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Abstract

Background—Defining a drug's therapeutic index (TI) is important for patient safety and 

regulating the development of generic drugs. For many drugs, the TI is unknown. A systematic 

approach was developed to characterize the TI of a drug using therapeutic drug monitoring and 

electronic health record (EHR) data with pharmacokinetic (PK) modeling. This approach was first 

tested on phenytoin, which has a known TI, and then applied to lamotrigine, which lacks a defined 

TI.

Methods—Retrospective EHR data from patients in a tertiary hospital were used to develop 

phenytoin and lamotrigine population PK models and to identify adverse events (anemia, 

thrombocytopenia, and leukopenia) and efficacy outcomes (seizure-free). Phenytoin and 

lamotrigine concentrations were simulated for each day with an adverse event or seizure. 

Relationships between simulated concentrations and adverse events and efficacy outcomes were 

used to calculate the TI for phenytoin and lamotrigine.

Results—For phenytoin, 93 patients with 270 total and 174 free concentrations were identified. 

A de novo 1-compartment PK model with Michaelis-Menten kinetics described the data well. 

Simulated average total and free concentrations of 10-15 and 1.0-1.5 μg/mL were associated with 

both adverse events and efficacy in 50% of patients, resulting in a TI of 0.7–1.5. For lamotrigine, 

45 patients with 53 concentrations were identified. A published 1-compartment model was 

adapted to characterize the PK data. No relationships between simulated lamotrigine 
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concentrations and safety or efficacy endpoints were seen; therefore, the TI could not be 

calculated.

Conclusions—This approach correctly determined the TI of phenytoin but was unable to 

determine the TI of lamotrigine due to a limited sample size. The use of therapeutic drug 

monitoring and EHR data to aid in narrow TI drug classification is promising, but it requires an 

adequate sample size and accurate characterization of concentration–response relationships.
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INTRODUCTION

The therapeutic index (TI) of a drug is often defined as the ratio of minimum toxic 

concentration to minimum therapeutic concentration1.(1) For narrow TI drugs, small 

differences in exposures can lead to serious toxicities or therapeutic failures. Appropriate 

classification of a drug as narrow TI is important in patient care and in drug development. 

Knowing that a drug has a narrow TI is important to patients and clinicians because narrow 

TI drugs require precise dose titration and close patient monitoring2.(2) In generic drug 

development, drugs classified as narrow therapeutic index (NTI) drugs are subject to stricter 

bioequivalence standards.

Since 2012, the US Food and Drug Administration (FDA) has set tighter bioequivalence 

standards for the approval of generic NTI drugs3.(3) The goals of these tighter standards are 

to improve patient safety, enhance physician confidence in generic products, and generate 

public health cost savings resulting from increased generic drug prescriptions4.(4) However, 

a broad implementation of these tighter standards has been hindered largely by difficulty in 

identifying the TI for many drugs, leading to difficulty in determining NTI drug 

classification1.(1) For these drugs, the therapeutic ranges in humans have not been 

established, with no consensus regarding therapeutic or toxic concentrations.

Antiepileptic drugs (AEDs) are a class of drugs that would benefit from an efficient and 

systematic method of narrow TI classification. Both patients and physicians hesitate to use 

the generic formulation and have expressed concerns regarding an increase in breakthrough 

seizures resulting from the conversion to generic use5–9.(5-9) These concerns are endorsed 

by the American Academy of Neurology through the release of a position statement 

opposing generic substitution of AEDs for the treatment of epilepsy without physician and 

patient consent10.(10) In response to these concerns, the FDA funded studies to investigate 

brand and generic bioequivalence in epilepsy patients, and the study results demonstrated 

bioequivalence in the target patient population11,12.(11, 12) Furthermore, the FDA 

encourages research for NTI classification of AEDs, which will become subject to tighter 

quality and bioequivalence standards. Phenytoin and lamotrigine are two AEDs with generic 

formulations approved prior to the enforcement of stricter bioequivalence criteria for NTI 

drugs.
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This study aimed to develop and apply a systematic approach for finding the TI of a drug by 

integrating therapeutic drug monitoring (TDM) and electronic health record (EHR) data with 

pharmacokinetic (PK) modeling and simulation. This approach was first evaluated using 

phenytoin, an AED with a well-accepted narrow TI13.(13) The methodology was then 

applied to lamotrigine, an AED lacking a defined TI14.(14)

MATERIALS AND METHODS

Study design and data collection

We included all patients ≥18 years of age treated with phenytoin or lamotrigine for seizures 

while admitted to the Duke University Health System between July 2013 and August 2014 

for phenytoin or between January 2012 and December 2013 for lamotrigine. Eligible 

participants had an electroencephalogram and at least one phenytoin plasma concentration or 

lamotrigine serum concentration documented during hospitalization. Patients without dosing 

records available in the EHR were excluded. Data were accessed through an electronic data 

warehouse containing information from all operational systems serving the medical center's 

hospitals and clinics15.(15) The following data were extracted: demographic variables, drug 

concentration data including time of sample collection, concomitant medications of interest 

(carbamazepine, valproate, phenobarbital, diazepam, clonazepam, and fluconazole), and 

clinical laboratory results (hematocrit, platelet count, and white blood cell count). The 

concomitant medications of interest were selected based on their potential for influencing 

phenytoin or lamotrigine concentrations through induction or inhibition of various drug 

metabolizing enzymes. The following additional data were collected through direct review 

of electronic health records: dosing information including timing of drug administration and 

clinical outcomes that included directly observed seizures and electrographic seizures 

captured on electroencephalogram. The Duke University Institutional Review Board and the 

FDA's Research Involving Human Subjects Committee approved the study with a waiver of 

informed consent.

