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A lack of empirical evidence for the microbial regulation of ecosystem processes, including carbon
(C) degradation, hinders our ability to develop a framework to directly incorporate the genetic
composition of microbial communities in the enzyme-driven Earth system models. Herein we
evaluated the linkage between microbial functional genes and extracellular enzyme activity in soil
samples collected across three geographical regions of Australia. We found a strong relationship
between different functional genes and their corresponding enzyme activities. This relationship was
maintained after considering microbial community structure, total C and soil pH using structural
equation modelling. Results showed that the variations in the activity of enzymes involved in C
degradation were predicted by the functional gene abundance of the soil microbial community
(R240.90 in all cases). Our findings provide a strong framework for improved predictions on soil C
dynamics that could be achieved by adopting a gene-centric approach incorporating the abundance
of functional genes into process models.
The ISME Journal (2016) 10, 2593–2604; doi:10.1038/ismej.2016.65; published online 10 May 2016

Introduction

Soil carbon (C) has a vital role in regulating climate,
nutrient cycling and biodiversity and therefore in
providing the ecosystem services that are essential to
human well-being (Schmidt et al., 2011; Victoria
et al., 2012). Managing soils to obtain multiple
economic, societal and environmental benefits
requires integrated policies and incentives that
maintain and enhance soil C (Singh et al., 2010;
Victoria et al., 2012; Trivedi et al., 2013). Soil
microorganisms contribute greatly to ecosystem C
budgets through their roles as decomposers, plant
symbionts or pathogens, thereby modifying nutrient
availability and influencing C turnover and retention
in soil (Bardgett et al., 2008; Singh et al., 2010;
Bardgett and van der Putten, 2014). The incredible

numbers and enormous diversity of soil microbes
creates huge challenge to establish the links between
diversity and functions related to soil organic matter
decomposition and stabilization (Hubbell, 2005).
Despite the valid assumption that soil microbes
influence the way in which ecosystems function,
there is a very limited evidence on whether there is a
direct link between microbial community structure
and function in the global biogeochemical cycles
of terrestrial ecosystems (Rocca et al., 2014;
Kubartová et al., 2015; van der Wal et al., 2015).
These gaps have kept soil microbes outside of the
ongoing debates about global biodiversity loss,
conservation and sustainable management policies
(Bardgett and van der Putten, 2014) and
have precluded the inclusion of microbial commu-
nities in global biogeochemical models such as
Earth system models (ESMs) that inform citizens
and policy makers of C dynamics and exchange
between the biosphere and the atmosphere (Wieder
et al., 2013, 2015). Understanding the extent to
which soil microbial communities control ecosystem
processes is thus critical to establish effective
policies to preserve microbial diversity hotspots
and the key ecosystem functions and services that
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soil microbes provide (Singh et al., 2010; Bardgett
and van der Putten, 2014).

Extensive bodies of work have provided detailed
insights into the mechanism(s) on the transformation
of soil C pools by extracellular enzymes excreted
into the soil by microbes, thus allowing researchers
to develop enzyme-driven ESMs that provide a better
fit to observations, especially in changing environ-
ments (Allison et al., 2010; Treseder et al., 2012;
Wieder et al., 2013; Hararuk et al., 2015). Process-
level analyses such as respiration and enzymatic
transformation of added substrate are used as a proxy
of microbial function, which gives valuable insight
into overall microbial-mediated transformations in
soils. However, such measurements do not provide
concrete links on mechanisms, microbial functional
composition and diversity that underpins process-
level differences (Reeve et al., 2010; Talbot et al.,
2014; You et al., 2014). Few studies conducted at
local scale have observed relationships between
community composition and biochemical function
of microbes in soils (Fierer et al., 2012; Talbot et al.,
2014; Su et al., 2015), suggesting that the composi-
tion of microbial communities, per se, may be
important. However, empirical evidence of microbial
regulation of ecosystem processes is lacking that
limits the coupling between microbial community
functional traits, the environment context and the
ecosystem processes. Because of the lack of this
evidence, it is generally assumed that the link
between community composition and the functional
and metabolic responses (in our case enzyme
production) is indirect (Comte et al., 2013). This is
a major constraint in our ability to develop a
framework to directly incorporate microbial data
into ESMs and conservation and management policy
decisions.

