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Abstract

Bees are important pollinators of plants in both agricultural and non-agricultural landscapes. 

Recent losses of both managed and wild bee species have negative impacts on crop production and 

ecosystem diversity. Therefore, in order to mitigate bee losses, it is important to identify the 

factors most responsible. Multiple factors including pathogens, agrochemical exposure, lack of 

quality forage, and reduced habitat affect bee health. Pathogen prevalence is one factor that has 

been associated with colony losses. Numerous pathogens infect bees including fungi, protists, 

bacteria, and viruses, the majority of which are RNA viruses including several that infect multiple 

bee species. RNA viruses readily infect bees, yet there is limited understanding of their impacts on 

bee health, particularly in the context of other stressors. Herein we review the influence 

environmental factors have on the replication and pathogenicity of bee viruses and identify 

research areas that require further investigation.
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Introduction

Honey bees (Apis mellifera), bumble bees (Bombus spp.), and other insects play a vital role 

in ecosystems as plant pollinators. The annual estimated value of crops directly dependent 

on insect pollination worldwide is $153 billion [1] and approximately $15–16 billion in both 

the US and the EU [2,3]. Wild, native, and managed bee species perform the majority of 

pollination services in both agricultural and non-agricultural landscapes. Bumble bees are 

the primary pollinators of some crops (e.g., tomatoes) and augment pollination of other 

crops [4]. In large-scale crop (e.g., almond, apple, cherry) production honey bees are the 

primary pollinators, since they forage over large distances and can be maintained in 

transportable hives. Honey bees were introduced to North America in the early 1600s as a 

managed species kept by beekeepers primarily for honey production [5]. Today, the majority 

of US honey bee colonies are maintained by commercial beekeeping operations. Colonies 

managed by small-scale beekeepers and feral (or unmanaged) colonies make up the 

remaining population.

High annual losses of managed honey bees and population declines of wild bumble bees are 

of great concern since bee pollinators are important for plant reproduction and crop 

production [6–8]. In some regions of the US, bumble bees have experienced between 23–

86% range reduction [7,8] and annual losses of US honey bee colonies have averaged 33% 

since 2006 (reviewed in [9]). Several studies have focused on assessing the relationship 

between colony health and the effects of multiple biotic (e.g., pathogens, bee genetics, and 

queen longevity) and abiotic factors (e.g., agrochemical exposure, weather, and management 

practices) [7,10–14]. These studies indicate that pathogens, agrochemical exposure, and lack 

of quality forage and habitat all contribute to bee losses, though investigating the relative 

role of these factors is still an active area of research. Pathogens, including the microsporidia 

Nosema ceranae, trypanosomatids, viruses, and the ectoparsitic mite Varroa destructor, 
contribute to honey bee colony losses [15–25] (reviewed in [11,26–29]), and the 

microsporidia Nosema bombi is associated with declining bumble bee populations in the US 

[7,8].
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The largest class of honey bee infecting pathogens are positive-sense single stranded RNA 

viruses including: Acute bee paralysis virus (ABPV), Black queen cell virus (BQCV), Israeli 

acute bee paralysis virus (IAPV), Kashmir bee virus (KBV), Deformed wing virus (DWV), 

Kakugo virus (KV), Varroa destructor virus-1 (VDV-1), Sacbrood virus (SBV), Slow bee 

paralysis virus (SBPV), Cloudy wing virus (CWV), Big Sioux River virus (BSRV), Aphid 

lethal paralysis virus (strain Brookings) (ALPV), Chronic bee paralysis virus (CBPV) 

(reviewed in [15,17,28]), the Lake Sinai viruses (LSV) [21], and Bee macula-like virus 

(BeeMLV) [30]. In addition, one double-stranded DNA virus, Apis mellifera filamentous 

virus (AmFv) has been isolated from honey bees [31]. The majority of bee-infecting viruses 

were originally discovered and characterized in honey bees, likely since they are the most 

investigated species. Detection of these viruses in other arthropods indicates that origin of 

discovery does not necessarily reflect host-range, host-pathogen evolution, or directionality 

of inter-species transmission (i.e., ABPV, IAPV, DWV, BQCV, SBV, SBPV, LSV and 

VdMLV) [32–37]. Bee viruses are transmitted both vertically and horizontally [38], 

including between and among co-foraging wild and managed bee populations [32,39,40]. 

