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Abstract

Rapid fragmentation and degradation of large undisturbed habitats constitute major threats

to biodiversity. Several studies have shown that populations in small and highly isolated

habitat patches are prone to strong environmental and demographic stochasticity and

increased risk of extinction. Based on community assembly theory, we predict recent rapid

forest fragmentation to cause a decline in species and functional guild richness of forest

birds combined with a high species turnover among habitat patches, and well defined domi-

nance structures, if competition is the major driver of community assembly. To test these

predictions, we analysed species co-occurrence, nestedness, and competitive strength to

infer effects of interspecific competition, habitat structure, and species0 traits on the assem-

bly of bird species communities from 12 cloud forest fragments in southern Kenya. Our

results do not point to a single ecological driver of variation in species composition. Interspe-

cific competition does not appear to be a major driver of species segregation in small forest

patches, while its relative importance appears to be higher in larger ones, which may be

indicative for a generic shift from competition-dominated to colonisation-driven community

structure with decreasing fragment size. Functional trait diversity was independent of frag-

ment size after controlling for species richness. As fragmentation effects vary among feed-

ing guilds and habitat generalists, in particular, tend to decline in low quality forest patches,

we plead for taking species ecology fully into account when predicting tropical community

responses to habitat change.

Introduction

Habitat fragmentation has profound and mainly negative effects on the long-term viability of

indigenous animal and plant species [1–2], in particular in historically stable ecosystems such

as tropical rainforests [3–5]. While habitat fragmentation mainly causes a decline in species

richness at the regional level [6–7] (but see counterexamples in Schmiegelow et al. 1997 and
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Debinski & Holt 2000 [8–9]), it may trigger increased species richness (species density sensu

Gotelli & Ellison 2002 [10]) and abundances at the local (i.e. fragment) level [11–13]. Such a

“crowding” effect (sensu Collinge & Forman 1998 [14]) might intensify species interactions,

particularly interspecific competition for resources and space [15–16], while at the same time

reducing population sizes and genetic diversity at the species level [17]. Ultimately, this may

affect long-term survival, food web structures, and ecosystem functioning [18].

Variation in species density, the average number of species per unit area, is closely

related to the concept of species-area relationships (SAR). Given the common power func-

tion model of the SAR S = S0Az with S0 being the average number of species per unit area

and z being the scaling constant [19] the species density SA becomes SA ¼
S

Az� 1 ¼ constant
and is expected to be independent of patch area. The crowding effect [14] predicts increased

species density in smaller habitat fragments. However, previous simulation studies showed

that species densities in homogeneous landscapes only moderately increase at small patch

sizes [20]. Hence, a positive deviation of observed species densities from those predicted

under the neutral model may indicate a “crowding effect”, while a negative deviation may

indicate that species numbers are mainly limited by environmental factors that correlate

with fragment size.

Classic competition-based community assembly models [21] predict fragmented land-

scapes to exhibit a scattered pattern of species occurrences in which species with similar eco-

logical niches occur in a segregated manner [22–24]. Indeed, competition-mediated species

segregation has been found in a number of studies on landscape fragmentation [16, 25, 26].

However, species segregation is not the only possible outcome of fragmentation. If resource

availability and mutualistic interactions outweigh competitive effects, habitat filtering may also

lead to an aggregated pattern of species occurrences [26, 27]. Further, if key resources are

unevenly distributed among fragments, patterns of species occurrences may follow the respec-

tive gradient in resource availability leading to a nested pattern of species occurrences [23, 28]

where species assemblages in resource poor fragments are true subsamples of those in richer

ones [28]. Due to the fact that nestedness and species segregation are opposing patterns, com-

munity organisation will often be intermediate between both extremes, depending on the

respective pay-offs between species competition and habitat filtering [24]. Finally, ecological

demands and behaviour of species may strongly affect species0 sensitivity to rapid changes in

the habitat configuration. While habitat specialists (species with specific habitat demands and

restricted movement behaviour) are assumed to suffer strongly under ongoing habitat degra-

dation, habitat generalists (which can be found in various habitat types) are assumed to be able

to better adapt to environmental changes [29].