The aim of this study was to quantify the relative
contribution to, and the level of regulation of, the
production of extracellular enzymes involved in C
turnover by the soil microbial community. We
hypothesized that the soil microbial community
controls enzyme activities linked to C degradation
through a linkage between structure and function
and that the role of abiotic factors affecting the
microbial mediated processes is via regulation of the
structural attributes (composition) of the soil micro-
bial community. Accordingly, we expected to find
that: (1) microbial community composition will
be delineated strongly by the sampling regions;
(2) enzyme activities across regions will be likely to
be driven by the selection of common active
members of microbial community; and (3) the
relationship between traits (production of extracel-
lular enzymes) will be strongly correlated with
functional gene structure as compared with taxon-
omy. To test our hypothesis, we collected soil
samples (top 10 cm) across three geographical
regions of Australia and multiple managed ecosys-
tems (Supplementary Table S1) varying in a wide
range of soil properties, climate and environmental

parameters. We characterized bacterial and fungal
communities with pyrosequencing. GeoChip 4.0
analysis provided information on the functional
structure of microbial communities, including abun-
dance of known protein-coding genes related to the
production of four key enzymes involved in C
degradation (Supplementary Table S2). These
enzymes were selected based on their general
occurrence in different soil types, key role in soil C
degradation (Nannipieri et al., 2012; Burns et al.,
2013; Trivedi et al., 2015) and the availability of
well-established methods for determining their
activity (Bell et al., 2013). Structural equation
modelling was used to explicitly evaluate the
relative importance of abiotic factors (soil C and
pH), microbial community structure and functional
genes on soil function (measured as the activity of
soil enzymes related to C degradation; see Material
and Methods section).

Materials and methods

Soil collection and analysis
We collected 51 soil samples in March 2013 from
three key grain-producing regions in Australia
(Table 1; Supplementary Table S1). The sampled
regions comprised the states of New South Wales
(Narrabri; 30.31°S 149.76°E; n=12), Western Australia
(Cunderdin; 31.38°S; 117.14°E; n=21) and South
Australia, (Karoonda; 35.08°S 139.88°E; n=18) and
were 5 ×5 km2 in size. Within each sampling area,
we randomly selected individual fields that were at
least 500m away from each other. In all the selected
fields, wheat was grown in the previous growing
season. Four soil cores (distance between two cores
was at least 5m) from each field were collected (0–
10 cm depth) using a 3-cm diameter auger, thor-
oughly homogenized, composited in a Ziploc bag
and shipped in a cooler on ice to the laboratory. Soil
pH was assessed using a fresh soil-to-water ratio of
2.5 using a Delta pH-meter (Mettler-Toledo Instru-
ments Co., Columbus, OH, USA). Total C and total N
was measured on a LECO macro-CN analyser (LECO,
St Joseph, MI, USA).

Soil enzymatic activities
β-D-cellulosidase (CB), β-Xylosidase (XYL), α-Gluco-
sidase (AG) and N-acetyl-β-Glucosaminidase (NAG)
activities were measured using 4-methylumbelliferyl
(MUB) substrate yielding the highly fluore-
scent cleavage products MUB upon hydrolysis
(Supplementary Table S2). All the enzyme assays
were set up in 96-well microplates as described by
Bell et al. (2013). Twelve replicate wells were set up
for each sample and each standard concentration.
The assay plate was incubated in the dark at 25 °C for
3 h to mimic the average soil temperature. Enzyme
activities were corrected using a quench control.
Fluorescence was measured using a microplate
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fluorometer (EnSpire 2300 Multilabel Reader, Perkin
Elmer, Waltham, MA, USA) with 365-nm excitation
and 460-nm emission filters. The activities were
expressed as nmol h− 1 g− 1dry soil.

Molecular analysis

Soil DNA extraction. Freeze-dried soil (0.3 g) was
used for DNA extraction with the FastDNA SPIN Kit
for soil (MP Biomedicals, Heidelberg, Germany)
according to the manufacturer’s protocol. Extracted
DNA was stored in a − 80 °C freezer prior to
molecular analysis. DNA concentrations were deter-
mined using the Qubit quantification platform with
Quant-iT dsDNA BR Assay Kit (Invitrogen, Carlsbad,
CA, USA).

Barcoded pyrosequencing and analysis
Fusion primers 341F-806R (Mori et al., 2013) and
LR3-LR0R (Liu et al., 2012) were used to amplify
multiplexed bar-coded 16S rRNA and large subunit
rRNA gene sequences to profile bacterial and fungal
communities, respectively. PCR products were
purified, pooled and sequenced on a 454 GS FLX
Titanium sequencer (Roche 454 Life Sciences,
Branford, CT, USA). Detailed methodology, down-
stream processing and bioinformatics analysis were
described previously by Singh et al. (2014) and
Barnard et al. (2013). Operational taxonomic unit
tables used to determine the microbial abundances
were rarefied to 733 and 784 sequences for bacteria
and fungi, respectively, to ensure even sampling
depth. The number of sequences used for the
analysis is comparable to other studies, which used
a similar sequencing approach (Fierer et al., 2013).