They are also transmitted by Varroa destructor mites, which also support replication of a 

subset of these viruses [41–44]. Virus infections may cause deformities, paralysis, death, or 

remain asymptomatic [15]. The severity of virus infection is influenced by numerous factors 

that impact bee health, including genetic composition of both host and virus, immune 

response, synergistic and/or antagonistic pathogenic infections, microbial composition, 

nutritional status, and agrochemical exposure [15,27,28,45–47]. The focus of this review is 

to highlight recent studies on the abiotic and biotic factors that affect bee virus replication 

and pathogenicity.

Bee health, nutrition, habitat, and colony management

Bees obtain nutrients from nectar and pollen, and adequate nutrition is important for proper 

immune system function (reviewed in [48]). Though there have been few quantitative 

assessments of the relationship between nutritional status and pathogen burden ([49] and 

reviewed in [47]), several studies suggest that insufficient protein and low-diversity diets 

negatively impact bees’ ability to defend against pathogens [49–51]. In laboratory-based 

studies, naturally DWV-infected honey bees that were fed a protein-free sucrose-syrup diet 

had significantly higher DWV levels compared to bees fed either pollen or a protein-

supplement [50]. Intriguingly, the pollen-fed group had reduced DWV virus load by day 

four of the trial, whereas the protein supplement fed group exhibited reduced virus load 

several days later [50]. While an adequate amount of protein is important, a diverse pollen 

diet, as opposed to monofloral pollen or additional protein, enhanced adult bee 

immunocompetence (i.e., haemocyte concentration, fat body mass, and phenoloxidase and 

glucose oxidase activities)[49]. Together these studies suggest that while protein is 

important, the source of this protein is also critical to proper immune function. Similarly, 

bees fed honey, which consists of 30–45% fructose, 24–40% glucose, 0.1–4.8% sucrose, and 

minute amounts of micronutrients and amino acids, increased expression in a greater number 

of genes involved in detoxification, immunity, aromatic amino acid metabolism, and 

oxidation and reduction as compared to bees fed either sucrose or high fructose corn syrup 

[51,52]. Together, these studies indicate that proper nutrition (i.e., adequate protein and 
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carbohydrates) and natural and diverse food sources (i.e., nectar and pollen) enhance bee 

immune function. However, the mechanisms and gene regulatory pathways involved in 

nutrition-dependent immunocompetence require further characterization. Future studies 

should employ both cage-studies, which provide a well-controlled environment to 

investigate individual bee responses and facilitate standardization of multiple variables (e.g., 

pathogen dose), and colony level studies. A more thorough understanding of the role of diet 

on bee health is important, as it is common for beekeepers to provide supplemental feed 

when natural sources are scarce. Overall, these studies indicate that managing landscapes to 

enhance floral, and therefore nutritional, diversity will benefit the health of both managed 

and wild bee populations.

While floral resources are essential to bee health, flowers also serve as a hub for pathogen 

transmission and agrochemical exposure [32,33,40]. The most well documented intra- and 

inter-species transmissible bee pathogens are RNA viruses [32,33,39,53–55]. Transmission 

of these viruses is thought to be associated with bee foraging activities, as BQCV, SBV, and 

DWV have been detected in honey bee collected pollen [32,40]. In addition, inter-species 

transmission was demonstrated experimentally in greenhouse studies in which IAPV was 

transmitted from honey bees to bumble bees and vice versa [32]. Phylogenetic analyses of 

virus genome sequences (i.e., BQCV, DWV, and IAPV) obtained from foraging honey bees, 

pollen pellets, and non-Apis hymenopteran, including solitary bees, wasps, and bumble bees, 

did not cluster by host, providing further evidence of inter-species transmission [32]. In 

addition, IAPV was detected in non-Apis hymenopteran species collected from sites near 

IAPV-infected honey bee colonies, whereas wild hymenopterans obtained from areas 

proximal to honey bees that were not infected with IAPV were also IAPV-negative [32]. 

