different species sometimes share an exact
sequence, resulting in redundancy within the sequence databases.
Redundant sequences were not removed from the benchmarking
data set, so the group I intron, RNAse P, SRP, tmRNA, and tRNA
data sets contain a small number of duplicate sequences, in line
with what appears in nature. The database of 3847 sequences con-
tains 3483 unique sequences, 311 of which appear more than
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once. No single sequence is highly prevalent within a family. The
most prevalent sequence is a tmRNA that appears 12 times, making
up 2.6% of the sequences in the tmRNA family.
Supplemental Table S4 provides the accession numbers of each

sequence in its source database, and the full data set is available by
request from the authors.

Quantifying benchmark performance

A prediction of a loop was counted as correct if it exactly matched
the accepted structure. That is, every base pair closing the predicted
loop precisely matched a base pair in the accepted structure, and ev-
ery unpaired nucleotide in the predicted loop was unpaired in the
accepted structure. To quantify the accuracy of the benchmark, sen-
sitivity and positive predictive value (PPV) were reported, where

Sensitivity = true positives

true positives+ false negatives

and

PPV = true positives

true positives+ false positives
.

Intuitively, the sensitivity is the fraction of correct loops that was
predicted, and the PPV is the fraction of predicted loops that was
correct.

Statistics and significance of benchmark results

Overall mean values were calculated as means across RNA families,
i.e., each family contributed equally to the mean performance.
Within families, means were taken across all loops of the specified
type. The statistical significance of benchmark results was deter-
mined using a paired, two-tailed t-test. The type I error rate, α,
was set at 0.05. All of the predicted loops for an entire family of
RNA from the benchmark database were treated as a single sample
for the purpose of the test. If any family predicted no loops with
probability above the threshold, the PPV for that family was unde-
fined, so the test could not be performed. All families contained ev-
ery type of loop, except for tRNAs, which had no bulge loops.
Therefore, tRNAs were excluded from the analysis of bulge loop
sensitivity.
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