Mechanisms underlying community assembly are still discussed even after more than half a

century of research in the field. Standard analyses of community assembly are based on species

occurrence and absence, however, these data are only rarely linked to trait- and environmental

variation. When aiming to uncover mechanisms and constraints behind the pattern of species

co-existence, there is a clear need to link the geometry of species occurrences with environ-

mental and species functional trait data which can be expected to replace classic co-occurrence

analysis that have been dominated the field since the pioneering work of Diamond (1975) [30].

Along these lines, Ulrich et al. (2014) [31] and Soliveres et al. (2015) [32] recently introduced a

novel Markov chain-based approach to examine the frequency of intransitive competition in

real-world communities and how they affect community diversity. We here apply this method

to assess the role of intransitive competition on species coexistence in forest bird communities

within and among 12 tropical forest fragments that vary in patch size and habitat quality. The

indigenous forest of the Taita Hills of south-east Kenya, the northernmost outlier of the
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Eastern Arcs and part of the Eastern Afromontane biodiversity hotspot, has been subject to

rapid loss, degradation and fragmentation of pristine habitats over the past decades (further

details see material and methods) [33]. Despite this transition, indigenous forest remnants still

harbour a typical cloud forest avifauna, including many endemic and endangered forest habi-

tat specialists, but also a large number of habitat generalists that also occur in the non-indige-

nous landscape matrix.

The Taita bird community has been studied intensively over the past two decades, resulting

in well supported knowledge about species richness, abundance, and ecological demands. Fur-

thermore, the land use history of the Taita Hills is very well documented, and this combined

information offers a strong framework to study how tropical avian communities are shaped in

relation to species and landscape traits. Making use of this information, we here test the follow-

ing three hypothesis: (i) Avian species density increases with decreasing fragment size, result-

ing in a high proportion of species surviving in forest fragments relative to intact forests; (ii)

Species co-occurrence among small forest remnants is aggregated due to crowding effects; and

(iii) Habitat specialists respond more strongly to habitat degradation compared to habitat

generalists.

Material and Methods

Taita Hills study region

The Taita Hills cover an area of around 250 km2 and are geographically isolated from other

mountain blocks to the south (90 km to the Usambara Mts.) and the north (80 km to the

Chyulu Hills) (S1 Appendix). Semiarid plains in either direction constitute a strong dispersal

barrier for species that depend on moist and cool cloud forest habitat, and this resulted in high

levels of endemicity [34–35]. Degradation and fragmentation of the Taita forests started long

before the colonial era, when slopes were cleared for agriculture up to the head of the streams

[36]. Large-scale forest loss occurred during railway constructions between 1898 and 1924,

while in more recent times, forest cover markedly decreased between 1955 and 2004. Even

though half of the original indigenous forest has currently been lost, airborne remote sensing

of spatio-temporal changes in forest cover [33] revealed that the total forest cover in the Taita

landscape remained about the same between 1955 and 2004, mainly due to planting of exotic

trees on rocky, barren or eroded areas, secondary bushlands and abandoned agricultural land.

In addition to indigenous forest loss, the remaining patches also decreased in forest quality

due to pit-sawing, charcoal manufacturing, firewood collection, pole removal and grazing

[33]. Three larger forest fragments (Chawia (90 ha), Ngangao (147 ha) and Mbololo (179 ha)),

nine smaller ones (< 15 ha), and several tiny patches of indigenous forest remained embedded

in a fine-grained mosaic of human settlements and small-holder cultivation plots [33]. Small

forest fragments, in particular, continue to suffer from cattle grazing and other forms of habitat

disturbance, while the three larger forest fragments vary in the degree of habitat degradation

too, being highest in Chawia forest, intermediate in Ngangao forest, and lowest in Mbololo

forest [37].

Land-cover information was derived from airborne true-colour images, converted to ortho-

mosaics at a spatial resolution of 0.5 m [33]. Brightness variations were removed by corrections

for light falloff and bidirectional effects using the methods developed by Pellikka (1998) [38]

after which frames were mosaicked using the EnsoMOSAIC [39]. The resulting mosaics were

orthorectified, projected to Transverse Mercator projection with a Clarke 1880 [40] spheroid

and Arc 1960 datum, and resampled to 0.5 m ground resolution. The resulting geometric accu-

racy was within 2 m as verified in the field using GPS. The land cover model was subsequently

ground-truthed, revised and fine-tuned during field visits in 2007 and 2008, confirming the
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correct remote-sensing classification of large patches of closed—canopy forest, exotic planta-

tions, and non-forested habitat [33]. Based on this land cover model, we calculated the follow-

ing four landscape characteristics using Fragstats v. 3.3 and ArcView 3.2 (ESRI 2013): (i)

indigenous forest patch size, (ii) indigenous forest patch perimeter; (iii) percentage of closed-

canopy forest cover within 800 m of each indigenous forest patch, and (iv) patch proximity, a

distance-weighted, area-based isolation index (PPI) [40]. We related observed species richness

to these landscape characteristics to test the first and third hypothesis.