Likewise, recent evaluation of the viruses associated with sympatric honey bee and bumble 

bee populations in Great Britain and the Isle of Man indicated they were infected with 

similar strains of DWV and VDV [39], and BQCV, DWV, ABPV, SBPV, and SBV were 

detected in both honey bees and bumble bees in the same geographic area, though viral 

prevalence and abundance varied by species [33]. Based on modeling data, it was suggested 

that the directionality of DWV transmission was from honey bees to bumble bees, since 

DWV was more prevalent and abundant in honey bees than in bumble bees where ranges 

overlapped [39]. This relationship was reversed for ABPV and SBV, which were more 

prevalent in bumble bees than in honey bees where ranges overlapped [33]. Although viruses 

are shared between honey bees and bumble bees, there have been very few studies that have 

investigated the role of viruses on bumble bee health, as most efforts have focused on the 

role of eukaryotic pathogens on bumble bee health [53,56–59]. Additional epidemiologic 

studies are required to better understand pathogen transmission between and within wild and 

managed bee populations, since the dynamics of transmission will likely vary across 

different geographies and be influenced by the local abundance of particular bee species, 

pathogen prevalence, and anthropogenic factors including land use ([48,60]) and 

agrochemical exposure [61,62]. A recent study showed that proximity to urbanization and 

colony management were linked to increased pathogen pressure on honey bees [60]. A study 

of feral and non-commercially managed honey bee colonies across an urbanization gradient 

determined that feral bees were more immunocompetent (as indicated by approximately 

two-fold increased expression of four immune genes after challenge) than managed bees, 
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that urbanization positively correlated with greater Nosema ceranae and BQCV prevalence, 

and that management was positively correlated with higher prevalence of both Nosema apis 
and Nosema ceranae [60].

Impact of agrochemical exposure on virus replication and pathogenesis

Bee health is influenced by a variety of environmental factors including exposure to 

agrochemicals. Agrochemicals, including pesticides, herbicides, and fungicides are used 

widely across a range of landscapes (e.g., agricultural, non-agricultural, wild, managed, and 

residential), as well as within managed honey bee colonies. Agrochemical exposure 

sometimes results in acute bee losses, as well as sublethal toxicity, therefore there is much 

concern regarding the role of pesticides, particularly neonicotinoids, in bee declines 

(reviewed in [62–64]). Although, the latest insecticide formulations may pose less of a threat 

to bee health as compared to previous formulations [62,64,65]. Compared to other insects, 

honey bees have a reduced repertoire of genes involved in detoxification [66], and at least 

one study indicated that bees prefer neonicotinoid-containing food [67]; these studies 

underscore the importance of further examining the risks associated with agrochemical 

exposure. Many studies have found that insecticides, including neonicotinoids, negatively 

impact bee health ([18,68–76] and reviewed in [62]). However, several studies determined 

that typical field exposure levels are below known toxicity thresholds [77–79]; specifically, 

oral administration of imidacloprid at 5 ppb [77,78] or contact with thiacloprid at doses 

below 6 ug/bee (approximately 50 ppm) [80] had no observable negative impact.

The majority of studies investigating the effects of agrochemicals on bee health have focused 

on neonicotinoids (reviewed in [62]). Several studies suggest that exposure to these 

chemicals increases pathogen abundance [18,76,81]. Specifically, full sized honey bee 

colonies exposed to imidacloprid (2 or 20 ppb in pollen patties) had greater levels of 

Nosema ceranae than unexposed colonies [18]. Likewise, exposing bees to imidacloprid and 

clothianidin topically (0, 10, 20, and 30 ng per bee, which corresponds to approximately 83, 

167, and 450 ppm) and orally (0.1, 1.0, and 10 ppb) resulted in a dose-dependent increase of 

DWV levels [73]. Similarly, sublethal, though not necessarily field-relevant, doses of 

thiacloprid (0.1 ppm in larval food) increased BQCV titers and larval mortality [76]. This 

indicates that agrochemical exposure and viral infection synergistically harm larvae, though 

negative impacts were not observed in adults [76].