Standard procedures for analysis of phenytoin and lamotrigine samples

Phenytoin and lamotrigine samples were collected as part of routine medical care during the 

study period in whole blood EDTA containers. Total and free phenytoin concentrations were 

analyzed at the Duke University Health System Laboratories (Durham, NC). Total and free 

phenytoin concentrations were determined using a particle-enhanced turbidimetric inhibition 

immunoassay. The lower limit of quantification for the total phenytoin assay was 2.5 μg/mL 

and free phenytoin was 0.5 μg/mL, with an error of <10% throughout the analytical range 

for both assays (Duke University Health System Clinical Labs, personal communication). 

The assay was performed using the UniCel DxC 800 Synchron Clinical Systems (Beckman 

Coulter, Inc., Brea, CA) with a YMT membrane used to separate unbound from bound 

phenytoin. Approximately 350 μL of serum was used to prepare adequate filtrate per sample. 

The ultrafiltrate used to determine the free phenytoin concentration was generated by 

centrifuging the sample in a fixed-angle centrifuge at 3500 rpms for 15 to 20 minutes at 

25 °C.

Ku et al. Page 3

Ther Drug Monit. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lamotrigine concentrations were analyzed at the Mayo Clinic Laboratories (Rochester, NY) 

using a liquid chromatography-tandem mass spectrometry assay. The lower limit of 

quantification for the lamotrigine assay was 0.2 μg/mL, and the error of the assay was <10% 

throughout the analytical range (Mayo Clinic Laboratories, personal communication). The 

assay was performed using the RapidFire 365/Agilent 6495 platform (Agilent Technologies, 

Santa Clara, CA). One quantifying and two qualifying ions were used for lamotrigine along 

with one quantifying and one qualifying ion for the 13C-labeled internal standard.

Population PK analysis

Phenytoin and lamotrigine PK data were analyzed with a nonlinear mixed effects modeling 

approach using NONMEM (version 7.2, Icon Solutions, Ellicott City, MD, USA). We used 

first-order conditional estimation method with interaction (FOCE-I) for all model runs and 

performed run management using Pirana (version 2.8.1)16.(16) To assess internal model 

validity, we used visual predictive checks and bootstrap methods in Perl-speaks-NONMEM 

(version 3.6.2)17.(17) We performed model output data manipulation and visualization using 

Stata 13.1 (College Station, TX), R (version 3.0.2, R Foundation for Statistical Computing, 

Vienna, Austria) and RStudio (version 0.97.551, RStudio, Boston, MA, USA) packages, 

including lattice, Xpose, and ggplot218–20.(18-20)

Published PK models for phenytoin and lamotrigine were identified to serve as the basis for 

our analyses. Published structural model parameters for each drug were collected and 

recorded in an information database. Parameters related to covariate effects and random 

effect parameters were used whenever published population models implementing a mixed 

effects modeling approach were available. If a published PK model could not be readily 

applied to the study data, de novo development of a population PK model using the study 

data was planned.

For both phenytoin and lamotrigine, interindividual variability was assessed for PK model 

parameters using an exponential relationship. Proportional, additive, and combined 

(proportional plus additive) residual error models were evaluated. Visual inspection of the 

potential effect of covariates on PK parameters was performed by creating scatter and box 

plots (continuous and categorical variables, respectively) of the differences between the 

individual and population values (ETAs) for the PK parameters against the following 

covariates: age, body weight, gender, race, and concomitant clonazepam use. Concomitant 

clonazepam use has been reported to reduce phenytoin concentrations in patients with 

epilepsy21.(21) Other concomitant medications were not evaluated as covariates because the 

number of patients exposed were too few, and therefore plots of ETAs for the PK parameters 

versus these covariates did not suggest any visible relationships. Continuous covariates were 

normalized to the population median. The power function was used for continuous 

covariates to describe covariate relationships on PK parameters. A forward inclusion (p < 

0.05, change in objective function value [ΔOFV] >3.8) and backward elimination (p < 0.001, 

ΔOFV >10.8) approach was used to evaluate statistical significance for covariates with ETA 

versus covariate plots that suggested potential relationships.
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Phenytoin population PK model development

A phenytoin population PK model was generated de novo because the published phenytoin 

PK models could not address the complexities of the study data. The data from the 

phenytoin cohort were complicated by use of multiple dosing routes (oral and intravenous), 

different formulations (extended release, fast release, and use of fosphenytoin) and different 

combinations of free and total phenytoin concentration measurements.