Bird assessments

Understorey bird community metrics were derived from a long-term (1996 to 2010) bird ring-

ing program using standard mist-netting procedures as described in Karr (1981) [41]. Mist net-

ting was conducted in collaboration with the Ornithology Section of the National Museums of

Kenya, Ornithology Section. Permission for bird collection was issued by the National Muse-

ums of Kenya. Permits to access the forest fragments were provided by the Kenyan Forest Ser-

vice. As endangered, Taita endemic bird species were involved in this study, its collection was

approved and mainly conducted by members of the ethics committee of the National Museums

of Kenya personally (P Njoroge, RK Mulwa, O Kioko). Birds were collected using mist-nets,

which were regularly controlled, to prevent any negative effects on trapped birds. This activity

was approved by the animal ethics committee of the National Museums of Kenya. Mist-net

lines were operated in one to seven plots per fragment (depending on fragment size) and were

evenly spaced out to sample entire plots, while net positions, net lengths (120m/plot) and daily

trapping efforts (06-18h) were kept constant between trapping sessions. Nets were routinely

checked at 30-minute intervals so as to promptly remove, process, and release the birds. Time

intervals between subsequent ringing sessions varied between 1.0 and 4.6 months, and the

number of ringing sessions per fragment ranged between 20 and 32 over the 15 year study

period. While mist nets are regarded as likely the best technique for assessing the relative abun-

dances of tropical understorey birds [41, 42], habitat modifications such as removal of canopy

trees and clearing of the understorey, in particular, may alter flight height of some species,

thereby changing their susceptibility to mist-net capture [43]. To minimize this possible bias in

the assessment of species richness, we restricted our analysis to the understorey bird commu-

nity, i.e. species that are reliably caught in mist nets. Therefore, our data, covering 15 years of

bird observation, are believed to be highly appropriate to assess total species richness and as

well as relative abundances in the smaller fragments sampled with identical sampling effort.

For each bird species we assembled data on body mass (g), average bill culmen length,

depth and width (cm), tarsus, tail, and wing length (cm), and average hand-wing index. The

dominant principal component of the three bill measures was used to assess bill characteristics,

and the respective dominant eigenvector of the wing, tarsus, and tail measures served as a

proxy to the type of locomotion [44]. Following Claramunt et al. (2012) [45], we used the

hand-wing index to quantify dispersal ability. Each species was assigned to one of four feeding

guilds, insectivore, seed-eater, fruit-nectar feeder, and omnivore. We also assembled dietary

(coded into ten categories) and foraging stratum preferences (coded into eight categories),

respectively [46]. To reduce dimensionality, we calculated the dominant principal components

of the matrices and used these in subsequent analyses. The complete species list of bird species,

respective abundances per forest fragment, and species traits are given in the S1 Appendix.

Statistical analysis

Analyses were based on matrices containing species relative abundances with species in rows

and forest fragments in columns. We composed matrices for each fragment separately and
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then grouped the three larger (> 90 ha) and nine smaller (<15 ha) fragments in two addi-

tional matrices. We calculated the following three metrics of species co-occurrence. First, we

estimated species segregation among fragments (negative species associations) by the C-

score [24, 47, 48] that is a normalized count of the number of checkerboard submatrices

({{1,0},{0,1}} or {{0,1},{1,0}}). As an auxiliary metric of species segregation that focuses on

the pattern of species turnover among sites we used the standard proportional turnover

betaP ¼ 1 �
alpha

gamma betaP ¼ 1 �
alpha

gamma; where alpha refers to the average richness per fragment

site and gamma tom the total observed species richness [49]. Third, we performed a nested-

ness analysis to identify gradients in species occurrences and richness across fragments [23]

using the NODF (nestedness by overlap and decreasing fill) metric of Almeida-Neto et al.