There are numerous other (non-neonicotinoid) agrochemicals that are utilized in both 

agricultural and non-agricultural settings that have received less attention and scientific 

investigation [82], though they may impact pathogen abundance and bee health. 

Chlorpyrifos, an organophosphate, and Pristine®, a fungicide composed of boscalid and 

pyraclostrobin used during almond bloom, negatively affected queen health [70]. 

Chlorpyrifos decreased queen emergence and increased DWV abundance, but not 

prevalence, in queens relative to the nurse bees tending them [70]. Colonies treated with 

chlorpyrifos and Pristine® had decreased queen emergence, but viral prevalence or 

abundance was not affected relative to chlorpyrifos alone [47]. In contrast, reduced queen 

emergence was not found when colonies in isolated swarm boxes were fed pollen treated 
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with Pristine® or Pristine® with an adjuvant, whereas colonies treated with diflubenzuron, 

an insect growth regulator, had a significant reduction on queen survival [83].

In addition to agrochemical exposure from foraging (i.e., nectar and pollen) and via food 

sources (i.e., bee bread and royal jelly), honey bees are also exposed to agrochemicals within 

the colony (e.g., antibiotics and miticides). Beekeepers routinely utilize the fungicide 

Fumagillan-B® to reduce levels of Nosema apis and Nosema ceranae, and acaricides (e.g., 

tau-fluvalinate, thymol, coumaphos, formic acid and Amitraz) to reduce Varroa destructor 
mite infestation [61,84]. While Varroa is one of many biotic factors contributing to colony 

losses [85], high Varroa levels, above the threshold of >3 mites per 100 bees [86], are 

associated with increased pathogen load [17,87,88] (reviewed in [89]). Furthermore, mites 

serve as a mechanism for horizontal transmission of pathogens between colonies (reviewed 

in [90]). Unfortunately, some research suggests that acaricides may reduce honey bee 

immunocompetence [91]. Bees with compromised immune responses would be expected to 

harbor greater pathogen loads, though acaricide treated bees exhibited variable levels of 

pathogens [88,91]. In contrast, acaricide treatment did not affect pathogen loads in colonies 

with low mite pressure [91]. However, bees obtained from colonies that were treated with 

thymol and coumaphos exhibited significantly reduced expression of two immune genes 

(DSC37 and BASK) [91]. Interestingly, tau-fluvalinate application resulted in increased 

DWV levels in adult honey bees and Varroa, BQCV in mite-infested pupae, and SBV in 

pupae not infested with mites [88]. Importantly, tau-fluvalinate treated colonies showed 

long-term reduction in DWV and DWV-associated symptoms, and thus demonstrated that 

proper acaricide use is important, and may be effective in controlling DWV levels [88]. The 

relationships between mite levels, acaricide exposure, viral abundance, and bee immune 

gene expression are complex and variable. However, in one study, increased expression of 

honey bee immune genes (relish, PGRP-S1, hymenoptaecin, apidaecin, defensin, and 

PPOAct) corresponded to decreased mite reproduction [92]. In addition, this study found no 

evidence that Varroa negatively impacted honey bee immunocompetence [92]. The majority 

of colonies in North America are infested with Varroa mites [90] and most managed honey 

bees in North America are continuously exposed to acaricides in wax [61]. Therefore, a 

better understanding of the impact of these stressors on bee health is an important area of 

ongoing research.