GeoChip 4.0 analysis
For GeoChip analysis, 200 ng of total DNA was dried
in a SpeedVac (ThermoSavant, Milford, MA, USA) at
45 °C for 45min and shipped to The University of
Oklahoma, Norman, OK, USA. GeoChip 4.0 analysis
was performed as described previously (He et al.,
2010; Tu et al., 2014). Briefly, DNA samples were
labelled with the fluorescent dye Cy-5 by a random
priming method (Tu et al., 2014; Su et al., 2015),
followed by purification with a QIA Quick

Purification Kit (Qiagen, Valencia, CA, USA). Dye
incorporation was measured by a Nano-Drop ND-
-1000 spectrophotometer (NanoDrop Technologies
Inc., Wilmington, DE, USA), and DNA was dried
using a SpeedVac (ThermoSavant) at 45 °C for
45min. Thereafter, DNA was hybridized with Geo-
Chip 4.0 at 42 °C for 16 h in a MAUI hybridization
station (BioMicro, Salt-Lake City, UT, USA) and
scanned by a NimbleGen MS200 scanner (Roche,
Madison, WI, USA) at 633 nm, using 100% and 75%
laser power and photomultiplier tube gain, respec-
tively. Data processing was performed as previously
described (He et al., 2010) using Microarray Data
Manager (http:/ieg.ou.edu/microarray/).

Quantitative PCR (qPCR)
qPCR was performed to determine gene copy
numbers for bacteria and fungi, including α-Proteo-
bacteria, β-Proteobacteria, Fimiricutes, Actinobac-
teria, Acidobacteria and Basidiomycota, using the
primers and conditions described previously by
Trivedi et al. (2012). Spearman correlation analyses
were performed by using the XLSTAT software
(Addinsoft SARL, Paris, France) to test the relation-
ship between relative abundance determined by
qPCR and the relative abundance determined by
pyrosequencing.

Numerical and statistical analyses
We first explored whether enough spatial variability
was obtained in our soil samples in terms of
microbial community structure and functionality
(production of enzymes involved in C degradation)
to test our hypothesis. We conducted separate
principal coordinates analyses in PRIMER (Clarke
and Gorley, 2006) using as input the pairwise
distances between microbial community composi-
tion (pyrosequencing data for bacteria and fungi),
enzymatic activities and the abundance of functional
genes (GeoChip data). Heat maps used to depict the
variability in the abundance of major soil bacterial
and fungal groups were constructed using R (http://
www.r-project.org/).

We then elucidated the relationship between the
microbial community and functions by linear regres-
sion analysis using the activity of enzymes involved

Table 1 Soil type, soil properties and enzymatic activities of soil samples collected from three major grain-producing regions of Australia

Site Number
of samples

Soil type pH
(range)

Total C
(%, range)

Total N
(%, range)

Enzymatic activities (nmol h− 1 g−1 soil, range)

α-Glucosidase β-D-
Xylosidase

N-acetyl-β-D-
glucosaminidase

β-D-
cellulosidase

Narrabri (New South Wales) 12 Vertisols 7.8–8.4 1.1–1.6 0.07–0.14 1.3–2.9 3.7–7.7 5.3–15.0 26.4–41.9
Karoonda (South Australia) 18 Kandosol and

Calcarosol
5.9–7.0 0.43–0.81 0.03–0.06 1.2–2.9 22.3–33.7 23.9–42.4 2.2–6.3

Cunderdin (Western Australia) 21 Xanthic
Ferralsol

6.7–8.0 0.74–1.8 0.04–0.12 1.2–3.7 13.8–20.1 13.2–24.0 0.4–1.9
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in C degradation (measured biochemical assays) and
the abundance of genes responsible for the produc-
tion of each enzyme (determined by GeoChip).
Because of the significant number of microbial
predictors (that is, relative abundance of bacteria
and fungi and functional genes), we used a classifi-
cation Random Forest (RF) analysis (Breiman, 2001)
as explained in Delgado-Baquerizo et al. (2015) to
identify the main microbial predictors of extracel-
lular enzyme activities. The main goal with this
analysis is to reduce the number of predictors for
further modelling (structural equation modelling). In
our RFs, the different soil properties, bacterial and
fungal relative abundances and GeoChip data were
included as predictors of enzyme activities. These
analyses were conducted using the RF package (Liaw
and Wiener, 2002) for the R statistical software,
version 3.0.2 (http://cran.r-project.org/). The signifi-
cances of the model and the cross-validated R2 were
assessed with 5000 permutations of the response
variable using the A3 (Fortmann-Roe, 2013) R
package. Similarly, the significance of the impor-
tance measures of each predictor (here soil para-
meters, microbial community structure, functional
genes) on the response variable (enzymatic activities)
was assessed by using the rfPermute (http://cran.
rproject.org/web/packages/rfPermute/rfPermute.pdf)
package for R.