(2008) [48]. For the nestedness analysis, rows were always sorted according to species occur-

rence totals. Finally, we calculated the functional diversity of each feeding guild based on five

measured functional traits (bill characteristics, body size, dispersal, locomotion, stratum)

using the functional attribute metric FAD [49, 50], a measure of total trait space encom-

passed by the species of a given community calculated as the sum of the Euclidean distances

between species in trait space. For comparability, trait expressions were Z-transformed prior

to calculation. Co-occurrence analyses were done using the freely available Fortran applica-

tion NODF [51] and Turnover [52]. Source code is available from WU by request.

For statistical inference of NODF, C-score, and betaP, we used a null model approach and

compared the observed co-occurrence metric scores with those obtained from 1000 null matri-

ces each that were randomized using a null model that resamples the matrix with placement

probabilities proportional to observed total abundances of rows and columns (proportional

abundance model [53]). This is a conservative null model that has been shown to account well

for inherent site differences and unequal species colonization probabilities (the mass effect)

that are not directly linked to the pattern of interest [24]. Note that this model is equivalent to

a neutral model without dispersal limitation and speciation. To account for richness effects

[54], raw FAD scores were compared to a null model in which the trait expressions for each

single trait were randomly reshuffled among species. Statistical significance was estimated

from the respective tail distributions at the two-sided 5% error level. Additionally, we calcu-

lated standardized effect sizes (SES = Obs—Exp) / StDevExp; Obs and Exp: observed and

expected scores, StDevExp: standard deviation of expectation). SES scores should have values

below –1.96 and above +1.96 at the two-sided 5% error level under the assumption that the

respective null distribution is approximately normal. To account for multiple testing, all signif-

icance levels were Bonferroni corrected.

Possible competitive interactions among species within the seven feeding guilds were

assessed following Ulrich et al. (2014) [31] and Soliveres et al. (2015) [32]. For each guild, we

calculated 100,000 random species × species competitive strengths matrices, translated these

into a column stochastic transition matrix, and used a Markov chain model to predict relative

species abundances from this transition matrix within the 12 fragments. We compared pre-

dicted and observed relative species abundances by rank order correlation (rC) and chose the

best fitting competition matrix to assess the maximum impact of interspecific competition on

community assembly. High values of rC point to the possibility that interspecific competition

is a major driver for observed species distributions while low rC values point towards a minor

impact of competition [55].

Using the empirical species—area relationship S = 12.4A0.21;r2 = 0.44 (Fig 1a) we assessed

average species densities SA per ha area by SA = S/A0.21, with S reflecting the total species rich-

ness and A the fragment area. We used a general linear models with identity link function and

normal error structure to relate FAD to the categorical variables feeding guild, functional
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traits, and remnant size group (large—small), and to species richness as the continuous co-

variate.

Results

We recorded a total of 17,520 individuals from 69 bird species in the 12 Taita forest fragments

(Table 1), of which 36 species belonged to the insectivorous guild and 12 species to the frugi/

nectarivorous guild (Table 2). Species richness increased moderately with area (Fig 1a) and

perimeter (r = 0.61, P = 0.03). The best predictor of fragment richness was the total number of

individuals caught (Fig 1b). Richness did not significantly vary with fragment isolation (Pear-

son r = 0.27, P> 0.3) and increased weakly with forest cover within the matrix (Pearson

r = 0.51, P = 0.09). In fragments below 15 ha, species richness was independent of fragment

Fig 1. Species—area (a) and species—abundance (b) relationships of all species (circles) and of forest specialist species

(triangles) of the East African Taita forest fragments. Power function ordinary least squares regressions to all species: a: S = 12.4A0.21,

r2 = 0.44, P < 0.01; b: S = 3.03 I0.30, r2 = 0.92, P < 0.001. Logarithmic regression to specialist species a: S = 1.23 ln A + 5.78, r2 = 0.53,

P < 0.01; b: S = 1.45 ln I– 0.49, r2 = 0.73, P < 0.01.

doi:10.1371/journal.pone.0163338.g001

Table 1. Area, perimeter, degree of isolation, percentage of closed-canopy forest cover within 800 m, and total number of species and individuals,

of 12 indigenous forest fragments.