For many agrochemical formulations a lethal dose 50 (LD50) and/or exposure threshold for 

bees at various stages of development is not known and even less information is available 

regarding synergistic interactions of these chemicals in bees [62,93,94]. Regardless, research 

and public opinion have resulted in bans on the use of clothianidin, thiamethoxam, and 

imidacloprid in the EU [95] and have resulted in additional US EPA regulations on new 

registrations for neonicotinoids [96]. The evidence to date suggests that bee colony losses 

are not solely dependent upon agrochemicals, but are likely a result of a combination of 

factors. Agrochemicals can pose problems, but they are often required for large-scale 

production of agricultural crops, and their proper use as part of an integrated pest 

management strategy (IPM) often results in low to no levels of exposure in field settings 

[77–79]. These studies and increased prophylactic usage of neonicotinoids (i.e., as treated 

seeds with no other purchase options), underscore the importance of continued research on 

the effects of agrochemicals on bee health. In addition, loss of forage due to herbicide use in 
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many landscapes impacts the availability of quality forage for all bee species (reviewed in 

[78]).

Bee microbiome

Bee-associated microbes are not limited to pathogens, but also include commensal microbes 

([97,98] and reviewed in [46]). The best characterized commensal microbes of bees are 

honey bee gut associated bacteria, including eight bacterial phylotypes/bacterial clusters 

predominantly in the phyla Proteobacteria, Firmicutes, and Actinobacteria ([99,100] and 

reviewed in [46]). The relationship between the gut microbiome and viruses has been 

characterized in mammals (reviewed in [101]) and in solitary insects. In fruit flies and 

mosquito spp., several strains of the bacteria Wolbachia reduce RNA virus replication and 

plasmodium infection [102,103]. Wolbachia 16S rRNA sequences have been detected in 

different subspecies of Apis mellifera samples from southern Africa [104] and Germany 

[105], and in five species of European bumble bees [110], but the potential influence of 

Wolbachia on virus infections in bees has not been studied. Recent findings suggest that 

Parasaccharibacter apiumin may improve larval survival [106], and enhance defense against 

Nosema [107], but the potential effects of this bacteria on virus replication is not known. 

Bee microbiome research has primarily focused on the benefits of these microbes to bee 

health, but not all bee-associated bacteria are beneficial; some may be opportunistic 

pathogens (e.g., F. perrara) [108,109], whereas others (i.e., Paenibacillus larvae and 

Melissococcus plutonius) are pathogenic. The relationship between the bee bacteriome and 

virome, as well as the effects of both on bee health require further characterization.

Summary

Bee pollinators inhabit a range of environments including wild, agricultural, and urban 

landscapes. In these diverse settings, multiple factors including pathogens, nutrient 

availability, agrochemical exposure, and the microbiome converge to affect bee health. 

These factors affect bee immunocompetence and virus replication and pathogenicity. 

Furthermore, land and pollinator management practices impact bee health and may result in 

increased pathogen pressure on bees. Managing landscapes to enhance floral diversity will 

benefit the health of both commercial and wild bee populations. Floral resources are not 

only important to bee health, but also serve as sites of pathogen transmission and 

agrochemical exposure. Agrochemicals, including those used within honey bee colonies, 

seem to impact disease severity, though the processes involved require further elucidation. 

Lastly, the emerging field of insect microbiome research presents exciting avenues of 

inquiry, including how the bacteriome and virome interact at the host-level. Better 

understanding of bee biology, the factors that influence bee health, pathogen transmission, 

and immune mechanisms will result in the development of management practices that 

support pollinator health.
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Highlights

• Pathogen prevalence is one factor that has been associated with colony 

losses and RNA viruses are the largest group of bee-infecting 

pathogens.

• RNA viruses infect multiple bee species, yet there is limited 

understanding of their impacts on bee health, particularly in the context 

of other biotic and abiotic stressors.

• Adequate nutrition and diverse pollen sources are important for bee 

immunocompetence, therefore continued efforts to enhance or maintain 

bee forage are important.

• The effects, particularly sublethal effects, of agrochemical exposure on 

bee health require further characterization; to date a range of effects 

have been observed.

• Characterization of the bee microbiome is an emerging field with 

exciting avenues for further exploration, including investigating the 

effects of the bee bacteriome on virus pathogenesis and bee health.
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