After this, and owing to the correlative nature of
our data, structural equation modelling (SEM) was
used to identify the relative importance and effects of
functional genes vs abiotic factors (total C and pH)
and microbial composition on soil function (that is,
enzyme activities). Unlike regression or analysis of
variance, SEM offers the ability to separate multiple
pathways of influence and view them as a system
(Shipley, 2002; Grace, 2006; Delgado-Baquerizo
et al., 2015). Another important capability of SEM
is its ability to partition direct and indirect effects
that one variable may have on another and estimate
the strengths of these multiple effects (Shipley, 2002;
Grace, 2006; Delgado-Baquerizo et al., 2015). SEM
was generated based on the known effects and
relationships among key drivers of microbial com-
munity composition and function (Supplementary
Figure S1). In this study, we were interested in
linking microbial composition (that is, relative
abundance of main microbial taxa) to functional
genes and soil functioning. This allows us to identify
the main microbial groups driving functional genes
and soil functioning, which would not have been
possible by including a global diversity metric such
as evenness or Shannon diversity. In these analyses,
we chose soil C and pH as the explanatory variables
because both have been demonstrated previously as
primary factors determining not only the structure of
soil microbial community (Rousk et al., 2010; You
et al., 2014) but also the production of soil enzymes
involved in C degradation (Talbot et al., 2014; You
et al., 2014). In addition, we included the relative
abundance of particular microbial groups that were

previously identified to be important predictors of
enzyme activities in our soil samples by RF analysis.
Microbial community and soil properties data were
normalized prior to analyses (that is, log-transformed)
when needed. When these data manipulations were
complete, we parameterized our model using our
data set and tested its overall goodness of fit. The
overall goodness of fit in our models was tested, as
explained in Schermelleh-Engel et al. (2003). There
is no single universally accepted test of overall
goodness of fit for structural equation models
applicable in all situations regardless of sample size
or data distribution. Most modellers circumvent this
problem by using multiple goodness of fit criteria.
We used the Chi-square test (χ2; the model has a good
fit when 0⩽ χ2⩽ 2 and 0.05oP⩽1.00 and acceptable
fit when 2⩽ χ2⩽ 3 and 0.01oP⩽ 0.05) and the root
mean square error of approximation (RMSEA; the
model has a good fit when RMSEA 0⩽RMSEA⩽ 0.05
and 0.10oP⩽1.00 and acceptable fit when RMSEA
0.05⩽RMSEA⩽ 0.08 and 0.05oP⩽1.00). Addition-
ally, and because some variables were not normal,
we confirmed the fit of the model using the Bollen–
Stine bootstrap test (the model has a good fit when
0.10obootstrap P⩽1.00 and acceptable fit when
0.05obootstrap P⩽0.10). Because our SEM was
saturated (the number of degrees of freedom was
zero), no probability level could be assigned to the
chi-square statistic, making the model untestable. To
solve this problem, the free covariance weight
between pH and enzyme activity was fixed, and the
best solution was chosen through maximization of
the maximum likelihood function releasing a degree
of freedom (see Delgado-Baquerizo et al., 2013 and
García-Palacios et al., 2013 for examples). After
attaining a satisfactory model fit, we introduced
composite variables into our model. The use of
composite variables does not alter the underlying
SEM model but collapses the effects of multiple
conceptually related variables into a single compo-
site effect, aiding interpretation of model results
(Grace, 2006). Microbial community composition
(that is, relative abundance of main microbial
phyla/classes) was included in our model as a
composite variable. Finally, we calculated the
standardized total effects of total C, pH, microbial
community composition and functional gene on the
enzyme activities. The net influence that one variable
has upon another is calculated by summing all direct
and indirect pathways between the two variables. If the
model fits the data well, the total effect should
approximately be the bivariate correlation coefficient
for that pair of variables (Grace, 2006).

Results

Soil physicochemical properties
Soil samples differed significantly in a range of
soil properties (Table 1; Supplementary Table S1).
Soil pH ranged from 5.95 to 8.34, total C from
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0.43% to 1.76% and total N from 0.031% to 0.14%.
pH ranged from 7.85 to 8.34, from 5.95 to 7.02
and from 6.83 to 8.01 in samples collected from
Narrabri, Karoonda and Cunderdin regions, respec-
tively. Similarly, total C ranged from 1.1% to 1.4%,
from 0.43% to 0.81% and from 1.0% to 1.76% in
samples collected from Narrabri, Karoonda and
Cunderdin regions, respectively. We also observed
variability in the activity of enzymes involved
in C degradation, which ranged from 5.3 to 42.2
(NAG), from 0.4 to 41.9 (CB), from 1.1 to 3.7
(AG) and from 3.7 to 33.7 (XYL) nmol h − 1 g − 1 soil
(Table 1; Supplementary Table S1). Principal
coordinate analysis (PCoA) of soil enzymatic data
indicated strong regional differences (Supplementary
Figure S2a).