Fragment Area (ha) Perimeter (ha) Isolation Cover All Species Forest specialists Individuals

Mbololo 178.79 9980 0.39 46.2 24 10 1797

Ngangao 146.93 11529 0.54 48.6 39 12 7179

Chawia 90.25 5291 0.37 42.0 38 13 4066

Ronge 14.81 2035 0.33 36.4 17 7 219

Fururu 8.04 1495 0.53 5.1 30 9 1492

Vuria 6.99 1099 0.18 18.0 14 8 78

Yale 3.94 897 0.56 6.1 15 9 330

Ndiwenyi 3.76 893 0.53 4.4 27 10 898

Macha 3.42 1728 0.56 2.1 32 10 1054

Mwachora 2.31 606 0.25 2.0 13 5 239

Kichuchenyi 1.28 514 0.53 1.1 6 4 13

Wundanyi 1.14 455 0.50 1.6 13 4 166

doi:10.1371/journal.pone.0163338.t001
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area (Fig 1a, r = 0.17, P > 0.5) but tended to be positively related to fragment perimeter, albeit

not statistically significant (r = 0.61, P = 0.08). Most species rich were the Ngangao (39 species)

and Chawia (38 species) forest fragments, while the large and predominately pristine Mbololo

fragment was comparatively poor in species richness (32 species). Of the smaller fragments,

Fururu and Macha were most species rich (30 and 32 species, respectively).

Average species density was independent of fragment isolation (Fig 2a), forest cover (Fig

2b), and fragment perimeter (Fig 2c). In the smaller fragments, species density increased with

total abundance (Fig 2d). In the larger fragments, species density was at an intermediate level

compared to the smaller fragments (Fig 2d). A comparison of the relative abundances between

the smaller and the larger fragments revealed a significant shift in relative abundance between

the two fragment types. Of the 22 species with relative abundances below 0.001 in the larger

fragments, 18 achieved higher relative abundances in the smaller fragments (not shown). This

shift was accompanied by a sharp decline of five species (Columba larvata, Phyllastrephus placi-
dus, Phylloscopus ruficapillus, Turdus olivaceus, Zoothera gurneyi) in the smaller fragments.

A separate analysis based on forest specialist species only (Table 1) also revealed an increase

in richness with fragment size (Fig 1a) and abundance (Fig 1b), however, less strong so com-

pared to an analysis with all species included (Fig 1). The proportion of forest specialists

decreased with fragment area (r = -0.32, P = 0.32) and abundance (r = -0.73, P< 0.01), while

specialist species density was not significantly related to habitat isolation (Fig 2a), forest cover

(Fig 2b), fragment perimeter (Fig 2c), or specialist abundances (Fig 2d).

A comparison of species richness between the three larger (total area 416 ha, 56 species)

and nine smaller fragments (total area 46 ha, 55 species) (Table 1) revealed a loss of 14 species

(25%) and a gain of 13 species (23.6%) in the latter. The larger fragments contained 17 species

of forest specialists, the smaller ones 14 species. Despite the fact that the nine smaller fragments

comprised only 11% of the area of the larger fragments, total species richness decreased by 2%

(1 species) only. The prevalence of negative nestedness and positive betaP SES scores (Table 2)

further indicated spatial turnover in species composition among the larger and smaller frag-

ments, however, we did not find direct evidence that the latter was caused by competitive

interactions. Indeed, correlations between the competitive interaction matrix and the observed

Table 2. Competition impact (rC), SES scores (proportional abundance null model) and species co-occurrences metrics (C-score, NODF, propor-

tional species turnover beta) for three large and nine small East African forest fragments (cf. Table 1). Significant SES score (P < 0.05) are marked in

bold. The single granivore forest specialist species made it impossible to calculate respective co-occurrence metrices.

Guild Species

(all)

Species

(large)

Species

(small)

Competition

metric

SES scores

All species

rC
(large)

rC
(small)

C-score

(large)

C-score

(small)

NODF

(large)

NODF

(small)

Beta

(large)

Beta

(small)

Frugi-/

Nectarivores

12 8 10 0.10 0.40 2.91 -1.16 -1.41 0.15 3.34 1.63

Insectivores 36 33 26 0.56 0.19 1.42 1.72 -3.01 -2.89 3.16 5.82

Omnivores 11 10 10 0.71 0.36 -0.56 1.5 1.46 -2.46 0.48 2.34

Granivores 10 5 9 0.08 0.01 1.23 1.11 -0.74 -1.55 0.58 4.24

Forest specialists

rC
(large)

rC
(small)