A sequential modeling approach was used during phenytoin model building by first 

developing a population PK model and generating parameter estimates for total phenytoin 

concentrations. These parameter estimates were then fixed and used during the modeling of 

free phenytoin concentrations. Based on a review of literature and given the sparse nature of 

total phenytoin data, a 1-compartment PK model with first-order absorption and nonlinear 

clearance was evaluated using the ADVAN13 subroutine22–28.(22-28) Based on a published 

population PK model23(23), two types of kinetics were tested to describe the nonlinear 

clearance of phenytoin: 1) Michaelis-Menten kinetics or 2) first-order kinetics in parallel 

with Michaelis-Menten kinetics. Bioavailability for oral phenytoin after immediate release 

and extended-release formulations were assumed to be identical, and the parameter was 

fixed using published data29.(29) The sparse sample availability precluded the ability to 

characterize the drug absorption phase. Consequently, the oral absorption parameter of the 

extended-release formulation was estimated and fixed using data from a previous extended-

release formulation bioequivalence study30.(30)

The PK model for free phenytoin concentrations was developed using the model structure 

and PK parameter estimates generated for total phenytoin concentrations. The PK 

parameters for total phenytoin concentrations were fixed, and a parameter representing the 

unbound fraction was estimated to link total phenytoin and free phenytoin concentrations.

Lamotrigine population PK model development

Based on visual inspection of the PK data and review of the literature, a 1-compartment 

model with first-order absorption and elimination published by Rivas et al. was adapted to 

describe the lamotrigine PK data31.(31) Only five samples were obtained within 3 hours 

after the last dose, which were too few to characterize the absorption phase following drug 

administration. Therefore, the final model fixed the parameter estimate of the absorption rate 

to the constant from the Rivas model (1.3 h−1). Similarly, because of the limited number of 

patients who were exposed to concomitant medications during the study period, the 

parameter estimates for covariate effects of concomitant medications on clearance in the 

final model were fixed to the constants from the Rivas model.

Evaluation of PK models

Successful minimization, diagnostic plots, plausibility and precision of parameter estimates, 

as well as objective function and shrinkage values, were used to assess model 

appropriateness. Except for the absorption rate constant, parameter precision for the final 

population PK model was evaluated via non-parametric bootstrapping using 1000 replicates 

to generate 95% confidence intervals for parameter estimates. Standardized visual predictive 

check was performed using the final model to generate 1000 Monte Carlo simulation 
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replicates per time point of lamotrigine or phenytoin concentrations. Subject-level simulated 

concentrations were then compared with observed values by calculating and plotting the 

percentile of each observed concentration in relation to its 1000 simulated concentrations32.

(32) The dosing and covariate values used to generate the simulations in the visual predictive 

check were the same as those used in the study population.

Assessment of efficacy, safety, and concentration—response relationships

The following adverse events of interest were identified based on the drug label: anemia 

(male: hematocrit <0.39; female: hematocrit <0.35), thrombocytopenia (platelets <150 × 

103/mL), and leukopenia (white blood cell count <3.2 × 103/mL). Efficacy was assessed 

through any occurrence of seizure and the total number of seizures in 1 day during 

hospitalization. The final population PK models were used to simulate phenytoin and 

lamotrigine concentrations, including concentrations at the time of laboratory collections, 

and average concentrations for each day a laboratory collection occurred or seizure 

diagnosis was made during the hospitalization. The simulated daily average concentrations 

were calculated by dividing the area under the curve per hospital day by 24 hours. Daily 

average concentrations were used because average concentrations provide a better 

representation of drug exposure over a 24-hour period compared to trough concentrations, 

especially when trough concentrations are <5 mg/L33.(33) The relationships between drug 

concentrations and safety or efficacy outcomes were evaluated for simulated concentrations 

from hospitalized patients. Comparisons of drug concentrations among groups achieving and 

failing to achieve safety and efficacy endpoints were performed using the Mann-Whitney U 

test with statistical significance defined as p < 0.05.

Determination of the therapeutic index

Simulated daily average concentrations for each drug were divided into five subgroups of 

equal intervals. For each subgroup, the percentage of patients experiencing any adverse 

event and the percentage of patients remaining seizure-free at the time of simulated 

concentration were calculated by dividing the number of simulated average concentrations 

associated with at least one adverse event or (AE) without seizure by the total number of 

simulated average concentrations within the specific concentration range (Equations 1 and 

2).

(1)
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(2)

Only simulated concentrations from patients experiencing at least one seizure during the 

hospitalization were included in the calculation of percentage of patients without seizures. 

By including patients with at least one seizure, this allowed us to compare concentrations 

associated with seizure events versus concentrations associated with no seizure events to 

determine the minimum concentration needed for efficacy.

The lowest concentration interval with at least 50% of patients within the concentration 

range developing any adverse event and the lowest concentration interval with at least 50% 

of patients within the concentration range remaining seizure-free were defined as the median 

minimal toxic concentration (TD50) and median minimal effective concentration (ED50) 

intervals, respectively. Because intervals were used, this resulted in a range of TIs. The lower 

limit of this TI range was determined by dividing the upper limit of the TD50 interval by the 

lower limit of the ED50 interval whereas the upper limit of this TI range was determined by 

dividing the lower limit of the TD50 interval by the upper limit of the ED50 interval 

(Equation 3).