Structure and function of soil microbial communities
In accordance with our initial assumption,
community structure (β-diversity) for bacteria
and fungi was significantly different between
regions (Supplementary Figures S2c and d).
PCoA analysis revealed clear separation between
samples from different regions for fungal
(Supplementary Figure S2c) and bacterial (Supple-
mentary Figure S2d) communities. The heat maps
showed significant differences in the relative abun-
dance of major bacterial and fungal groups between
samples from different regions (Supplementary
Figures S3 and S4). The differences in community
composition were primarily driven by the relative
abundance of Proteobacteria (alpha, beta, delta
and gamma), Acidobacteria and Actinobacteria
(Supplementary Figure S4). Differences in the
fungal community were linked to variation in
dominant families, including Dothideomycetes,
Eurotiomycetes, Sordariomycetes and Agaricomy-
cetes (Supplementary Figure S5). Taxon-specific
qPCR analysis showed similar trends as the pyrose-
quencing data, and we found a strong and significant
correlation (Po0.0001) between the relative abun-
dance data from pyrosequencing and taxon-specific
qPCR (Supplementary Table S3). Similar to the
microbial community structure observations, PCoA
analysis of all detected genes (GeoChip analysis)
showed that the sampling regions were well
separated on first two axis, suggesting that the soil
microbial functional gene structure is significantly
different between different regions (Supplementary
Figure S2b).

We observed variability in the abundance (mea-
sured as normalized signal intensity from GeoChip)
of genes encoding the enzymes studied that ranged
from 5.2 to 19.9, from 0.84 to 10.01, from 17.1 to
31.2 and from 4.02 to 15.4 for Acetylglucosamini-
dase (encoding NAG); Exoglucanase (encoding
CB), α-amylase (encoding AG) and Xylanase
(encoding XYL), respectively (Supplementary
Table S1).

Relationships between microbial community structure
and function
We observed a strong correlation between the
relative abundance of microbial functional genes
and the activity of NAG (R2 = 0.947), AG (R2 = 0.888),
XYL (R2 = 0.966) and CB (R2 = 0.956), which were
highly significant in all cases (Po0.001; Figure 1).
Similarly, we observed a strong correlation
(R2 = 0.896 and 0.949 for bacteria and fungi, respec-
tively; Po0.005 in both cases) between taxonomic
and functional diversity in our studied sites
(Supplementary Figure S5).

Identifying drivers of activity of soil enzymes linked to
soil C degradation

RF analysis. The abundance of functional genes
was the single most important variable for the
activity of all four studied enzymes (Po0.01;
Figure 2). Among bacteria, δ-Proteobacteria was an
important variable for predicting NAG (Po0.05),
XYL (Po0.01) and CB (Po0.01) (Figure 2). Actino-
bacteria (for NAG; Po0.05), Firmicutes (for AG,
Po0.05) and Acidobacteria (for XYL and CB; both
Po0.01) were other important phyla predicting the
activities of different enzymes. Among fungal
families, Eurotiomycetes (for NAG and XYL; both
Po0.01), Leotiomycetes (for NAG (Po0.01), CB
(Po0.01), and XYL (Po0.05)), Classiculomycetes
(for NAG and XYL (both Po0.01) and AG
(Po0.05)) and Tremellomucetes (for XYL (Po0.05)
and CB (Po0.01)) were also important variables for
predicting activities of different enzymes.

Structural equation modelling. SEM explained
91.0–97.0% of the variation in enzyme activities
and provided a good fit using χ2 test, RMSEA and
Bollen–Stine bootstrap metrics (Schermelleh-Engel
et al., 2003; Grace, 2006) (Figures 3a–d). Most
importantly, our SEM analysis provided evidence
that the direct effect of functional genes on enzyme
activities was maintained even when considering
key abiotic and biotic factors, such as total C, pH and
microbial community composition (Figures 3a–d).
Interestingly, our SEM analysis further suggested
that the effects of soil properties on enzyme activities
were indirectly driven via microbial community
composition and functional gene abundance
(Po0.01; Figures 3a–d). Further, the abundance of
the genes involved in driving the enzymatic activity
of the four studied enzymes was directly linked with
microbial community composition (Po0.05 for AG;
Po0.01 for NAG, XYL and CB, respectively). How-
ever, the structure of the soil microbial community
had no direct effect on the enzymatic activity of NAG
and XYL and a very low direct effect on AG and CB.
This interesting result further indicated that the
structure of the soil microbial community indirectly
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regulated the activity of extracellular enzymes via
functional genes.