C-score

(large)

C-score

(small)

NODF

(large)

NODF

(small)

Beta

(large)

Beta

(small)

Frugi-/

Nectarivores

4 4 3 0.63 0.88 0.07 -0.45 -0.07 0.41 0.00 -0.22

Insectivores 10 9 7 0.78 0.55 0.05 0.98 0.19 0.67 -0.11 0.77

Omnivores 3 3 3 0.67 0.66 0.00 0.57 0.00 0.49 0.00 0.14

doi:10.1371/journal.pone.0163338.t002

Bird Species Community Persistence

PLOS ONE | DOI:10.1371/journal.pone.0163338 November 17, 2016 7 / 16



distribution of abundances (Table 2) were on average weak and explained at most 50% of vari-

ance in abundance.

Finally, we compared functional diversity between feeding guilds and between larger and

smaller fragments (Fig 3a, Table 3). Except for omnivores, functional attribute diversity sig-

nificantly differed between feeding guilds and was always larger in the large fragments (Fig

3a). We observed the same pattern for forest specialists (Fig 3b) although the differences

were statistically not significant due to the small number of species. Linear modelling

Fig 2. Bird species density per forest fragment of all species (circles) and of forest specialist species (triangles) was independent

of fragment isolation (a), percentage of forest cover outside the fragments (b), and fragment perimeter (c), but increased with

abundance in small fragments (d). coefficients of determination and associated parametric significance levels in (d) refer to a power

function model.

doi:10.1371/journal.pone.0163338.g002
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Fig 3. Functional attribute diversity (a: all species, b: forest specialists only) of four bird feeding guilds differed significantly (***:

parametric P(F) < 0.001) between large (dark grey columns) and small fragments (light grey columns dots). The single granivore

forest specialist species made it impossible to calculate FAD.

doi:10.1371/journal.pone.0163338.g003

Table 3. General linear mixed modelling detected significant (*: parametric P(F) < 0.05; ***:

P < 0.001) differences of functional attribute diversity (FAD) among feeding guilds, and guild×func-

tional trait combinations when using raw FAD as dependent variable, but not when using SES trans-

formed values (traits reshuffling null model). Fragment species richness served as metric covariate.

Given are partial eta2 values.

Variable df FAD SES FAD

Feeding guild 3 0.06*** 0.03

Functional trait 5 0.02 0.02

Remnant size 1 <0.01 <0.01

Guild×trait 15 0.11*** 0.09

Guild×size 3 0.04 <0.01

Trait×size 5 0.03 0.03

Species 1 0.04* <0.01

Squared species 1 0.65*** <0.01

Error 229

r2 (model) 0.95*** 0.18

doi:10.1371/journal.pone.0163338.t003
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accounting for differences in species richness between fragments (Table 3) revealed that

these differences were mainly caused by co-variation with species richness. Although FAD

significantly differed between feeding guilds and guild specific differences in species traits

(Table 2), FAD did not vary with fragment size (Table 3). FAD also did not significantly

vary with any of the categorical variables (guild, trait, size) when using standardized effect

scores (Table 3).

Discussion

Within an island biogeographic framework [56], species richness is predicted to vary positively

with patch size and negatively with patch isolation. Along these lines, Canale et al. (2012) [57]

reported a strong decline in species richness in tropical forest fragments of less than 10 ha

(equivalent to a lowered species density), approximately the upper size limit of our small forest

fragments. Hanski et al. (2013) [58] predicted such a decline while demonstrating that SARs

that only account for area effects tend to overestimate species richness in fragmented land-

scapes if fragments are highly isolated, and they proposed an extension of the power function

SAR that downsizes species richness in small fragments. In turn, a number of empirical studies

reported a small island effect [12] where species density in very small islands or habitat patches

increased [59–60]. Our results do not support either prediction. Species richness in the small-

est fragments did not negatively deviate from the observed SAR (Fig 1a) although we observed

a tendency to independence of area below 10 ha. However, richness was very closely related to

the number of individuals indicating that habitat capacity is probably the main trigger of spe-

cies richness. Contrary to Hanski et al. (2013) [58], area corrected richness (species density)

was not linked to fragment isolation (Fig 2a).