(3a)

(3b)

RESULTS

Phenytoin cohort characteristics and observed concentrations

A total of 270 total phenytoin and 174 free phenytoin plasma concentrations were identified 

from 93 patients with epilepsy who were admitted to a Duke University Health System 

hospital during the study period. Patients had a median (interquartile range, IQR) age of 61 

years (49–71) and median (range) of 2 (1–10) total phenytoin levels and 2 (1–8) free 

phenytoin levels per subject (Table 1). Among all subjects, the median (range) total 

phenytoin concentration was 14.3 (3.2–30.6) μg/mL and free phenytoin concentration was 

1.8 (0.5–4.1) μg/mL. The median (range) of unbound fraction, estimated as a ratio of 

observed free phenytoin to total phenytoin concentrations, was 0.118 (0.050–0.303). Only 1 

patient was taking carbamazepine, 7 patients were taking phenobarbital, 6 patients were 
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taking diazepam, 13 patients were taking clonazepam, and 5 patients were taking 

fluconazole concomitantly during the study period.

Phenytoin population PK model development

A 1-compartment model with Michaelis-Menten kinetics described the observed total and 

free phenytoin concentrations well. Plots of ETAs for the PK parameters Vmax and Km 

versus study covariates did not suggest any visible relationships. Thus, none of the 

covariates (including concomitant medication data) were tested or included during model 

building.

Phenytoin population PK model evaluation

The PK parameter estimates using observed total and free phenytoin concentrations had 

good precision except for oral absorption (Ka) for the immediate-release formulation and 

interindividual variability on Vmax, which had relative standard errors of 93% and 70%, 

respectively (Table 2). The relative standard errors around the remaining parameter point 

estimates were 4% to 41%. The median bootstrap estimates were within 13% of the original 

population estimates for all parameters. The 2.5th and 97.5th percentiles were narrow for all 

the parameters. In the goodness of fit plots, there was a slight bias toward overprediction at 

low observed concentrations for total phenytoin levels, but no obvious trends or model 

misspecification for free phenytoin levels (Figure 1). Visual predictive check also revealed a 

good fit of the observed phenytoin concentrations with 12% of observed total phenytoin 

concentrations and 8.2% of observed free phenytoin concentrations falling outside the 90% 

prediction interval.

Assessment of phenytoin efficacy, safety, and concentration–response relationships

Among the 93 epilepsy patients exposed to phenytoin, 44 (47%) had at least one seizure and 

62 (67%) had an adverse event. Multiple seizures were experienced by 7 (7.5%) patients 

during the study period. Simulated average daily phenytoin concentrations in patients on 

days without seizures did not differ from concentrations in patients on days with seizures 

(median [IQR] 16.8 μg/mL [11.0-22.9] vs. 14.1 μg/mL [6.2-22.4], p = 0.08).

The most common adverse event was anemia (65%), followed by thrombocytopenia (28%) 

and leukopenia (1%). The median (IQR) simulated average daily total phenytoin 

concentration was 13.7 μg/mL (7.9–21.0) in patients who had anemia versus 11.3 μg/mL 

(4.6–19.0) in patients who had no anemia (p = 0.004). No relationships were seen between 

the development of thrombocytopenia or leukopenia and simulated phenytoin 

concentrations.

Determination of the phenytoin therapeutic index

The lowest total and free phenytoin concentration intervals with at least 50% of patients 

developing any adverse event, representing the median TD50 interval, were 10–14.9 μg/mL 

and 1.0–1.49 μg/mL, respectively (Figure 2). The lowest total and free phenytoin 

concentration intervals with at least 50% of patients remaining seizure-free, representing the 

median ED50 interval, were 10–14.9 μg/mL and 1.0–1.49 μg/mL, respectively. Based on 

these values, the TIs of total and free phenytoin were estimated to be 0.7–1.5.
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Lamotrigine cohort characteristics and observed concentrations

A total of 53 lamotrigine serum concentrations were identified from 45 patients with 

epilepsy who were admitted to a Duke University Health System hospital during the study 

period. The study demographics were comparable with the patient population from the 

population PK model selected from the literature (Table 1)31.(31) Patients had a median 

(IQR) age of 43 years (31–50) and average of 1.2 lamotrigine concentrations per subject. 

Among all subjects, the median (range) lamotrigine concentration was 5.4 (0.2–67.1) 

μg/mL. Only one patient was taking carbamazepine, four patients were taking valproate, and 

three patients were taking phenytoin concomitantly during the study period.

Estimation of lamotrigine PK parameters and population PK model evaluation

Using the lamotrigine drug monitoring data and concomitant medication data, the published 

1-compartment model produced PK parameter estimates that had good precision and were 

comparable to the estimates from the published model (Table 3)31.(31) The relative standard 

errors around the parameter point estimates were 11% to 23%. The median bootstrap 

estimates were within 15% of original population estimates for all parameters. The 2.5th and 

97.5th percentiles were narrow for all the parameters. There were no obvious trends or 

model misspecification demonstrated in the goodness of fit plots (Figure 3). Visual 

predictive check also revealed a good fit of the observed lamotrigine concentrations, with 

only 11% of observed concentrations falling outside of the 90% prediction interval.