Discussion

Overall the motivation of this study was not to
provide a comprehensive census of taxonomic or
functional diversity but to determine the regulation
of functions by the soil microbial community.
Taxonomic and functional profiling in the present
study was used as a means to evaluate the differ-
ences in the structure and functional potential of the
soil microbial community. Altogether, our sampling
regions varied considerably in their soil chemical
and physical characteristics (Table 1; Supplementary
Table S1; Supplementary Figure S2a), climatic
conditions, microbial community structure and
composition (Supplementary Figures S2c and d, S3
and S4) and gene functionality (Supplementary
Figure S2b) and thus provide an excellent framework
to test our hypothesis (see below).

Strong relationship between functional community
composition and enzymatic activities
Our study provides novel evidence of a strong
relationship between the structure of the soil

microbial community and the abundance of genes
encoding four different enzymes involved in C
degradation. In particular, our results indicated a
strong statistical correlation between the GeoChip
data that measures the abundance of genes related to
the production of four key soil enzymes involved in
C mineralization processes and biochemical data
that measures the activity of the corresponding
enzymes. Several studies have suggested that coarse
measures of microbial communities based on DNA
(whether taxonomic or functional) may be insuffi-
cient to understand the changes in the functional
contributions of these communities (Rocca et al.,
2014; Wood et al., 2015). As an example, Wood et al.
(2015) found no relationship between C mineraliza-
tion and gene abundance in farms in Africa under a
tropical agricultural system. The authors suggested
that the process rate should be controlled by the
expression of related genes, rather than the overall
abundance. We argue that an ecosystem process that
relies on a cascade of other reactions involving a
variety of enzymes will not represent an accurate
measure to relate gene abundance with function.
However, the measurement of activity of a particular
enzyme, rather than the process that it catalyses, will
be a realistic scenario to relate gene abundance with
function. In support of our argument, Reeve et al.
(2010) have stated that correlations between

Figure 1 Relationships between GeoChip data and their corresponding enzyme activities (n=51). Solid lines represent the fitted linear
regressions and dashed lines represent 95% confidence intervals.
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traditional techniques and soil DNA might be
stronger than with soil mRNA because DNA may
better represent the potential functional capability of
the microbial biomass rather than its current and
presumably transient state represented by mRNA.
Our results emphasize that to make valid assump-
tions on the biodiversity–functional relationships in
future, parameters selected to measure ecosystem
multifunctionality (multiple functions and services
as in Byrnes et al., 2014) need to carefully consider

their component parts, what drives these processes,
how they relate to one another and also how the
individual functions that they comprise should be
weighted and measured.

The extremely strong correlation between all
enzyme activities with functional genes further sug-
gests that soil microbes are a good proxy for soil
functionality. This can provide accurate information
that can then be used for ecosystem and global change
modelling and conservation and management policies

Figure 2 RF mean predictor importance (percentage of increase of mean square error) of bacterial and fungal relative abundances and
GeoChip data as drivers of the different enzyme activities (a: NAG; b: AG; c: XYL; and d: CB). This accuracy importance measure was
computed for each tree and averaged over the forest (5000 trees). Significance levels are as follows: *Po0.05 and **Po0.01.
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(Wieder et al., 2013, 2015). In addition, this strong
correlation also indicates that functional genes can be
used to develop a gene-centric approach to integrate

environmental genomics into simulation models in
order to improve their predictive power and accuracy
of ESMs (Reed et al., 2014).

To
ta

l S
ta

nd
ar

di
ze

d 
ef

fe
ct

s
fr

om
 S

EM
 (u

ni
tle

ss
)

To
ta

l S
ta

nd
ar

di
ze

d 
ef

fe
ct

s
fr

om
 S

EM
 (u

ni
tle

ss
)

To
ta

l S
ta

nd
ar

di
ze

d 
ef

fe
ct

s
fr

om
 S

EM
 (u

ni
tle

ss
)

To
ta

l S
ta

nd
ar

di
ze

d 
ef

fe
ct

s
fr

om
 S

EM
 (u

ni
tle

ss
)

To
ta

l C pH

Fi
rm

ic
ut

es

C
la

ss
ic

ul
om

yc
et

es

Fu
ng

i-o
th

er
s

A
m

yl
as

e 
ge

ne

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
a-D-glucopyranoside

To
ta

l C pH

Ac
tin

ob
ac

te
ria

D
el

ta
pr

ot
eo

ba
ct

er
ia

C
la

ss
ic

ul
om

yc
et

es

Le
ot

io
m

yc
et

es

Eu
ro

tio
m

yc
et

es

Ac
et

yl
gl

uc
os

am
in

id
as

e 
ge

ne

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Geochip data
Enzyme activity