The counter-intuitive finding that species richness in small fragments was only 2% lower

than in large ones, is in line with other studies that reported patch connectivity to be of higher

importance than patch size [61], in particular for generalist species with a broad ecological

amplitude that can easily cross the landscape matrix and (re)colonise small forest patches [62,

63]. This generalist-focused explanation is corroborated by the fact that specialist species

increased less in richness in the larger fragments (Fig 1). Bird mobility in heterogeneous land-

scapes tends to vary among feeding guilds [64–66], with small understorey insectivores often

showing the highest sensitivity to fragment isolation [67]. The resulting high species turnover

(i.e. partial replacement of sedentary, forest-restricted specialists by mobile, matrix-tolerant

generalists in small, degraded forest fragments) might be responsible for the weak SAR

observed in our study.

Previous studies showed that bird assemblages strongly vary in composition with habitat

area and structure (such as the degree of fragmentation), and predicted higher species richness

in large, connected forest patches [68–69]. Yet, Trzinski et al. (1999) [70], Banks-Leite et al.

(2012) [62], and Neuschulz et al. (2013) [71] documented no significant impact of habitat het-

erogeneity on bird community structure in tropical forest fragments. Banks-Leite et al. (2012)

[62] argued that loss of tropical species is mainly driven by habitat destruction, rather than

fragmentation. According to these authors, species with broad ecological amplitude can readily

exploit the landscape matrix in which forest fragments are embedded and may even gain from

habitat fragmentation. The high species turnover between isolated forest fragments (indepen-

dent of fragment size) observed in our study is in line with these predictions.

Various studies have reported increasing mobility with decreasing habitat integrity [72–

74]. Yet, Price (2006) [75] showed that frugivorous species conducted shorter, rather than

longer, movements in fragmented forests, despite their high intrinsic mobility. Based on ear-

lier studies of mobility [76–77] and gene flow [78] in the same study area, bird species
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currently surviving in the Taita Hills forest also appear to differ in metapopulation dynamics.

Results of this study add to the effect of functional connectivity [79] and support the need to

define species- (or guild-) specific fragmentation thresholds [80] in conservation. Indeed,

even though we found species richness to be only marginally affected by patch area, there are

documented cases of local species extinctions in small Taita forest fragments [42]. In this

respect, our results are also relevant for the ongoing SLOSS debate [81–82]. Although each

large fragment was at least twice as large as all smaller fragments together, they hosted at

most 75% of the total species richness of the small fragments (Table 2). As such, our findings

corroborate the theoretical expectation of Lasky & Keitt (2013) [26] that networks of small

habitat remnants would be able to maintain higher total species richness than homogenous

habitat blocks of the same size. Yet, contrary to these authors, we did not find reduced frag-

ment (alpha) diversities within each of the smaller fragments. We interpret these findings as

evidence that tropical forest birds respond to increased habitat fragmentation by higher

mobility [78], or that there is a debt between former habitat destruction and ongoing local

extinction [83].

We were surprised to see that functional trait identity was not linked to the pattern of spe-

cies—co-occurrence. Species interactions are mediated by traits and classical community

assembly theory predicts co-existing species to show low levels of trait similarity [84]. Yet,

we did not find strong evidence that the bird communities in our study fragments are shaped

by competitive interactions (Table 2), which might explain why trait expression was not sig-

nificantly linked to co-occurrence. This finding contrasts to recent evidence by Bregman

et al. (2015) [16] who reported increased levels of interspecific competition within bird

guilds at decreasing fragment size. However, these authors used indirect evidence within the

community assembly framework that assumes that overdispersion of phylogenetic and func-

tional traits is a consequence of competitive interactions (Darwin’s competition-relatedness

hypothesis, reviewed in Allan et al. 2013, Götzenberger et al. 2012) [85–86]. However, Cahill

et al. (2008) [87] found little evidence for this assertion and it is now well known that over-

dispersion (spatial segregation) might stem from different processes, particularly from filter

effects within heterogeneous landscapes [88] and even from dispersal limited neutral com-

munity assembly [89]. Here we used a direct way to assess whether any set of competitive

strength relationships between species is able to predict observed abundance distributions.

For the smaller fragments this relation was highest in omnivores where competition

explained at most 13% of variance in species relative abundances (rC = 0.36, Table 2) com-

paring to 50% in the larger fragments. Apparently species density in the smaller fragments

yet did not reach the threshold for intense competitive effects and thus is of rather marginal

importance for community assembly.