Assessment of lamotrigine efficacy, safety, and concentration–response relationships

Among the 45 epilepsy patients exposed to lamotrigine, 12 (27%) had at least one seizure 

and 9 (20%) had an adverse event. Multiple seizures were experienced by 7 (16%) patients 

during the study period. Simulated average daily lamotrigine concentrations in patients on 

days without seizures did not differ from concentrations in patients on days with seizures 

(median [IQR] 7.4 μg/mL [4.7-9.7] vs. 8.5 μg/mL [7.4-8.9], p = 0.16).

The most common adverse event was anemia (18%), followed by thrombocytopenia (11%) 

and leukopenia (4%). Among patients who had an adverse event, the median (IQR) 

simulated daily average lamotrigine concentration was 7.5 μg/mL (4.9–12.3) compared to 

7.6 μg/mL (4.7–9.4) in patients who had no adverse events. No significant relationships 

between lamotrigine levels and hematocrit, platelet count, or white blood cell counts were 

observed.

Determination of lamotrigine therapeutic index

Of the five lamotrigine concentration intervals, none of the four lowest intervals 

encompassing concentrations of 0–19.9 μg/mL had 50% or more patients developing any 

adverse event. There was only one patient with a simulated concentration in the highest 

interval of >20 μg/mL, and this patient also did not have an adverse event.

The lowest lamotrigine concentration interval with at least 50% of patients remaining 

seizure-free, representing the ED50 interval, was 0–4.9 μg/mL. However, the TD50 interval 

could not be determined because none of the concentration intervals had 50% or more 
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patients developing any adverse events. Therefore, the TI could not be estimated for 

lamotrigine.

DISCUSSION

This study demonstrates the successful use of TDM and other EHR data in the development 

of a population PK model in patients treated with phenytoin for epilepsy. The use of 

population PK modeling allowed the simulation of phenytoin concentrations not captured by 

routine TDM and successfully identified concentration ranges associated with phenytoin 

safety and efficacy. These steps ultimately resulted in the successful determination of the TI 

of phenytoin.

The therapeutic ranges determined in this study for total phenytoin concentrations of 10–15 

μg/mL and free phenytoin concentrations of 1.0–1.5 μg/mL were consistent with published 

therapeutic ranges of 10–20 μg/mL total phenytoin and 1–2 μg/mL free phenytoin 

concentrations13,34,35.(13, 34, 35) Using these ranges, a TI of 0.7–1.5 was calculated, which 

is consistent with the well-accepted classification of phenytoin as a narrow TI drug35,36.(35, 

36)

Successful demonstration of the study methods for determining the TI of a drug was 

possible by using phenytoin as an example. However, for other drugs, the therapeutic ranges 

in humans have not been established with no consensus regarding therapeutic or toxic 

concentrations. Because data for these drugs are lacking, determining narrow TI 

classification is challenging.

Regulatory agencies, experts, and industry advocates have proposed definitions of NTI drugs 

based on a variety of criteria, including drug dosing, drug concentrations, within-subject 

variability in PK response, therapeutic indication, frequency of serious drug adverse events, 

and other patient- or drug-specific criteria1,37–41.(1, 3, 37-41) Although concentration–

response relationship evaluation is now a routine component in drug review, for drug 

products that have long been on the market, a quantitative evaluation is lacking on the effect 

of inter-individual variability in PK or the biochemical and physiological effects of the drug. 

Inter-individual variability in these parameters can have wide-ranging effects on the drug 

concentration–response relationship and would significantly affect a drug's therapeutic range 

and toxicity profile42.(42) Population PK modeling and simulation, as used in this study, 

allows the identification and incorporation of this inter-individual variability when 

determining a drug's TI. Population PK models are especially useful when there is sparse 

sample availability, which is seen with therapeutic drug monitoring43.(43)

Our simulations successfully identified associations between total and free phenytoin levels 

with development of anemia. Though rare, the association between phenytoin and 

megaloblastic anemia secondary to folate-deficiency has been well described44–46.(44-46) 

Several mechanisms have been proposed for this observation, including inhibition of folate 

transport proteins and induction of hepatic metabolism by phenytoin47,48.(47, 48) The 

simulations were unable to detect associations between phenytoin concentrations and 

thrombocytopenia. Cases of phenytoin-induced thrombocytopenia are rare49,50.(49, 50) 
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Similar to other types of drug-induced thrombocytopenia, the mechanism is thought to be an 

idiosyncratic, immune-mediated destruction of platelets occurring at any time during drug 

exposure independent of dose49,50.(49, 50) Drug-induced agranulocytosis leading to 

leukopenia is extremely rare, with an incidence of 3.46:1 million and a case-fatality rate of 

7% for all causes of acquired disease51.(51) To detect an association between phenytoin 

concentrations and agranulocytosis, much larger sample sizes are needed.