N-acetyl-ß-D-glucosaminide

To
ta

l C pH

A
ci

do
ba

ct
er

ia

D
el

ta
pr

ot
eo

ba
ct

er
ia

Tr
em

el
lo

m
yc

et
es

C
la

ss
ic

ul
om

yc
et

es

Le
ot

io
m

yc
et

es

E
ur

ot
io

m
yc

et
es

Xy
la

na
se

 g
en

e

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
ß-D-xylopyranoside

To
ta

l C pH

A
ci

do
ba

ct
er

ia

D
el

ta
pr

ot
eo

ba
ct

er
ia

Tr
em

el
lo

m
yc

et
es

Le
ot

io
m

yc
et

es

Ex
og

lu
ca

na
se

 g
en

e

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0 ß-D-cellobioside

Microbial regulation of the C cycle
P Trivedi et al

2600

The ISME Journal



Regulatory pathways of the activity of enzymes involved
in C degradation
Identifying the structural–functional relationships
for microbial organisms is particularly critical to
determine the importance of the soil microbial
community in regulating ecosystem processes, and
thus there is keen interest in developing theoretical
and experimental approaches to disentangle the
microbial regulation of soil functions from other
biotic and abiotic drivers (for example, Strickland
et al., 2009; Wallenstein and Hall, 2012; Talbot et al.,
2014; You et al., 2014; Wood et al., 2015). Albeit we
found that functional genes were strongly related to
enzyme activities, these results are correlative in
nature and hence potentially non-causative. There-
fore, we used SEM to identify the relative importance
of functional genes vs other important abiotic (total C
and pH) and biotic (microbial composition) drivers
on enzyme activities. Interestingly, our results
indicated that the direct effects of functional genes
on soil functions were maintained after considering
multiple biotic and abiotic drivers simultaneously.
In fact, most effects of soil properties and microbial
composition on soil function were indirectly driven
via functional genes. In this respect, we found that
soil chemical variables had a direct impact on the
structure (measured in terms of the relative abun-
dance of major Phyla (and also different classes
within Proteobacteria) and families for bacteria and
fungi, respectively) of the soil microbial community.

Our SEM analysis further showed that soil C and
pH have either no (for Amylase and Exoglucanase)
or very weak (for Acetylglucosaminidase and Xyla-
nase) direct impact on the abundance of functional
genes for enzyme production. Similarly, soil C and
pH either do not (for XYL and NAG) or had a weak
(CB and AG) direct influence on the enzyme activity
(Figures 3a–d) and that most effects from soil
properties on functional genes and enzyme activities
were indirectly mediated by the composition of
microbial community. These results are supported
by You et al. (2014) who showed that soil nutrient
status imposes a significantly higher effect on the
composition of the soil microbial community in
comparison to soil enzymatic activities. Overall,
SEM analysis explained most of the variation in the
activity of enzymes involved in C degradation that is
mainly predicted by the functional structure of the
soil microbial community. These results support our
initial hypothesis and provide direct evidence for the
microbial regulation of soil processes linked to C

degradation in terrestrial ecosystems. Our results
suggest environmental filters are primary responsi-
ble for the assembly of soil microbial community and
determine the strong differences in the community
composition between different geographic regions
(Fierer et al., 2013; Talbot et al., 2014). However, the
functional potential of the microbial community
will be driven by the selection of active taxa
within different lineages. Functional attributes are
embedded in the genomic blueprint and the capacity
to produce extracellular enzymes varies at relatively
fine-scale phylogenetic resolution (Philippot et al.,
2010; Trivedi et al., 2013; Zimmerman et al., 2013).
Because the composition of microbial community
does not correlate strongly with the enzyme activity,
functional genes and processes may offer a better
predictive framework for investigating the ecological
consequences of microbial traits conserved at higher
phylogenetic resolutions than inferring function
based on phylogenetic marker genes. Overall, our
results suggest that the activity and composition of
soil microbial communities (particularly functional
gene abundance) can serve as a predictor for overall
C dynamics (retention, release, storage). This is
important as this illustrates the need of incorporating
the microbial community contributions to ESMs.