Total trait space, as expressed by FAD, increases with species richness [52]. However, vari-

ous authors found homogenization effects in fragmented landscapes where smaller fragments

are devoid of habitat specialists and regionally rare species [90–92]. Consequently, this selec-

tive pattern of species extinction should translate into a reduced effective functional diversity

that is the degree of FAD after accounting for richness effects. Rather than observing such a

pattern, FAD remained constant after correction for richness differences (Table 3). While

small tropical forest fragments are hence able to maintain a high effective functional diversity,

communities will inevitably collapse when fragment areas become exceedingly small, which

raises the question about a minimal tropical forest fragment size. SES-transformed FAD scores

of the three smallest fragments (Mwachora, Kichuchenyi, Wundanyi, Table 1) were indeed

smaller (average SES FAD = -0.26±0.14) than those of the three large fragments (average SES

FAD = 0.13±0.15), although not statistically significant. A one ha area is probably at the lower

boundary for a functioning understorey bird community in the Taita forest archipelago.
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Conclusion

In conclusion, results of this study do not point to a single ecological driver of the observed

variation in avian species composition among indigenous fragments of the Taita forest archi-

pelago. Interspecific competition does not appear to be a major driver of species segregation,

since in small forest fragments no single competitive strength hierarchy was able to predict at

least a major part of the observed species abundances distributions. In larger fragments, how-

ever, the relative importance of competition might be higher. We did not find strong evidence

for habitat filtering either, and community-wide species co-occurrences and joint occurrences

between pairs of species were neither nested nor segregated, as would be expected if competi-

tion would be the main driver of species occurrences. The frequency of pairwise species segre-

gation was even much below the level expected under random association. However, the large

differences in species density and species richness between the two smallest fragments high-

light that local peculiarities might heavily constrain species richness, irrespective of subsequent

patterns of co-occurrences. Such variable, and partly opposing, responses of single guilds to

fragmentation suggest that it is vital to take species ecology into consideration when predicting

community-wide responses to habitat change in tropical forests.
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tated classification. In: Röder A (ed.), Recent advances in remote sensing and geoinformation process-

ing for land degradation assessment. Taylor & Francis.

41. Karr JR (1981) Surveying birds with mist nets. Stud. J Avian Biol 6: 62–67.

42. Callens T (2012) Genetic and demographic signatures of population fragmentation in a cooperatively

breeding bird from south-east Kenya. PhD thesis, Ghent University.

43. Remsen JV, Good DA (1996) Misuse of data from mist-net captures to assess relative abundance in

bird populations. Auk 113: 381–398.

44. Trisos CH, Petchey OL, Tobias JA (2014) Unraveling the interplay of community assembly processes

acting on multiple niche axes across spatial scales. Am Nat 184: 593–608. doi: 10.1086/678233 PMID:

25325744

45. Claramunt S, Derryberry EP, Remsen JV, Brumfield RT (2012) High dispersal ability inhibits speciation

in a continental radiation of passerine birds. Proc Roy Soc B 279: 1567–1574.

46. Pigot A, Trisos CH, Tobias JA (2016) Functional traits reveal the expansion and packing of ecological

niche space underlying an elevational diversity gradient in passerine birds. Proc Roy Soc B 283:

20152013.

47. Stone L, Roberts A (1990) The checkerboard score and species distributions. Oecologia 85: 74–79.

48. Almeida-Neto M, Guimarães P, Guimarães PR Jr, Loyola RD, Ulrich W (2008) A consistent metric for

nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117: 1227–

1239.

49. Tuomisto H (2010) A consistent terminology for quantifying species diversity? Yes, it does exist. Oeco-

logia 164: 853–860 doi: 10.1007/s00442-010-1812-0 PMID: 20978798

50. Walker B, Kinzig A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: The

nature and significance of dominant and minor species. Ecosys 2: 95–113.

51. Ulrich W (2011) NODF—a Fortran program for nestedness analysis. www.umk.pl/~ulrichw.

52. Ulrich W (2011) Turnover—a Fortran program for the analysis of species associations. www.umk.pl/~

ulrichw.

53. Ulrich W, Gotelli NJ (2013) Pattern detection in null model analysis. Oikos 122: 2–18.
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