For lamotrigine, this study demonstrated a successful fit of existing TDM data to an existing 

population PK model from the literature31.(31) Simulations performed using this model 

allowed simulation of concentrations not captured by routine TDM and allowed for the 

evaluation of potential concentration–response relationships. Because the sample size was 

small, however, this study methodology was limited in the ability to estimate a therapeutic 

range and the TI for lamotrigine. Related to the small sample size, few of the patients in the 

study suffered AEs despite nonrestrictive study inclusion criteria that would include data 

from intoxicated patients if present. Only one patient had a simulated lamotrigine 

concentration >20 μg/mL, and none of the concentration intervals below this value had 

>50% patients develop at least one AE. Although the therapeutic range for lamotrigine is 

considered by experienced neurologists to be 3–14 μg/mL, correlation between lamotrigine 

levels and efficacy has been poorly demonstrated at concentrations <15 μg/mL52.(52) 

Overall toxicity with lamotrigine, however, increases gradually with increasing serum 

concentrations with a steep increase in the rate of adverse events observed with 

concentrations above 13–14 μg/mL52,53.(52, 53) In a large-scale observational retrospective 

study (N = 811), lamotrigine concentrations associated with side effects leading to a 

decrease in dose or change to an alternative AED in approximately 50% of the population 

were 20 μg/mL52.(52) Lamotrigine concentrations associated with efficacy (seizure-free at 

six months) in approximately 50% of the population ranged from 1 to 15 μg/mL52.(52) 

Although we were unable to estimate the TI in our study, the estimated TI for lamotrigine 

based on the approximate values from this large-scale study is likely in the range of 

1.3-2052.(52)

Examination of the concentration–response relationship did not find any association between 

lamotrigine levels and hematocrit, platelet count, or white blood cell count. The small 

sample size and potential confounding by concomitant medications and comorbidities in this 

study would have limited the ability to detect a relationship between these counts and 

lamotrigine levels. Although blood dyscrasias associated with lamotrigine use have been 

reported, these are rare events and would require large numbers of patients to detect 

associations with lamotrigine concentrations54,55.(54, 55)

For the calculation of the TI, how the concentration intervals are defined will affect the 

estimation of the TD50 and ED50, and therefore affect the estimation of the TI range. Using 

smaller intervals to determine the TD50 and ED50 will result in better precision in the 

estimation of the TI but will require larger sample sizes to adequately power the analyses. 

Larger intervals for TD50 and ED50 may be required for studies with smaller sample sizes; 

however, this will result in a large TI range.
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This study has several strengths. Because the study capitalizes on TDM and clinical practice 

data recorded per standard of care, the study could be completed efficiently with less than 

minimal risk to study subjects. The retrospective cohort design also allows for a better 

analysis of multiple outcomes. The small sample size, particularly for the lamotrigine 

cohort, may have limited the ability to detect relationships between concentrations and 

adverse events, especially since many of the adverse events of interest are rare. However, the 

sample size was sufficient to successfully develop population PK models and perform 

simulations based on those models. Because of the retrospective study design, individual 

patient risk statuses could not be assessed. These include underlying cause of epilepsy, other 

comorbidities, and concomitant medications that could contribute to failure of therapy or 

development of adverse events. Despite these limitations, the use of TDM and clinical 

practice data to aid in classification of drugs with NTI is a promising and minimal-risk 

approach for determining a drug's TI.

CONCLUSIONS

An approach using TDM data and clinical practice data from electronic health records 

combined with population PK methodologies resulted in an estimation of phenytoin's TI 

consistent with its classification as a narrow TI drug. Although a population PK model for 

lamotrigine was successfully developed, the same approach was unable to determine the TI 

of lamotrigine. This highlights the importance of addressing sample size limitations and 

need for accurate characterization of the concentration–response relationship prior to 

implementation of this methodology. The use of TDM and clinical practice data in large 

cohorts to determine the TI of drugs and aid in classification of narrow TI status is a 

promising and minimal-risk approach.
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Figure 1. 
Phenytoin population PK model diagnostic plots. A) Total phenytoin; B) Free phenytoin
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Figure 2. 
Percentage of patients developing ≥1 adverse event or remaining seizure-free within daily 

average phenytoin concentration intervals. A) Total phenytoin; B) Free phenytoin.
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Figure 3. 
Lamotrigine population PK model diagnostic plots.
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Table 1

Cohort Demographics and Baseline Characteristics

Phenytoin Lamotrigine

N=93 Study Cohort
N=45

Rivas, et al. cohort
N=600

Male, % 51 51 56

Age, years
* 61 (49, 71) 43 (31, 50)

38-39 (26.8, 51.3)
**

Body weight, kg
* 78 (67, 91) 78.5 (65.8, 99.3)