Different microbial groups explained the abun-
dance of genes encoding different enzymes
(Figures 2 and 3a2–d2). There is a difference in the
number of genes involved in the degradation of
various C sources among different microbial groups
and in many instances the genes involved in the
degradation of moderately labile and recalcitrant
forms of C are phylogenetically conserved (Trivedi
et al., 2013; Zhao et al., 2013). The production
of NAG and XYL was significantly linked to
δ-Proteobacteria, Actinobacteria and Acidobacteria
in bacteria and Eurotiomycetes (subphylum Pezizo-
mycotina) and Leotiomycetes (very closely related to
subphylum Pezizomycotina) in fungi (Figures 3a2
and c2). Genomic analysis of these groups has shown
that they have a higher potential to produce these
enzymes as compared with other groups within
bacteria and fungi (Karlsson and Stenlid, 2008;
Trivedi et al., 2013; Zhao et al., 2013). SEM showed
that bacterial phyla Acidobacteria, Deltaproteobac-
teria and Actinobacteria are important predictors of
activity of enzymes CB, XYL and NAG. These groups
are classified as oligotrophs and thrive on moder-
ately labile and recalcitrant forms on C (Fierer et al.,
2007; Trivedi et al., 2013). We observed a small but

Figure 3 Structural equation models based on the effects of soil properties (total C and pH), bacterial and fungal relative abundances and
Geochip data on enzyme activities. Numbers adjacent to arrows are standardized path coefficients, analogous to partial regression weights
and indicative of the effect size of the relationship (panels a1–d1). The sign of the the microbial community composition (microbial
comm.) composite is not interpretable; thus absolute values are presented. Arrow width is proportional to the strength of path coefficients.
As in other linear models, R2 indicates the proportion of variance explained and appears above every response variable in the model.
Model fitness details (χ2 vs RMSEA and non-parametric Bootstrap parameters are close by each figure) are close to each figure. Significance
levels are as follows: *Po0.05 and **Po0.01. Panels (a2–d2) represent standardized total effects (direct plus indirect effects) derived from
the structural equation model used.

Microbial regulation of the C cycle
P Trivedi et al

2601

The ISME Journal



significant (Po0.05) direct control of microbial
structure on AG and CB activity. This is not
surprising as AG and CB are involved in degradation
of labile forms of C and the gene(s) encoding the
production of AG and CB are present in a number of
soil microbial groups (Trivedi et al., 2013; Zhao
et al., 2013). The activity of all four studied enzymes
was directly and significantly regulated by the
abundance of genes encoding the respective
enzymes (Figure 3). These results suggest that
microbial community structure influences enzy-
matic activities through the relative abundance of
functional genes. Future studies should expand to
include a wide array of possible enzymes involved in
C dynamics. Nonetheless, our findings suggest that
future studies on structure–function relationship
should explicitly include functional genes. This is
now possible given the rapid advancement in
sequencing and probe-based technologies over
recent years.

The lack of explicit evidence that soil microbes
regulate the enzymatic activities has been the major
bottleneck in incorporating their structural and
functional composition for predictions. Recently,
Wieder et al. (2015) have incorporated microbial
functional types that exhibit copiotrophic and
oligotrophic growth strategies in a process-based
model to predict soil C turnover. Even at very course
level of microbial representation, the model predic-
tions were better than conventional biogeochemical
models. Previous studies have shown that trophic
strategy is strongly reflected in genomic content and
genomic signatures can be used as a proxy for
determining the ecological characteristics of soil
microorganisms (Trivedi et al., 2013). Our study
provides evidence for explicit links between micro-
bial communities and enzymatic activities. We also
noticed that inclusion of different microbial groups
provide better predictions for different enzymatic
activities. Based on the results of our study (microbes
having a direct control on the production of C
degrading enzymes) and others (incorporation of
microbial data set improve model predictions;
Wieder et al., 2015), we argue that grouping of
microbes in simplified functional groups will allow
to parameterize and accurately simulate soil biogeo-
chemical functions in ESMs.

Conclusions

Increased interest in microbial responses to
soil processes such as C cycling is largely based
on the uncertainties surrounding belowground
responses to global climate change (Hawkes and
Keitt, 2015). Our study provides empirical
evidence that variation in microbial community
composition leads to differences in functional gene
abundance, which in turn has consequences for the
activity of enzymes directly linked to C degradation
at field to regional scales. Further work should

include range of land use types, environmental
conditions and soil properties to confirm global
applications of these findings. By directly linking
enzyme activities and edaphic soil parameters
to the genetic composition of microbial commu-
nities, our study provides a framework for achiev-
ing mechanistic insights into patterns and
biogeochemical consequences of soil microbes.
This framework can be extended to identify the
consequences of changes in microbial diversity on
other ecosystem functions and services. Such
an approach is critical for informing our under-
standing of the key role microbes have in modulat-
ing Earth’s biogeochemistry.
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The raw sequence data have been deposited in the
NCBI Sequence Read Archive (BioProject accession
no. PRJNA308378).
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