70.0-76.0 (61.8, 85.0)
**

White race, % 53 64 NR

Hematocrit
* 0.32 (0.27, 0.36) 0.36 (0.28, 0.41) NR

White blood cell count, ×103/ml
* 9.80 (7.75, 12.85) 8.90 (5.70, 11.45) NR

Platelet count, ×103/ml
* 208.5 (138.0, 276.5) 217.0 (140.5, 269.0) NR

Concomitant medication usage, %

    Carbamazepine 1.1 2.2 15

    Valproate 0 8.9 29

    Phenobarbital 7.5 0 5.1

    Diazepam 6.5 0 NR

    Clonazepam 14 0 NR

    Fluconazole 5.4 0 NR

    Phenytoin NA 6.7 NR

NA, not applicable; NR, not reported

*
Data presented as median (25th, 75th percentile)

**
Combined data from 2 cohorts were used in the study. Data presented as cohort 1 median – cohort 2 median, (25th, 75th percentile)

Ther Drug Monit. Author manuscript; available in PMC 2017 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ku et al. Page 20

Ta
b

le
 2

Ph
en

yt
oi

n 
E

st
im

at
io

n 
of

 P
K

 P
ar

am
et

er
s

F
in

al
 M

od
el

B
oo

ts
tr

ap
 (

n=
10

00
)

P
ub

lis
he

d 
V

al
ue

s

P
ar

am
et

er
P

oi
nt

 E
st

im
at

e 
(R

SE
)

II
V

, C
V

%
 (

R
SE

)
Sh

ri
nk

ag
e 

(%
)

2.
5th

 P
er

ce
nt

ile
M

ed
ia

n
97

.5
th

 P
er

ce
nt

ile
P

oi
nt

 E
st

im
at

e 
(R

ef
er

en
ce

s)

St
ru

ct
ur

al
 M

od
el

K
a1

 (
1/

h)
, f

os
ph

en
yt

oi
n

1.
99

 (
19

%
)

N
E

N
A

1.
62

2.
07

5.
65

2.
77

2 
(5

6)

K
a2

 (
1/

h)
, o

ra
l P

H
T

 f
or

 f
as

t r
el

ea
se

0.
45

9 
(9

3%
)

N
E

N
A

0.
24

0.
44

0.
53

0.
51

3 
(2

8)

K
a3

 (
1/

h)
, o

ra
l P

H
T

 f
or

 e
xt

en
de

d 
re

le
as

e
1.

7 
FI

X
N

E
N

A
N

A
N

A
N

A
-

V
m

ax
 (

m
g/

h)
*

19
.3

 (
7%

)
37

.8
 (

70
%

)
52

18
.2

20
.4

23
.4

7.
47

 –
 3

2.
8 

(2
2-

26
, 2

8)

K
m

 (
m

g/
L

)
5 

FI
X

17
0 

(4
1%

)
39

N
A

N
A

N
A

2.
18

 –
 8

.1
5 

(2
2-

26
)

V
 (

L
)*

78
.6

 (
5%

)
33

.9
 (

26
%

)
20

67
.3

76
.5

87
.6

35
 –

 1
09

.2
 (

28
)

F,
 o

ra
l P

H
T

0.
85

9 
FI

X
N

E
N

A
N

A
N

A
N

A
0.

85
9 

(2
9)

D
ur

at
io

n 
of

 z
er

o 
or

de
r 

re
le

as
e 

(h
)

1.
1 

FI
X

N
E

N
A

N
A

N
A

N
A

-

Fu
, u

nb
ou

nd
 f

ra
ct

io
n 

of
 P

H
T

0.
11

2 
(4

%
)

25
.8

 (
26

%
)

21
0.

10
0.

11
0.

12
0.

12
 (

57
)

R
es

id
ua

l V
ar

ia
bi

lit
y

Pr
op

or
tio

na
l e

rr
or

 f
or

 to
ta

l a
nd

 f
re

e 
PH

T
17

.1
 (

4%
)

N
A

22
14

.8
16

.9
19

.0
8.

6-
12

 (
27

)

F,
 b

io
av

ai
la

bi
lit

y;
 F

u,
 f

ra
ct

io
n 

un
bo

un
d;

 K
a1

, r
at

e 
co

ns
ta

nt
 f

or
 f

os
ph

en
yt

oi
n 

co
nv

er
tin

g 
to

 p
he

ny
to

in
; K

a2
, a

bs
or

pt
io

n 
co

ns
ta

nt
 f

or
 o

ra
l p

he
ny

to
in

 f
as

t r
el

ea
se

 f
or

m
ul

at
io

n;
 K

a3
, a

bs
or

pt
io

n 
co

ns
ta

nt
 f

or
 o

ra
l 

ph
en

yt
oi

n 
ex

te
nd

ed
 r

el
ea

se
 f

or
m

ul
at

io
n;

 K
m

, M
ic

ha
el

is
 c

on
st

an
t; 

N
A

, n
ot

 a
pp

lic
ab

le
; N

E
, n

ot
 e

st
im

at
ed

; P
H

T,
 p

he
ny

to
in

; V
, v

ol
um

e 
of

 d
is

tr
ib

ut
io

n;
 V

m
ax

, m
ax

im
al

 v
el

oc
ity

.

* Pu
bl

is
he

d 
va

lu
es

 o
f 

PK
 p

ar
am

et
er

s 
w

er
e 

co
nv

er
te

d 
to

 p
ar

am
et

er
 v

al
ue

s 
fo

r 
a 

70
 k

g 
ad

ul
t.

Ther Drug Monit. Author manuscript; available in PMC 2017 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ku et al. Page 21

Ta
b

le
 3

L
am

ot
ri

gi
ne

 D
e 

N
ov

o 
E

st
im

at
io

n 
of

 P
K

 P
ar

am
et

er
s

St
ud

y 
C

oh
or

t 
E

st
im

at
es

B
oo

ts
tr

ap
 (

n=
10

00
)

R
iv

as
, e

t 
al

. S
tu

dy
 E

st
im

at
es

P
ar

am
et

er
s

P
oi

nt
 E

st
im

at
e 

(R
SE

)
II

V
, C

V
%

 (
R

SE
)

2.
5th

 P
er

ce
nt

ile
M

ed
ia

n
97

.5
th

 P
er

ce
nt

ile
P

oi
nt

 E
st

im
at

e 
(R

SE
)

II
V

, C
V

%
 (

R
SE

)

θ1
 (

C
L

),
 L

/h
/k

g*
0.

02
34

 (
11

%
)

62
.4

%
 (

15
%

)
0.

01
64

0.
02

31
0.

02
95

0.
02

8 
(2

.1
%

)
27

.5
%

 (
9.

4%
)

V
, L

/k
g

1.
19

 (
23

%
)

15
4.

9%
 (

15
%

)
0.

40
1.

15
2.

45
1.

5 
Fi

xe
d

N
E

K
a,

 1
/h

1.
3 

Fi
xe

d
N

E
N

A
N

A
N

A
1.

3 
Fi

xe
d

N
E

θ2
 (

V
PA

)
−

0.
71

3 
Fi

xe
d

N
A

N
A

N
A

N
A

−
0.

71
3 

(7
.7

%
)

N
A

θ3
 (

PH
T

)
0.

66
3 

Fi
xe

d
N

A
N

A
N

A
N

A
0.

66
3 

(1
0%

)
N

A

θ4
 (

PB
 o

r 
PR

M
)

0.
58

8 
Fi

xe
d

N
A

N
A

N
A

N
A

0.
58

8 
(8

.7
%

)
N

A

θ5
 (

C
B

Z
)

0.
46

7 
Fi

xe
d

N
A

N
A

N
A

N
A

0.
46

7 
(3

0%
)

N
A

θ6
 (

IN
D

)
0.

86
4 

Fi
xe

d
N

A
N

A
N

A
N

A
0.

86
4 

(1
2%

)
N

A

A
dd

iti
ve

 r
es

id
ua

l e
rr

or
1.

46
 (

39
%

)
N

A
0.

31
1.

25
4.

14
1.

25
 (

8.
2%

)
N

A

C
B

Z
, c

ar
ba

m
az

ep
in

e;
 C

L
, c

le
ar

an
ce

; C
V

, c
oe

ff
ic

ie
nt

 o
f 

va
ri

at
io

n;
 I

N
D

, 2
 o

r 
m

or
e 

co
nc

om
ita

nt
 m

ed
ic

at
io

ns
 (

in
du

ce
rs

);
 K

a,
 a

bs
or

pt
io

n 
co

ns
ta

nt
 f

or
 la

m
ot

ri
gi

ne
; N

A
, n

ot
 a

pp
lic

ab
le

; N
E

, n
ot

 e
st

im
at

ed
; P

B
, 

ph
en

ob
ar

bi
ta

l; 
PR

M
, p

ri
m

id
on

e;
 P

H
T,

 p
he

ny
to

in
; R

SE
, r

el
at

iv
e 

st
an

da
rd

 e
rr

or
; V

, v
ol

um
e 

of
 d

is
tr

ib
ut

io
n;

 V
PA

, v
al

pr
oi

c 
ac

id
.

* C
L

 (
L

/h
) 

=
 θ

1 
* 

B
W

 *
 e

 −
θ2

*V
PA

*e
 θ

3*
PH

T
*e

 θ
4*

(P
B

 o
r 

PR
M

) *
 e

 θ
5*

C
B

Z
*e

 θ
6*

IN
D

Ther Drug Monit. Author manuscript; available in PMC 2017 December 01.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Study design and data collection
	Standard procedures for analysis of phenytoin and lamotrigine samples
	Population PK analysis
	Phenytoin population PK model development
	Lamotrigine population PK model development
	Evaluation of PK models
	Assessment of efficacy, safety, and concentration—response relationships
	Determination of the therapeutic index

	RESULTS
	Phenytoin cohort characteristics and observed concentrations
	Phenytoin population PK model development
	Phenytoin population PK model evaluation
	Assessment of phenytoin efficacy, safety, and concentration–response relationships
	Determination of the phenytoin therapeutic index
	Lamotrigine cohort characteristics and observed concentrations
	Estimation of lamotrigine PK parameters and population PK model evaluation
	Assessment of lamotrigine efficacy, safety, and concentration–response relationships
	Determination of lamotrigine therapeutic index

	DISCUSSION
	CONCLUSIONS
	References
	Figure 1
	Figure 2
	Figure 3
	Table 1
	Table 2
	Table 3

